1
|
Role of Host Small GTPases in Apicomplexan Parasite Infection. Microorganisms 2022; 10:microorganisms10071370. [PMID: 35889089 PMCID: PMC9319929 DOI: 10.3390/microorganisms10071370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
The Apicomplexa are obligate intracellular parasites responsible for several important human diseases. These protozoan organisms have evolved several strategies to modify the host cell environment to create a favorable niche for their survival. The host cytoskeleton is widely manipulated during all phases of apicomplexan intracellular infection. Moreover, the localization and organization of host organelles are altered in order to scavenge nutrients from the host. Small GTPases are a class of proteins widely involved in intracellular pathways governing different processes, from cytoskeletal and organelle organization to gene transcription and intracellular trafficking. These proteins are already known to be involved in infection by several intracellular pathogens, including viruses, bacteria and protozoan parasites. In this review, we recapitulate the mechanisms by which apicomplexan parasites manipulate the host cell during infection, focusing on the role of host small GTPases. We also discuss the possibility of considering small GTPases as potential targets for the development of novel host-targeted therapies against apicomplexan infections.
Collapse
|
2
|
Parapini S, Paone S, Erba E, Cavicchini L, Pourshaban M, Celani F, Contini A, D’Alessandro S, Olivieri A. In Vitro Antimalarial Activity of Inhibitors of the Human GTPase Rac1. Antimicrob Agents Chemother 2022; 66:e0149821. [PMID: 34723630 PMCID: PMC8765435 DOI: 10.1128/aac.01498-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022] Open
Abstract
Malaria accounts for millions of cases and thousands of deaths every year. In the absence of an effective vaccine, drugs are still the most important tool in the fight against the disease. Plasmodium parasites developed resistance to all classes of known antimalarial drugs. Thus, the search for antimalarial drugs with novel mechanisms of action is compelling. The human GTPase Rac1 plays a role in parasite invasion of the host cell in many intracellular pathogens. Also, in Plasmodium falciparum, the involvement of Rac1 during both the invasion process and parasite intracellular development was suggested. The aim of this work is to test a panel of Rac1 inhibitors as potential antimalarial drugs. Fourteen commercially available or newly synthesized inhibitors of Rac1 were tested for antimalarial activity. Among these, EHop-016 was the most effective against P. falciparum in vitro, with nanomolar 50% inhibitory concentrations (IC50s) (138.8 ± 16.0 nM on the chloroquine-sensitive D10 strain and 321.5 ± 28.5 nM on the chloroquine-resistant W2 strain) and a selectivity index of 37.8. EHop-016 did not inhibit parasite invasion of red blood cells but affected parasite growth inside them. Among the tested Rac1 inhibitors, EHop-016 showed promising activity that raises attention to this class of molecules as potential antimalarials and deserves further investigation.
Collapse
Affiliation(s)
- Silvia Parapini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Silvio Paone
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Rome, Italy
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Emanuela Erba
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Loredana Cavicchini
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| | | | - Francesco Celani
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandro Contini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Sarah D’Alessandro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Anna Olivieri
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
3
|
Paone S, D'Alessandro S, Parapini S, Celani F, Tirelli V, Pourshaban M, Olivieri A. Characterization of the erythrocyte GTPase Rac1 in relation to Plasmodium falciparum invasion. Sci Rep 2020; 10:22054. [PMID: 33328606 PMCID: PMC7744522 DOI: 10.1038/s41598-020-79052-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/30/2020] [Indexed: 12/01/2022] Open
Abstract
Malaria is still a devastating disease with 228 million cases globally and 405,000 lethal outcomes in 2018, mainly in children under five years of age. The threat of emerging malaria strains resistant to currently available drugs has made the search for novel drug targets compelling. The process by which Plasmodium falciparum parasites invade the host cell has been widely studied, but only a few erythrocyte proteins involved in this process have been identified so far. The erythrocyte protein Rac1 is a GTPase that plays an important role in host cell invasion by many intracellular pathogens. Here we show that Rac1 is recruited in proximity to the site of parasite entry during P. falciparum invasion process and that subsequently localizes to the parasitophorous vacuole membrane. We also suggest that this GTPase may be involved in erythrocyte invasion by P. falciparum, by testing the effect of specific Rac1 inhibitory compounds. Finally, we suggest a secondary role of the erythrocyte GTPase also in parasite intracellular development. We here characterize a new erythrocyte protein potentially involved in P. falciparum invasion of the host cell and propose the human GTPase Rac1 as a novel and promising antimalarial drug target.
Collapse
Affiliation(s)
- Silvio Paone
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy.,Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza University of Rome, Rome, Italy
| | - Sarah D'Alessandro
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, University of Milan, Milan, Italy
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche Per La Salute, University of Milan, Milan, Italy
| | - Francesco Celani
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina Tirelli
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | | | - Anna Olivieri
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
4
|
Barrias E, Reignault L, de Carvalho TM, de Souza W. Clathrin coated pit dependent pathway for Trypanosoma cruzi internalization into host cells. Acta Trop 2019; 199:105057. [PMID: 31202818 DOI: 10.1016/j.actatropica.2019.105057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023]
Abstract
A number of intracellular pathogens are internalized by host cells via multiple endocytic pathways, including Trypanosoma cruzi, the etiological agent of Chagas disease. Clathrin-mediated endocytosis is the most characterized endocytic pathway in mammalian cells. Its machinery was described as being required in mammalian cells for the internalization of large particles, including pathogenic bacteria, fungi, and large virus. To investigate whether T. cruzi entry into host cells can also take advantage of the clathrin-coated vesicle-dependent process, we utilized well-known inhibitors of clathrin-coated vesicle formation (sucrose hypertonic medium, chlorpromazine hydrochloride and pitstop 2) and small interference RNA (siRNA). All treatments drastically reduced the internalization of infective trypomastigotes and amastigotes of T. cruzi by phagocytic (macrophages) and epithelial cells. Clathrin labeling, as observed by fluorescence and electron microscopy, was also observed around the parasites from the initial stages of infection until the complete formation of the parasitophorous vacuole. These unexpected observations suggest the participation of the clathrin pathway in the T. cruzi entry process.
Collapse
|
5
|
Antiparasitic effect of (-)-α-bisabolol against Trypanosoma cruzi Y strain forms. Diagn Microbiol Infect Dis 2019; 95:114860. [PMID: 31353066 DOI: 10.1016/j.diagmicrobio.2019.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 05/20/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022]
Abstract
Chagas disease is caused by Trypanosoma cruzi and affects about 7 million people worldwide. Benznidazole and nifurtimox have low efficacy and high toxicity. The present study was designed to identify the trypanocidal effect of (-)-α-Bisabolol (BIS) and investigate its mechanism. Epimastigotes and trypomastigotes were cultured with BIS and the viable cells were counted. BIS antiamastigote effect was evaluated using infected LLC-MK2 cells. MTT assay was performed to evaluate BIS cytotoxicity. Growth recovery was assessed to evaluate BIS effect after short times of exposure. BIS mechanism was investigated through flow cytometry, with 7-AAD and Annexin V-PE. DCFH-DA, rhodamine 123 (Rho123) and acridine orange (AO). Finally, enzymatic and computational assays were performed to identify BIS interaction with T. cruzi GAPDH (tcGAPDH). BIS showed an inhibitory effect on epimastigotes after all tested periods, as well on trypomastigotes. It caused cytotoxicity on LLC-MK2 cells at higher concentrations, with selectivity index (SeI) = 26.5. After treatment, infected cells showed a decrease in infected cells, the number of amastigotes per infected cell and the survival index (SuI). Growth recovery demonstrated that BIS effect causes rapid death of T. cruzi. Flow cytometry showed that BIS biological effect is associated with apoptosis induction, increase in cytoplasmic ROS and mitochondrial transmembrane potential, while reservosome swelling was observed at a late stage. Also, BIS action mechanism may be associated to tcGAPDH inhibition. Altogether, the results demonstrate that BIS causes cell death in Trypanosoma cruzi Y strain forms, with the involvement of apoptosis and oxidative stress and enzymatic inhibition.
Collapse
|
6
|
Bonfim-Melo A, Ferreira ÉR, Mortara RA. Rac1/WAVE2 and Cdc42/N-WASP Participation in Actin-Dependent Host Cell Invasion by Extracellular Amastigotes of Trypanosoma cruzi. Front Microbiol 2018. [PMID: 29541069 PMCID: PMC5835522 DOI: 10.3389/fmicb.2018.00360] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This study evaluated the participation of host cell Rho-family GTPases and their effector proteins in the actin-dependent invasion by Trypanosoma cruzi extracellular amastigotes (EAs). We observed that all proteins were recruited and colocalized with actin at EA invasion sites in live or fixed cells. EA internalization was inhibited in cells depleted in Rac1, N-WASP, and WAVE2. Time-lapse experiments with Rac1, N-WASP and WAVE2 depleted cells revealed that EA internalization kinetics is delayed even though no differences were observed in the proportion of EA-induced actin recruitment in these groups. Overexpression of constitutively active constructs of Rac1 and RhoA altered the morphology of actin recruitments to EA invasion sites. Additionally, EA internalization was increased in cells overexpressing CA-Rac1 but inhibited in cells overexpressing CA-RhoA. WT-Cdc42 expression increased EA internalization, but curiously, CA-Cdc42 inhibited it. Altogether, these results corroborate the hypothesis of EA internalization in non-phagocytic cells by a phagocytosis-like mechanism and present Rac1 as the key Rho-family GTPase in this process.
Collapse
Affiliation(s)
- Alexis Bonfim-Melo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Éden R Ferreira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Renato A Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
John Von Freyend S, Kwok-Schuelein T, Netter HJ, Haqshenas G, Semblat JP, Doerig C. Subverting Host Cell P21-Activated Kinase: A Case of Convergent Evolution across Pathogens. Pathogens 2017; 6:pathogens6020017. [PMID: 28430160 PMCID: PMC5488651 DOI: 10.3390/pathogens6020017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/29/2017] [Accepted: 04/09/2017] [Indexed: 12/14/2022] Open
Abstract
Intracellular pathogens have evolved a wide range of strategies to not only escape from the immune systems of their hosts, but also to directly exploit a variety of host factors to facilitate the infection process. One such strategy is to subvert host cell signalling pathways to the advantage of the pathogen. Recent research has highlighted that the human serine/threonine kinase PAK, or p21-activated kinase, is a central component of host-pathogen interactions in many infection systems involving viruses, bacteria, and eukaryotic pathogens. PAK paralogues are found in most mammalian tissues, where they play vital roles in a wide range of functions. The role of PAKs in cell proliferation and survival, and their involvement in a number of cancers, is of great interest in the context of drug discovery. In this review we discuss the latest insights into the surprisingly central role human PAK1 plays for the infection by such different infectious disease agents as viruses, bacteria, and parasitic protists. It is our intention to open serious discussion on the applicability of PAK inhibitors for the treatment, not only of neoplastic diseases, which is currently the primary objective of drug discovery research targeting these enzymes, but also of a wide range of infectious diseases.
Collapse
Affiliation(s)
- Simona John Von Freyend
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
| | - Terry Kwok-Schuelein
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia.
| | - Hans J Netter
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
- Victorian Infectious Diseases Reference Laboratory, Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia.
| | - Gholamreza Haqshenas
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
| | | | - Christian Doerig
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
| |
Collapse
|
8
|
de Araújo KCL, Teixeira TL, Machado FC, da Silva AA, Quintal APN, da Silva CV. AFAP-1L1-mediated actin filaments crosslinks hinder Trypanosoma cruzi cell invasion and intracellular multiplication. Acta Trop 2016; 162:167-170. [PMID: 27349187 DOI: 10.1016/j.actatropica.2016.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 11/28/2022]
Abstract
Host actin cytoskeleton polymerization has been shown to play an important role during Trypanosoma cruzi internalization into mammalian cell. The structure and dynamics of the actin cytoskeleton in cells are regulated by a vast number of actin-binding proteins. Here we aimed to verify the impact of AFAP-1L1, during invasion and multiplication of T. cruzi. Knocking-down AFAP-1L1 increased parasite cell invasion and intracellular multiplication. Thus, we have shown that the integrity of the machinery formed by AFAP-1L1 in actin cytoskeleton polymerization is important to hinder parasite infection.
Collapse
|
9
|
de Carvalho TMU, Barrias ES, de Souza W. Macropinocytosis: a pathway to protozoan infection. Front Physiol 2015; 6:106. [PMID: 25914647 PMCID: PMC4391238 DOI: 10.3389/fphys.2015.00106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/17/2015] [Indexed: 11/13/2022] Open
Abstract
Among the various endocytic mechanisms in mammalian cells, macropinocytosis involves internalization of large amounts of plasma membrane together with extracellular medium, leading to macropinosome formation. These structures are formed when plasma membrane ruffles are assembled after actin filament rearrangement. In dendritic cells, macropinocytosis has been reported to play a role in antigen presentation. Several intracellular pathogens are internalized by host cells via multiple endocytic pathways and macropinocytosis has been described as an important entry site for various organisms. Some bacteria, such as Legionella pneumophila, as well as various viruses, use this pathway to penetrate and subvert host cells. Some protozoa, which are larger than bacteria and virus, can also use this pathway to invade host cells. As macropinocytosis is characterized by the formation of large uncoated vacuoles and is triggered by various signaling pathways, which is similar to what occurs during the formation of the majority of parasitophorous vacuoles, it is believed that this phenomenon may be more widely used by parasites than is currently appreciated. Here we review protozoa host cell invasion via macropinocytosis.
Collapse
Affiliation(s)
- Tecia M U de Carvalho
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciência da Saúde, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil ; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Bioimagens-CENABIO, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Emile S Barrias
- Instituto Nacional de Metrologia, Qualidade e Tecnologia-Inmetro Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciência da Saúde, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil ; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Bioimagens-CENABIO, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Barrias ES, de Carvalho TMU, De Souza W. Trypanosoma cruzi: Entry into Mammalian Host Cells and Parasitophorous Vacuole Formation. Front Immunol 2013; 4:186. [PMID: 23914186 PMCID: PMC3730053 DOI: 10.3389/fimmu.2013.00186] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 06/25/2013] [Indexed: 11/29/2022] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, is transmitted to vertebrate hosts by blood-sucking insects. This protozoan is an obligate intracellular parasite. The infective forms of the parasite are the metacyclic trypomastigotes, amastigotes, and bloodstream trypomastigotes. The recognition between the parasite and mammalian host cell, involves numerous molecules present in both cell types, and similar to several intracellular pathogens, T. cruzi is internalized by host cells via multiple endocytic pathways. Morphological studies demonstrated that after the interaction of the infective forms of T. cruzi with phagocytic or non-phagocytic cell types, plasma membrane (PM) protrusions can form, showing similarity with those observed during canonical phagocytosis or macropinocytic events. Additionally, several molecules known to be molecular markers of membrane rafts, macropinocytosis, and phagocytosis have been demonstrated to be present at the invasion site. These events may or may not depend on the host cell lysosomes and cytoskeleton. In addition, after penetration, components of the host endosomal-lysosomal system, such as early endosomes, late endosomes, and lysosomes, participate in the formation of the nascent parasitophorous vacuole (PV). Dynamin, a molecule involved in vesicle formation, has been shown to be involved in the PV release from the host cell PM. This review focuses on the multiple pathways that T. cruzi can use to enter the host cells until complete PV formation. We will describe different endocytic processes, such as phagocytosis, macropinocytosis, and endocytosis using membrane microdomains and clathrin-dependent endocytosis and show results that are consistent with their use by this smart parasite. We will also discuss others mechanisms that have been described, such as active penetration and the process that takes advantage of cell membrane wound repair.
Collapse
Affiliation(s)
- Emile Santos Barrias
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biologia, Instituto Nacional de Metrologia, Qualidade e Tecnologia – Inmetro Duque de Caxias, Rio de Janeiro, Brazil
| | - Tecia Maria Ulisses de Carvalho
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanderley De Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biologia, Instituto Nacional de Metrologia, Qualidade e Tecnologia – Inmetro Duque de Caxias, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Na RH, Zhu GH, Luo JX, Meng XJ, Cui L, Peng HJ, Chen XG, Gomez-Cambronero J. Enzymatically active Rho and Rac small-GTPases are involved in the establishment of the vacuolar membrane after Toxoplasma gondii invasion of host cells. BMC Microbiol 2013; 13:125. [PMID: 23721065 PMCID: PMC3681593 DOI: 10.1186/1471-2180-13-125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 05/27/2013] [Indexed: 11/10/2022] Open
Abstract
Background GTPases are the family of hydrolases that bind and hydrolyze guanosine triphosphate. The large Immunity-related GTPases and the small GTPase ADP-ribosylation factor-6 in host cells are known to accumulate on the parasitophorous vacuole membrane (PVM) of Toxoplasma gondii and play critical roles in this parasite infection, but these GTPases cannot explain the full extent of infection. Results In this research, RhoA and Rac1 GTPases from the host cell were found to accumulate on the PVM regardless of the virulence of the T. gondii strains after T. gondii invasion, and this accumulation was dependent on their GTPase activity. The real-time micrography of T. gondii tachyzoites invading COS-7 cells overexpressing CFP-RhoA showed that this GTPase was recruited to the PVM at the very beginning of the invasion through the host cell membrane or from the cytosol. Host cell RhoA and Rac1 were also activated after T. gondii tachyzoites invasion, which was needed for host cell cytoskeleton reorganization to facilitate intracellular pathogens invasion. The decisive domains for the RhoA accumulation on the PVM included the GTP/Mg2+ binding site, the mDia effector interaction site, the G1 box, the G2 box and the G5 box, respectively, which were related to the binding of GTP for enzymatic activity and mDia for the regulation of microtubules. The recruited CFP-RhoA on the PVM could not be activated by epithelial growth factor (EGF) and no translocation was observed, unlike the unassociated RhoA in the host cell cytosol that migrated to the cell membrane towards the EGF activation spot. This result supported the hypothesis that the recruited RhoA or Rac1 on the PVM were in the GTP-bound active form. Wild-type RhoA or Rac1 overexpressed cells had almost the same infection rates by T. gondii as the mock-treated cells, while RhoA-N19 or Rac1-N17 transfected cells and RhoA, Rac1 or RhoA + Rac1 siRNA-treated cells showed significantly diminished infection rates compared to mock cells. Conclusions The accumulation of the RhoA and Rac1 on the PVM and the requisite of their normal GTPase activity for efficient invasion implied their involvement and function in T. gondii invasion.
Collapse
Affiliation(s)
- Ren-Hua Na
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Barrias ES, Reignault LC, De Souza W, Carvalho TMU. Trypanosoma cruzi uses macropinocytosis as an additional entry pathway into mammalian host cell. Microbes Infect 2012; 14:1340-51. [PMID: 23010292 DOI: 10.1016/j.micinf.2012.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 06/26/2012] [Accepted: 08/16/2012] [Indexed: 12/25/2022]
Abstract
Several intracellular pathogens are internalized by host cells via multiple endocytic pathways. It is no different with Trypanosoma cruzi. Evidences indicate that T. cruzi entry may occur by endocytosis/phagocytosis or by an active manner. Although macropinocytosis is largely considered an endocytic process where cells internalize only large amounts of solutes, several pathogens use this pathway to enter into host cells. To investigate whether T. cruzi entry into peritoneal macrophages and LLC-MK2 epithelial cells can be also mediated through a macropinocytosis-like process, we used several experimental strategies presently available to characterize macropinocytosis such as the use of different inhibitors. These macropinocytosis' inhibitors blocked internalization of T. cruzi by host cells. To further support this, immunofluorescence microscopy and scanning electron microscopy techniques were used. Field emission scanning electron microscopy revealed that after treatment, parasites remained attached to the external side of host cell plasma membrane. Proteins such as Rabankyrin 5, tyrosine kinases, Pak1 and actin microfilaments, which participate in macropinosome formation, were localized at T. cruzi entry sites. We also observed co-localization between the parasite and an endocytic fluid phase marker. All together, these results indicate that T. cruzi is able to use multiple mechanisms of penetration into host cell, including macropinocytosis.
Collapse
Affiliation(s)
- E S Barrias
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro - Av. Carlos Chagas Filho, 373, Bloco G - subsolo, Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | | | | | | |
Collapse
|
13
|
de Souza W. Microscopy and cytochemistry of the biogenesis of the parasitophorous vacuole. Histochem Cell Biol 2005; 123:1-18. [PMID: 15685438 DOI: 10.1007/s00418-004-0746-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Accepted: 11/23/2004] [Indexed: 10/25/2022]
Abstract
Some parasitic protozoa are able to penetrate into host cells where they multiply. The process of penetration involves steps such as attachment to the host cell surface, internalization of the protozoan through an endocytic process with the formation of a parasitophorous vacuole (PV), and the subsequent interaction of the protozoan with the membrane lining the PV. This review analyzes the biogenesis of the PV from a morphological and cytochemical perspective. Special emphasis is given to (a) the localization of plasma membrane-associated enzymes such as Na(+)-K(+)-ATPase, Ca(2+)-ATPase, 5'-nucleotidase, and NAD(P)H-oxidase, (b) glycoconjugates, detected using labeled lectins, (c) anionic sites, detected using cationic particles, and (d) integral membrane proteins, using freeze-fracture replicas, and lipids during the formation of the PV containing Trypanosoma cruzi, Leishmania, Toxoplasma gondii, and Plasmodium.
Collapse
Affiliation(s)
- Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, CCS-Bloco G, 21941-900, Rio de Janeiro, Brazil.
| |
Collapse
|