1
|
Matsumura Y, Maruyama M, Ntonifor NN, Beutel RG. A new species of Zoraptera, Zorotypuskomatsui sp. nov. from Cameroon and a redescription of Zorotypusvinsoni Paulian, 1951 (Polyneoptera, Zoraptera). Zookeys 2023; 1178:39-59. [PMID: 37692914 PMCID: PMC10492039 DOI: 10.3897/zookeys.1178.108276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 09/12/2023] Open
Abstract
A new species of the order Zoraptera, Zorotypuskomatsui Matsumura, Maruyama, Ntonifor & Beutel, sp. nov., is described from Cameroon. The female and male morphology of another species, Z.vinsoni, is re-described, and its new distribution in Madagascar is recorded. A particular focus is on the male postabdominal morphology. This is apparently a crucial body region in the very small order with an extreme variation of the genital apparatus but otherwise a very uniform morphology. The male of the newly described species shares rudimentary male genitalia and well-developed postabdominal projections with the distantly related Spermozorosimpolitus, apparently a result of parallel evolution. Whether males of Z.komatsui also perform external sperm transfer like S.impolitus remains to be shown. The collecting of the material used for this study suggests that the present knowledge of zorapteran species diversity of the Afrotropical region is very fragmentary.
Collapse
Affiliation(s)
- Yoko Matsumura
- Systematic Entomology, Department of Ecology and Systematics, Graduate School of Agriculture, Hokkaido University, Sapporo, JapanHokkaido UniversitySapporoJapan
| | - Munetoshi Maruyama
- The Kyushu University Museum, Hakozaki 6-10-1, Fukuoka, 812–8581, JapanThe Kyushu University MuseumFukuokaJapan
| | - Nelson N. Ntonifor
- Department of Agronomic and Applied Molecular Sciences, Faculty of Agriculture and Veterinary Medicine, University of Buea, P.O. Box 63 Buea, CameroonUniversity of BueaBueaCameroon
| | - Rolf G. Beutel
- Entomology Group, Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, GermanyFriedrich-Schiller-Universität JenaJenaGermany
| |
Collapse
|
2
|
Matsumura Y, Lima SP, Rafael JA, Câmara JT, Beutel RG, Gorb SN. Distal leg structures of Zoraptera - did the loss of adhesive devices curb the chance of diversification? ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 68:101164. [PMID: 35468454 DOI: 10.1016/j.asd.2022.101164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The distal leg structures of Zoraptera are documented and discussed with respect to their functional morphology and evolutionary aspects. We investigated eight species using scanning electron microscopy. We analyzed material compositions of the tarsus in three representative species using confocal laser scanning microscopy. When possible, we included both sexes, wing morphs, and nymphs and compared the structures among them. The distal leg structure is unusually uniform across zorapterans regardless of the sex, morphs, and developmental stages. The observed features combine simplification with innovation. The former is likely partially correlated with cryptic microhabitats and miniaturization. Innovation includes a protibial cleaning organ. This is very likely an autapomorphy of Zoraptera. The tarsi are composed of two tarsomeres covered with setae. The pretarsus distally bears an unguitractor plate and well-sclerotized claws. The tarsomeres appear less-sclerotized than the covering setae. The articulation between the basitarsus and tarsomere 2 is hinge-like, implying that tarsomere 2 moves only mediolaterally. The simplified and specialized tarsal morphology is likely suitable for the typical zorapteran microhabitat, under bark. However, the irreversible complete loss of adhesive devices prevented zorapterans to make use of a broader spectrum of environments and was presumably one reason for the species paucity of the group.
Collapse
Affiliation(s)
- Yoko Matsumura
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany; General and Systematic Zoology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany.
| | - Sheila P Lima
- Instituto Nacional de Pesquisas da Amazonia, Manaus, Brazil
| | - José A Rafael
- Instituto Nacional de Pesquisas da Amazonia, Manaus, Brazil
| | | | - Rolf G Beutel
- Entomology Group, Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| |
Collapse
|
3
|
Molecular Phylogeny and Infraordinal Classification of Zoraptera (Insecta). INSECTS 2020; 11:insects11010051. [PMID: 31940956 PMCID: PMC7023341 DOI: 10.3390/insects11010051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/30/2019] [Accepted: 01/09/2020] [Indexed: 12/03/2022]
Abstract
Zoraptera is a small and predominantly tropical insect order with an unresolved higher classification due to the extremely uniform external body morphology. We, therefore, conducted a multigene molecular phylogeny of extant Zoraptera and critically re-evaluated their morphological characters in order to propose a natural infraordinal classification. We recovered a highly-resolved phylogeny with two main clades representing major evolutionary lineages in Zoraptera, for which we propose family ranks. The two families exhibit striking differences in male genitalia and reproductive strategies. Each family contains two subclades (subfamilies) supported by several morphological synapomorphies including the relative lengths of the basal antennomeres, the number and position of metatibial spurs, and the structure of male genitalia. The newly proposed higher classification of Zoraptera includes the family Zorotypidae stat. revid. with Zorotypinae Silvestri, 1913 (Zorotypus stat. revid., Usazoros Kukalova-Peck and Peck, 1993 stat. restit.) and Spermozorinae subfam. nov. (Spermozoros gen. nov.), and Spriralizoridae fam. nov. with Spiralizorinae subfam. nov. (Spiralizoros gen. nov., Scapulizoros gen. nov., Cordezoros gen. nov., Centrozoros Kukalova-Peck and Peck, 1993, stat. restit., Brazilozoros Kukalova-Peck and Peck, 1993, stat. restit.), and Latinozorinae subfam. nov. (Latinozoros Kukalova-Peck and Peck, 1993, stat. restit.). An identification key and morphological diagnoses for all supraspecific taxa are provided.
Collapse
|
4
|
Dallai R, Mercati D, Mashimo Y, Machida R, Beutel RG. The morphology and ultrastructure of salivary glands of Zoraptera (Insecta). ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:508-517. [PMID: 28189833 DOI: 10.1016/j.asd.2017.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
The salivary glands of two species of Zoraptera, Zorotypus caudelli and Zorotypus hubbardi, were examined and documented mainly using transmission electron microscopy (TEM). The results obtained for males and females of the two species are compared and functional aspects related to ultrastructural features are discussed. The salivary glands are divided into two regions: the secretory cell region and the long efferent duct, the latter with its distal end opening in the salivarium below the hypopharyngeal base. The secretory region consists of a complex of secretory cells provided with microvillated cavities connected by short ectodermal ducts to large ones, which are connected with the long efferent duct. The secretory cell cytoplasm contains a large system of rough endoplasmic reticulum and Golgi apparatus producing numerous dense secretions. The cells of the efferent duct, characterized by reduced cytoplasm and the presence of long membrane infoldings associated with mitochondria, are possibly involved in fluid uptaking from the duct lumen.
Collapse
Affiliation(s)
- R Dallai
- Department of Life Sciences, Via A. Moro 2, University of Siena, I-53100, Siena, Italy.
| | - D Mercati
- Department of Life Sciences, Via A. Moro 2, University of Siena, I-53100, Siena, Italy.
| | - Y Mashimo
- Graduate School of Symbiotic Systems Science and Technology, Fukushima University, Kanayagawa 1, Fukushima, 960-1296, Japan.
| | - R Machida
- Sugadaira Montane Research Center, University of Tsukuba, Nagano, 386-2204, Japan.
| | - R G Beutel
- Institut für Spezielle Zoologie und Evolutionsbiologie, FSU Jena, Erbertstraße 1, 07743, Jena, Germany.
| |
Collapse
|
5
|
Gottardo M, Dallai R, Mercati D, Hörnschemeyer T, Beutel RG. The evolution of insect sperm − an unusual character system in a megadiverse group. J ZOOL SYST EVOL RES 2016. [DOI: 10.1111/jzs.12136] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Marco Gottardo
- Department of Life Sciences; Università degli Studi di Siena; Siena Italy
| | - Romano Dallai
- Department of Life Sciences; Università degli Studi di Siena; Siena Italy
| | - David Mercati
- Department of Life Sciences; Università degli Studi di Siena; Siena Italy
| | | | - Rolf Georg Beutel
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum; Friedrich-Schiller-Universität Jena; Jena Germany
| |
Collapse
|
6
|
Dallai R, Gottardo M, Beutel RG. Structure and Evolution of Insect Sperm: New Interpretations in the Age of Phylogenomics. ANNUAL REVIEW OF ENTOMOLOGY 2016; 61:1-23. [PMID: 26982436 DOI: 10.1146/annurev-ento-010715-023555] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This comprehensive review of the structure of sperm in all orders of insects evaluates phylogenetic implications, with the background of a phylogeny based on transcriptomes. Sperm characters strongly support several major branches of the phylogeny of insects-for instance, Cercophora, Dicondylia, and Psocodea-and also different infraordinal groups. Some closely related taxa, such as Trichoptera and Lepidoptera (Amphiesmenoptera), differ greatly in sperm structure. Sperm characters are very conservative in some groups (Heteroptera, Odonata) but highly variable in others, including Zoraptera, a small and morphologically uniform group with a tremendously accelerated rate of sperm evolution. Unusual patterns such as sperm dimorphism, the formation of bundles, or aflagellate and immotile sperm have evolved independently in several groups.
Collapse
Affiliation(s)
- Romano Dallai
- Dipartimento di Scienze della Vita, Università di Siena, I-53100 Siena, Italy; ,
| | - Marco Gottardo
- Dipartimento di Scienze della Vita, Università di Siena, I-53100 Siena, Italy; ,
| | - Rolf Georg Beutel
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany;
| |
Collapse
|
7
|
Mashimo Y, Beutel RG, Dallai R, Gottardo M, Lee CY, Machida R. The morphology of the eggs of three species of Zoraptera (Insecta). ARTHROPOD STRUCTURE & DEVELOPMENT 2015; 44:656-666. [PMID: 26431636 DOI: 10.1016/j.asd.2015.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
The egg structure of Zorotypus magnicaudelli, Zorotypus hubbardi and Zorotypus impolitus was examined and described in detail. Major characteristics of zorapteran eggs previously reported were confirmed in these species, with the partial exception of Z. impolitus: 1) a pair of micropyles at the equator of the egg's ventral side, 2) a honeycomb pattern on the egg surface, 3) a two-layered chorion, 4) micropylar canals running laterally, 5) a flap covering the inner opening of the micropylar canal and 6) no region specialized for hatching. These features are probably part of the groundplan of the order. Three groups (A-C) and two subgroups (A1 and A2) of Zoraptera can be distinguished based on characters of the reproductive apparatus including eggs. However, information for more species is needed for a reliable interpretation of the complex and apparently fast evolving character system. The egg of Z. impolitus presumably shows apomorphic characteristics not occurring in other species, a chorion without layered construction and polygonal surface compartments with different sculptures on the dorsal and ventral sides of the egg. Another feature found in this species, distinct enlargement of the micropyles, is also found in Z. hubbardi. The increased micropylar size is likely correlated with the giant spermatozoa produced by males of these two species. These two features combined with the large size of the spermatheca are arguably a complex synapomorphy of Z. hubbardi and Z. impolitus. The phylogenetic placement of Zoraptera is discussed based on the egg structure. A clade of Zoraptera + Eukinolabia appears most plausible, but the issue remains an open question.
Collapse
Affiliation(s)
- Yuta Mashimo
- Sugadaira Montane Research Center, University of Tsukuba, Sugadaira Kogen 1278-294, Ueda, Nagano, 386-2204, Japan.
| | - Rolf G Beutel
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, Erbertstraße 1, 07743, Jena, Germany
| | - Romano Dallai
- Department of Evolutionary Biology, University of Siena, Via A. Moro 2, I-53100, Siena, Italy
| | - Marco Gottardo
- Department of Evolutionary Biology, University of Siena, Via A. Moro 2, I-53100, Siena, Italy
| | - Chow-Yang Lee
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Ryuichiro Machida
- Sugadaira Montane Research Center, University of Tsukuba, Sugadaira Kogen 1278-294, Ueda, Nagano, 386-2204, Japan.
| |
Collapse
|