1
|
Dehuri M, Mohanty B, Rath PK, Mishra B. An insight into control strategies against bovine tropical tick (Rhipicephalus microplus) in context to acaricide resistance. MEDICAL AND VETERINARY ENTOMOLOGY 2025. [PMID: 40270192 DOI: 10.1111/mve.12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025]
Abstract
The monoxenous Ixodid tick Rhipicephalus microplus is an economically important pest infesting cattle populations worldwide. Apart from being a vector of various diseases, they cause substantial production losses. The control against this tick is mostly through chemical acaricides, which have been undermined by problems of resistance as well as toxic residues in the environment and living beings. In spite of the development of two commercial vaccines against the tick way back in the 1990s, the anticipated results were not recorded in field conditions. The search for vaccine antigens has led to the identification of subolesin, serpins, lipocains and proteoses showing protective immune response. The efficacy of these candidate antigens is mostly assessed by the mortality of adult and larval stages and effect on reproductive performance. Similarly, the use of plant extracts, nano encapsulation of plant extracts and entomopathogenic fungi have been widely subjected to in vitro and in vivo trials to offer a cost-effective and green solution to tick infestation. In recent years, the use of modern technologies like RNA interference, in silico docking and CRISPR technology have accelerated the identification of potent antigens and active fractions of plant extracts. Integrated tick management is a good option for the eradication of R. microplus. However, the integration of chemical and non-chemical control strategies still remains a challenge. The present review article is focused on the ongoing and emerging control strategies against the tick that will help researchers evolve a sustainable solution against R. microplus infestation.
Collapse
Affiliation(s)
- Manaswini Dehuri
- Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Bijayendranath Mohanty
- Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Prasana Kumar Rath
- Department of Veterinary Pathology, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Bidyutprava Mishra
- Department of Livestock Products Technology, Odisha University of Agriculture and Technology, Bhubaneswar, India
| |
Collapse
|
2
|
Trujillo E, Ramos-Vega A, Monreal-Escalante E, Almazán C, Angulo C. Overview of Recombinant Tick Vaccines and Perspectives on the Use of Plant-Made Vaccines to Control Ticks of Veterinary Importance. Vaccines (Basel) 2024; 12:1178. [PMID: 39460344 PMCID: PMC11512348 DOI: 10.3390/vaccines12101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Ticks are obligate hematophagous ectoparasites that affect animals, and some of them transmit a wide range of pathogens including viruses, bacteria, and protozoa to both animals and humans. Several vaccines have shown immunogenicity and protective efficacy against ticks in animal models and definitive hosts. After several decades on anti-tick vaccine research, only a commercial vaccine based on a recombinant antigen is currently available. In this context, plants offer three decades of research and development on recombinant vaccine production to immunize hosts and as a delivery vehicle platform. Despite the experimental advances in plant-made vaccines to control several parasitosis and infectious diseases, no vaccine prototype has been developed against ticks. This review examines a panorama of ticks of veterinary importance, recombinant vaccine experimental developments, plant-made vaccine platforms, and perspectives on using this technology as well as the opportunities and limitations in the field of tick vaccine research.
Collapse
Affiliation(s)
- Edgar Trujillo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico; (E.T.); (A.R.-V.); (E.M.-E.)
- Laboratorio Nacional CONAHCYT de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD), Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
| | - Abel Ramos-Vega
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico; (E.T.); (A.R.-V.); (E.M.-E.)
- Laboratorio Nacional CONAHCYT de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD), Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA) Unidad Morelos del Instituto Politécnico Nacional (IPN), Boulevard de la Tecnología No.1036, Xochitepec 62790, MOR, Mexico
| | - Elizabeth Monreal-Escalante
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico; (E.T.); (A.R.-V.); (E.M.-E.)
- Laboratorio Nacional CONAHCYT de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD), Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
- CONAHCYT-Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
| | - Consuelo Almazán
- Immunology and Vaccines Laboratory, College of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro 76230, QRO, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico; (E.T.); (A.R.-V.); (E.M.-E.)
- Laboratorio Nacional CONAHCYT de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD), Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
| |
Collapse
|
3
|
Monjezi Z, Rooshanfekr HA, Nazari M, Salabi F, Tabandeh MR. Codon optimization of voraxin α sequence enhances the immunogenicity of a recombinant vaccine against Hyalomma anatolicum infestation in rabbits. Vet Immunol Immunopathol 2024; 275:110817. [PMID: 39197300 DOI: 10.1016/j.vetimm.2024.110817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/29/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024]
Abstract
Research has shown that voraxin α derived from male ticks stimulates blood feeding to engorge in female ticks. Whereas, the oviposition rate, egg weight, and body weight of female ticks were reduced in animals vaccinated with recombinant (r-) voraxin α. These data suggest a potential role of r-voraxin α as a functional anti-tick antigen in Rhipicephalus appendiculatus and Amblyomma hebraeum tick infestation. This study investigated the immunogenicity of r-voraxin α protein from Hyalomma anatolicum (H. anatolicum) tick as an anti-tick vaccine in rabbits. The H. anatolicum voraxin α sequence was optimized according to the codon usage in E. coli before being sub-cloned into pQE30. The gene sequence of the voraxin α was synthesized, verified by DNA sequencing, cloned in a pQE30 vector, and transformed into E. coli. Then, the expression of the r-voraxin α protein was confirmed by SDS-PAGE and Western blot analysis. Subsequently, three rabbits were immunized with the r-voraxin α as the vaccinated group, whereas three rabbits without injection were considered the control group. The result indicated the success of cloning of codon-optimized H. anatolicum voraxin α gene. Moreover, the expression of the r-voraxin α protein (approximately 18 kDa) in the bacterial expression system was confirmed by SDS-PAGE and Western blot analysis. The results of this study showed that the mortality rate in vaccine recipients increased compared to the control group (P < 0.01). Also, the egg weight, oviposition rate, and engorgement weight of female ticks fed from vaccinated animals were significantly reduced compared to the control group (P < 0.01). The results confirmed that the codon-optimized H. anatolicum voraxin α gene expressed in the bacterial expression system could be a suitable anti-tick vaccine against H. anatolicum tick infestation.
Collapse
Affiliation(s)
- Zohre Monjezi
- Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural sciences and Natural Resources University of Khuzestan, Mollasani, Islamic Republic of Iran
| | - Hedaiat Allah Rooshanfekr
- Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural sciences and Natural Resources University of Khuzestan, Mollasani, Islamic Republic of Iran
| | - Mahmood Nazari
- Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural sciences and Natural Resources University of Khuzestan, Mollasani, Islamic Republic of Iran.
| | - Fatemeh Salabi
- Department of Venomous Animals and Anti-venom Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Islamic Republic of Iran
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Islamic Republic of Iran
| |
Collapse
|
4
|
de la Fuente J, Ghosh S. Evolution of tick vaccinology. Parasitology 2024; 151:1045-1052. [PMID: 38586999 PMCID: PMC11770523 DOI: 10.1017/s003118202400043x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Ticks represent a major concern for society worldwide. Ticks are also difficult to control, and vaccines represent the most efficacious, safe, economically feasible and environmentally sustainable intervention. The evolution of tick vaccinology has been driven by multiple challenges such as (1) Ticks are difficult to control, (2) Vaccines control tick infestations by reducing ectoparasite fitness and reproduction, (3) Vaccine efficacy against multiple tick species, (4) Impact of tick strain genetic diversity on vaccine efficacy, (5) Antigen combination to improve vaccine efficacy, (6) Vaccine formulations and delivery platforms and (7) Combination of vaccines with transgenesis and paratransgenesis. Tick vaccine antigens evolved from organ protein extracts to recombinant proteins to chimera designed by vaccinomics and quantum vaccinomics. Future directions will advance in these areas together with other novel technologies such as multiomics, AI and Big Data, mRNA vaccines, microbiota-driven probiotics and vaccines, and combination of vaccines with other interventions in collaboration with regions with high incidence of tick infestations and tick-borne diseases for a personalized medicine approach.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Srikant Ghosh
- Entomology Laboratory, Parasitology Division, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, UP, India
- Eastern Regional Station- Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata-700037, West Bengal, India
| |
Collapse
|
5
|
Perez-Soria MME, López-Díaz DG, Jiménez-Ocampo R, Aguilar-Tipacamú G, Ueti MW, Mosqueda J. Immunization of cattle with a Rhipicephalus microplus chitinase peptide containing predicted B-cell epitopes reduces tick biological fitness. Parasitology 2024; 151:1053-1062. [PMID: 38311342 PMCID: PMC11770533 DOI: 10.1017/s0031182024000143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/06/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Rhipicephalus microplus, the cattle fever tick, is the most important ectoparasite impacting the livestock industry worldwide. Overreliance on chemical treatments for tick control has led to the emergence of acaricide-resistant ticks and environmental contamination. An immunological strategy based on vaccines offers an alternative approach to tick control. To develop novel tick vaccines, it is crucial to identify and evaluate antigens capable of generating protection in cattle. Chitinases are enzymes that degrade older chitin at the time of moulting, therefore allowing interstadial metamorphosis. In this study, 1 R. microplus chitinase was identified and its capacity to reduce fitness in ticks fed on immunized cattle was evaluated. First, the predicted amino acid sequence was determined in 4 isolates and their similarity was analysed by bioinformatics. Four peptides containing predicted B-cell epitopes were designed. The immunogenicity of each peptide was assessed by inoculating 2 cattle, 4 times at 21 days intervals, and the antibody response was verified by indirect ELISA. A challenge experiment was conducted with those peptides that were immunogenic. The chitinase gene was successfully amplified and sequenced, enabling comparison with reference strains. Notably, a 99.32% identity and 99.84% similarity were ascertained among the sequences. Furthermore, native protein recognition was demonstrated through western blot assays. Chitinase peptide 3 reduced the weight and oviposition of engorged ticks, as well as larvae viability, exhibiting a 71% efficacy. Therefore, chitinase 3 emerges as a viable vaccine candidate, holding promise for its integration into a multiantigenic vaccine against R. microplus.
Collapse
Affiliation(s)
| | - Daniel Gustavo López-Díaz
- Immunology and Vaccines Laboratory, College of Natural Sciences, Autonomous University of Queretaro, Queretaro, QT, Mexico
- Master's Program in Sustainable Animal Health and Production, College of Natural Sciences, Autonomous University of Queretaro, QT, Mexico
| | | | - Gabriela Aguilar-Tipacamú
- CA Salud Animal y Microbiologia Ambiental, College of Natural Sciences, Autonomous University of Queretaro, QT, Mexico
| | - Massaro W Ueti
- Animal Diseases Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, Washington, 99164, USA
| | - Juan Mosqueda
- Immunology and Vaccines Laboratory, College of Natural Sciences, Autonomous University of Queretaro, Queretaro, QT, Mexico
- CA Salud Animal y Microbiologia Ambiental, College of Natural Sciences, Autonomous University of Queretaro, QT, Mexico
| |
Collapse
|
6
|
Rosario-Cruz R, Domínguez-García DI, Almazán C. Inclusion of Anti-Tick Vaccines into an Integrated Tick Management Program in Mexico: A Public Policy Challenge. Vaccines (Basel) 2024; 12:403. [PMID: 38675785 PMCID: PMC11053712 DOI: 10.3390/vaccines12040403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Acaricides are the most widely used method to control the cattle tick Rhipicephalus microplus. However, its use increases production costs, contaminates food and the environment, and directly affects animal and human health. The intensive use of chemical control has resulted in the selection of genes associated with resistance to acaricides, and consumers are increasingly less tolerant of food contamination. This scenario has increased the interest of different research groups around the world for anti-tick vaccine development, in order to reduce the environmental impact, the presence of residues in food, and the harmful effects on animal and human health. There is enough evidence that vaccination with tick antigens induces protection against tick infestations, reducing tick populations and acaricide treatments. Despite the need for an anti-tick vaccine in Mexico, vaccination against ticks has been limited to one vaccine that is used in some regions. The aim of this review is to contribute to the discussion on tick control issues and provide a reference for readers interested in the importance of using anti-tick vaccines encouraging concerted action on the part of Mexican animal health authorities, livestock organizations, cattle producers, and academics. Therefore, it is suggested that an anti-tick vaccine should be included as a part of an integrated tick management program in Mexico.
Collapse
Affiliation(s)
- Rodrigo Rosario-Cruz
- Biotechnology in Health and Environmental Sciences Research Laboratory, Natural Sciences College, Autónomous Guerrero State University, Chilpancingo 39105, Guerrero, Mexico;
| | - Delia Inés Domínguez-García
- Biotechnology in Health and Environmental Sciences Research Laboratory, Natural Sciences College, Autónomous Guerrero State University, Chilpancingo 39105, Guerrero, Mexico;
| | - Consuelo Almazán
- Immunology and Vaccines Laboratory, College of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro 76230, Queretaro, Mexico;
| |
Collapse
|
7
|
Nepveu-Traversy ME, Fausther-Bovendo H, Babuadze G(G. Human Tick-Borne Diseases and Advances in Anti-Tick Vaccine Approaches: A Comprehensive Review. Vaccines (Basel) 2024; 12:141. [PMID: 38400125 PMCID: PMC10891567 DOI: 10.3390/vaccines12020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
This comprehensive review explores the field of anti-tick vaccines, addressing their significance in combating tick-borne diseases of public health concern. The main objectives are to provide a brief epidemiology of diseases affecting humans and a thorough understanding of tick biology, traditional tick control methods, the development and mechanisms of anti-tick vaccines, their efficacy in field applications, associated challenges, and future prospects. Tick-borne diseases (TBDs) pose a significant and escalating threat to global health and the livestock industries due to the widespread distribution of ticks and the multitude of pathogens they transmit. Traditional tick control methods, such as acaricides and repellents, have limitations, including environmental concerns and the emergence of tick resistance. Anti-tick vaccines offer a promising alternative by targeting specific tick proteins crucial for feeding and pathogen transmission. Developing vaccines with antigens based on these essential proteins is likely to disrupt these processes. Indeed, anti-tick vaccines have shown efficacy in laboratory and field trials successfully implemented in livestock, reducing the prevalence of TBDs. However, some challenges still remain, including vaccine efficacy on different hosts, polymorphisms in ticks of the same species, and the economic considerations of adopting large-scale vaccine strategies. Emerging technologies and approaches hold promise for improving anti-tick vaccine development and expanding their impact on public health and agriculture.
Collapse
Affiliation(s)
| | - Hugues Fausther-Bovendo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 75550, USA;
| | - George (Giorgi) Babuadze
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 75550, USA;
| |
Collapse
|
8
|
Coate R, Alonso-Díaz MÁ, Martínez-Velázquez M, Castro-Saines E, Hernández-Ortiz R, Lagunes-Quintanilla R. Testing Efficacy of a Conserved Polypeptide from the Bm86 Protein against Rhipicephalus microplus in the Mexican Tropics. Vaccines (Basel) 2023; 11:1267. [PMID: 37515082 PMCID: PMC10383145 DOI: 10.3390/vaccines11071267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Rhipicephalus microplus economically impacts cattle production in tropical and subtropical countries. Application of acaricides constitutes the major control method; however, inadequate use has increased resistant tick populations, resulting in environmental and cattle product contamination. Anti-tick vaccines based on the Bm86 antigen are an environmentally friendly, safe, and economically sustainable alternative for controlling R. microplus infestations. Nevertheless, variable efficacy has been experienced against different geographic tick strains. Herein, we evaluated the efficacy of a conserved polypeptide Bm86 derived from a Mexican R. microplus strain previously characterized. Twelve cows were assigned to three experimental groups and immunized with three doses of the polypeptide Bm86 (pBm86), adjuvant/saline alone, and Bm86 antigen (control +), respectively. Specific IgG antibody levels were measured by ELISA and confirmed by Western blot. In addition, the reproductive performance of naturally infested R. microplus was also determined. The more affected parameter was the adult female tick number, with a reduction of 44% by the pBm86 compared to the controls (p < 0.05), showing a vaccine efficacy of 58%. Anti-pBm86 IgG antibodies were immunogenic and capable of recognizing the native Bm86 protein in the eggs, larvae, and guts of R. microplus. The negative correlation between antibody levels and the reduction of naturally tick-infested cattle suggested that the effect of the polypeptide Bm86 was attributed to the antibody response in immunized cattle. In conclusion, the polypeptide Bm86 showed a specific immune response in cattle and conferred protection against R. microplus in a Mexican tropical region. These findings support further experiments with this antigen to demonstrate its effectiveness as a regional vaccine.
Collapse
Affiliation(s)
- Raymundo Coate
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico
| | - Miguel Ángel Alonso-Díaz
- Centro de Enseñanza, Investigación y Extensión en Ganadería Tropical, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Km. 5.5 Carretera Federal Tlapacoyan-Martínez de La Torre, Martínez de La Torre 93600, Mexico
| | - Moisés Martínez-Velázquez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C, Avenida Normalistas 800, Col. Colinas de la Normal, Guadalajara 44270, Mexico
| | - Edgar Castro-Saines
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad-INIFAP, Carretera Federal Cuernavaca-Cuautla 8534, Col. Progreso, Jiutepec 62550, Mexico
| | - Rubén Hernández-Ortiz
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad-INIFAP, Carretera Federal Cuernavaca-Cuautla 8534, Col. Progreso, Jiutepec 62550, Mexico
| | - Rodolfo Lagunes-Quintanilla
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad-INIFAP, Carretera Federal Cuernavaca-Cuautla 8534, Col. Progreso, Jiutepec 62550, Mexico
| |
Collapse
|
9
|
Co-Immunization Efficacy of Recombinant Antigens against Rhipicephalus microplus and Hyalomma anatolicum Tick Infestations. Pathogens 2023; 12:pathogens12030433. [PMID: 36986356 PMCID: PMC10058648 DOI: 10.3390/pathogens12030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
The immunoprophylactic management of ticks is the most effective option to control tick infestations and counter spread the acaricide resistance problem worldwide. Several researchers reported an inconsistent efficacy of the single antigen-based immunization of hosts against different tick species. In the present study, to develop a multi-target immunization protocol, proteins from Rhipicephalus microplus BM86 and Hyalomma anatolicum subolesin (SUB) and tropomyosin (TPM) were targeted to evaluate the cross-protective potential. The sequence identities of the BM86, SUB, and TPM coding genes amongst Indian tick isolates of targeted species were 95.6–99.8%, 98.7–99.6%, and 98.9–99.9%, respectively, while at the predicted amino acid level, the identities were 93.2 to 99.5, 97.6 to 99.4, and 98.2 to 99.3%. The targeted genes were expressed in the eukaryotic expression system, pKLAC2-Kluyveromyces lactis, and 100 µg each of purified recombinant protein (Bm86-89 kDa, SUB-21 kDa, and TPM-36 kDa) mixed with adjuvant was injected individually through the intramuscular route at different sites of the body on days 0, 30, and 60 to immunize cross-bred cattle. Post-immunization, a statistically significant (p < 0.001) antibody response (IgG, IgG1, and IgG2) in comparison to the control, starting from 15 to 140 days, against each antigen was recorded. Following multi-antigen immunization, the animals were challenged twice with the larvae of R. microplus and H. anatolicum and theadults of H. anatolicum, and a significant vaccine efficacy of 87.2% and 86.2% against H. anatolicum larvae and adults, respectively, and 86.7% against R. microplus was obtained. The current study provides significant support to develop a multi-antigen vaccine against cattle tick species.
Collapse
|
10
|
Abbas MN, Jmel MA, Mekki I, Dijkgraaf I, Kotsyfakis M. Recent Advances in Tick Antigen Discovery and Anti-Tick Vaccine Development. Int J Mol Sci 2023; 24:4969. [PMID: 36902400 PMCID: PMC10003026 DOI: 10.3390/ijms24054969] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Ticks can seriously affect human and animal health around the globe, causing significant economic losses each year. Chemical acaricides are widely used to control ticks, which negatively impact the environment and result in the emergence of acaricide-resistant tick populations. A vaccine is considered as one of the best alternative approaches to control ticks and tick-borne diseases, as it is less expensive and more effective than chemical controls. Many antigen-based vaccines have been developed as a result of current advances in transcriptomics, genomics, and proteomic techniques. A few of these (e.g., Gavac® and TickGARD®) are commercially available and are commonly used in different countries. Furthermore, a significant number of novel antigens are being investigated with the perspective of developing new anti-tick vaccines. However, more research is required to develop new and more efficient antigen-based vaccines, including on assessing the efficiency of various epitopes against different tick species to confirm their cross-reactivity and their high immunogenicity. In this review, we discuss the recent advancements in the development of antigen-based vaccines (traditional and RNA-based) and provide a brief overview of recent discoveries of novel antigens, along with their sources, characteristics, and the methods used to test their efficiency.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Mohamed Amine Jmel
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Imen Mekki
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Ingrid Dijkgraaf
- Department of Biochemistry, CARIM, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Michail Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
11
|
Antunes S, Domingos A. Tick Vaccines and Concealed versus Exposed Antigens. Pathogens 2023; 12:pathogens12030374. [PMID: 36986295 PMCID: PMC10056810 DOI: 10.3390/pathogens12030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Anti-tick vaccines development mainly depends on the identification of suitable antigens, which ideally should have different features. These should be key molecules in tick biology, encoded by a single gene, expressed across life stages and tick tissues, capable of inducing B and T cells to promote an immunological response without allergenic, hemolytic, and toxic effects; and should not be homologous to the mammalian host. The discussion regarding this subject and the usefulness of “exposed” and “concealed” antigens was effectively explored in the publication by Nuttall et al. (2006). The present commentary intends to debate the relevance of such study in the field of tick immunological control.
Collapse
Affiliation(s)
- Sandra Antunes
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
- Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Ana Domingos
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
- Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
12
|
The Bm86 Discovery: A Revolution in the Development of Anti-Tick Vaccines. Pathogens 2023; 12:pathogens12020231. [PMID: 36839503 PMCID: PMC9965646 DOI: 10.3390/pathogens12020231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The presence in nature of species with genetic resistance to ticks, or with acquired resistance after repeated tick infestations, has encouraged the scientific community to consider vaccination as an alternative to the unsustainable chemical control of ticks. After numerous attempts to artificially immunize hosts with tick extracts, the purification and characterization of the Bm86 antigen by Willadsen et al. in 1989 constituted a revolutionary step forward in the development of vaccines against ticks. Previously, innovative studies that had used tick gut extracts for the immunization of cattle against Rhipicepahalus microplus (previously named Boophilus microplus) ticks, with amazingly successful results, demonstrated the feasibility of using antigens other than salivary-gland-derived molecules to induce a strong anti-tick immunity. However, the practical application of an anti-tick vaccine required the isolation, identification, and purification of the responsible antigen, which was finally defined as the Bm86 protein. More than thirty years later, the only commercially available anti-tick vaccines are still based on this antigen, and all our current knowledge about the field application of immunological control based on vaccination against ticks has been obtained through the use of these vaccines.
Collapse
|
13
|
Histometric and morphological damage caused by Serratia marcescens to the tick Rhipicephalus microplus (Acari: Ixodidae). Arch Microbiol 2022; 204:677. [DOI: 10.1007/s00203-022-03275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/02/2022]
|
14
|
Lagunes-Quintanilla R, Valdez-Espinoza UM, Hernández-Ortiz R, Castro-Saines E, Merino O, Mendoza-Martínez N. Experimental vaccination in rabbits using the peptide RmS-17 antigen reduces the performance of a Mexican Rhipicephalus microplus tick strain. Ticks Tick Borne Dis 2022; 13:102044. [PMID: 36166916 DOI: 10.1016/j.ttbdis.2022.102044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 10/31/2022]
Abstract
The tick vector Rhipicephalus microplus is considered one of the main problems in cattle production in tropical and subtropical regions. Anti-tick vaccines may form an alternative tick control method to the use of acaricides, and tick salivary proteins, such as Serpins, may be valuable as target antigens for developing anti-tick vaccines. In this study, we synthesized a recombinant peptide derived from Serpin RmS-17 protein using an Escherichia coli expression system and characterized the efficacy of the peptide RmS-17 for the control of R. microplus females infesting rabbits. Twelve New Zealand white rabbits were assigned to three experimental groups and vaccinated with three subcutaneous doses of the peptide RmS-17, recombinant R. microplus Bm86 antigen, and adjuvant/saline alone. The tick challenge was conducted with 120 R. microplus adults (60 females and 60 males) per animal, with the ticks placed inside a cotton sleeve glued to the back of the rabbit. Serum antibody levels (IgG) were assessed by ELISA and confirmed by Western blot; also, the reproductive performance of R. microplus was determined. The results showed that experimental vaccination in rabbits using the peptide RmS-17 antigen had a vaccine efficacy of 79% based on reductions in adult tick number, oviposition, and egg fertility compared to control animals. The peptide RmS-17 vaccinated rabbits developed a strong humoral immune response expressed by high anti-pRmS-17 IgG levels, and the Western blot analysis confirmed that it is immunogenic. The efficacy for the Bm86 vaccine was 62%, which is within the range of efficacy reported previously for Bm86 vaccine. The negative correlation between antibody levels and reduction in tick number strongly suggests that the effect of the vaccine was the result of the antibody response in vaccinated rabbits. In conclusion, this is the first study to evaluate the efficacy of the peptide RmS-17 against R. microplus tick infestation and show it to be immunogenic and protective in a rabbit model.
Collapse
Affiliation(s)
- Rodolfo Lagunes-Quintanilla
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad - INIFAP, Carretera Federal Cuernavaca - Cuautla 8534, Col. Progreso, Jiutepec, Morelos CP 62550, México.
| | - Uriel Mauricio Valdez-Espinoza
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad - INIFAP, Carretera Federal Cuernavaca - Cuautla 8534, Col. Progreso, Jiutepec, Morelos CP 62550, México
| | - Rubén Hernández-Ortiz
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad - INIFAP, Carretera Federal Cuernavaca - Cuautla 8534, Col. Progreso, Jiutepec, Morelos CP 62550, México
| | - Edgar Castro-Saines
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad - INIFAP, Carretera Federal Cuernavaca - Cuautla 8534, Col. Progreso, Jiutepec, Morelos CP 62550, México
| | - Octavio Merino
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Km. 5, Carretera Victoria‑Mante, Ciudad Victoria, Tamaulipas CP 87000, México
| | - Nancy Mendoza-Martínez
- Centro de Enseñanza, Investigación y Extensión en Ganadería Tropical, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México CP 04510, México
| |
Collapse
|
15
|
Almazán C. Impact of the Paper by Allen and Humphreys (1979) on Anti-Tick Vaccine Research. Pathogens 2022; 11:1253. [PMID: 36365004 PMCID: PMC9692451 DOI: 10.3390/pathogens11111253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 09/29/2023] Open
Abstract
The classic paper by Allen and Humphreys "Immunisation of guinea pigs and cattle against ticks" Nature, 1979, 280: 491-493 led to a surge in the development of tick vaccines as a nonchemical method for prevention of tick infestations in susceptible hosts living in tick-endemic regions. Although observations of host resistance to ticks had been documented since the beginning of the last century, it was not until publication of this paper that the proof of concept of anti-tick vaccines was developed. The described experimental methods directly impacted further investigations on the discovery and evaluation of new anti-tick vaccines.
Collapse
Affiliation(s)
- Consuelo Almazán
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro 76140, Mexico
| |
Collapse
|
16
|
Kasaija PD, Contreras M, Kabi F, Mugerwa S, Garrido JM, Gortazar C, de la Fuente J. Oral vaccine formulation combining tick Subolesin with heat inactivated mycobacteria provides control of cross-species cattle tick infestations. Vaccine 2022; 40:4564-4573. [PMID: 35728991 DOI: 10.1016/j.vaccine.2022.06.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/08/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
Tick vaccines are necessary as part of a One Health approach for the control of tick infestations and tick-borne diseases. Subolesin (SUB, also known as 4D8) is a tick protective antigen that has shown efficacy in vaccine formulations for the control of ectoparasite infestations and pathogen infection/transmission. A recent proof-of-concept study reported oral vaccination combining Rhipicephalus microplus SUB with heat inactivated Mycobacterium bovis (IV) as an immunostimulant for the control of cattle tick infestations. Based on the efficacy of Rhipicephalus decoloratus SUB for the control of multiple cattle tick species in Uganda, herein we design a controlled pen trial using an oral formulation combining R. decoloratus SUB with IV for the control of R. decoloratus and Rhipicephalus appendiculatus cattle tick infestations. Vaccine efficacy (E) of SUB + IV on tick life cycle was compared with IV and SUB alone and with PBS as control. The IgG antibody titers against SUB and M. bovis P22 and the serum levels of selected protein immune biomarkers (IL-1beta, TNF-alpha, C3) were determined and analyzed as possible correlates of protection. Oral immunization with IV and SUB alone and in SUB + IV combination were effective for the control of tick infestations (E = 71-96% for R. decoloratus and 87-99% for R. appendiculatus) with highest E (higher than 95%) for SUB + IV. The results demonstrated that oral immunization with the SUB + IV formulation resulted in effective control of cattle tick infestations through the activation of multiple immune mechanisms. These results support the application of oral vaccine formulations with SUB + IV for the control of cattle infestations with Rhipicephalus species towards improving animal health.
Collapse
Affiliation(s)
- Paul D Kasaija
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; National Livestock Resources Research Institute (NaLIRRI/NARO), P.O. Box 5704, Wakiso District, Uganda
| | - Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - Fredrick Kabi
- National Livestock Resources Research Institute (NaLIRRI/NARO), P.O. Box 5704, Wakiso District, Uganda
| | - Swidiq Mugerwa
- National Livestock Resources Research Institute (NaLIRRI/NARO), P.O. Box 5704, Wakiso District, Uganda
| | - Joseba M Garrido
- NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain
| | - Christian Gortazar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
17
|
Integrative Alternative Tactics for Ixodid Control. INSECTS 2022; 13:insects13030302. [PMID: 35323601 PMCID: PMC8948879 DOI: 10.3390/insects13030302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Hard ticks are important for economic and health reasons, and control has mainly relied upon use of synthetic acaricides. Contemporary development of resistance and concerns relating to health and environmental safety have elicited exploration into alternative tactics for hard tick management. Some examples of alternative tactics involve biological control, desiccant dusts, growth regulators, vaccines, cultural methods, and ingested medications. Abstract Ixodids (hard ticks), ectoparasitic arthropods that vector the causal agents of many serious diseases of humans, domestic animals, and wildlife, have become increasingly difficult to control because of the development of resistance against commonly applied synthetic chemical-based acaricides. Resistance has prompted searches for alternative, nonconventional control tactics that can be used as part of integrated ixodid management strategies and for mitigating resistance to conventional acaricides. The quest for alternative control tactics has involved research on various techniques, each influenced by many factors, that have achieved different degrees of success. Alternative approaches include cultural practices, ingested and injected medications, biological control, animal- and plant-based substances, growth regulators, and inert desiccant dusts. Research on biological control of ixodids has mainly focused on predators, parasitoid wasps, infective nematodes, and pathogenic bacteria and fungi. Studies on animal-based substances have been relatively limited, but research on botanicals has been extensive, including whole plant, extract, and essential oil effects on ixodid mortality, behavior, and reproduction. The inert dusts kaolin, silica gel, perlite, and diatomaceous earth are lethal to ixodids, and they are impervious to environmental degradation, unlike chemical-based toxins, remaining effective until physically removed.
Collapse
|
18
|
Ferreira Leal B, Sanchez Ferreira CA. Ticks and antibodies: May parasite density and tick evasion influence the outcomes following immunization protocols? Vet Parasitol 2021; 300:109610. [PMID: 34735848 DOI: 10.1016/j.vetpar.2021.109610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/07/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022]
Abstract
Ticks are a major concern to human health and livestock worldwide, being responsible for economic losses that go beyond billions of US dollars per year. This scenario instigates the development of vaccines against these ectoparasites, emphasized by the fact that the main method of controlling ticks still relies on the use of acaricides, what increases costs and may affect the environment as well as human and animal health. The first commercial vaccines against ectoparasites were produced against the tick Rhipicephalus microplus and their efficacy were based on antibodies. Many additional attempts have been conducted to produce protective immune responses against ticks by immunization with specific antigens and the antibody response has usually been the main target of evaluation. But some controversy still populates the roles possibly performed by humoral responses in tick-mammalian host relationships. This review focuses on the analysis of specific aspects concerning antibodies and ticks, especially the influence of parasite density and evasion/modulation. The immunization trials already described against R. microplus were also compiled and analyzed based on the characteristics of the molecules tested, protocols of immunization and tick challenge. Within these issues, it is discussed if or when antibody levels can be directly correlated with the development of tick resistance, and whether anti-tick protective immune responses generated by infestations may become ineffective under a different tick density. Also, higher titers of antibodies can be correlated with protection or susceptibility to tick infestations, what may be altered following continuous or repeated infestations and differ greatly comparing hosts with distinct genetic backgrounds. Regarding evasion, ticks present a sophisticated mechanism for dealing with antibodies, including Immunoglobulin Binding Proteins (IGBPs), that capture, transport and inject them back into the host, while keeping their properties within the parasite. The comparison of immunization protocols shows a total of 22 molecules already tested in cattle vaccination trials against R. microplus, with the predominance of concealed and dual antigens as well as marked differences in tick challenge schemes. The presence of an antibody evasion apparatus and variable levels of tick resistance when facing different densities of parasites are concerns that should be considered when testing vaccine candidates. Ultimately, more refinement may be necessary to effectively design a cocktail vaccine with tick molecules, which may be needed to be altered and combined in non-competing immune contexts to be universally secure and protective.
Collapse
Affiliation(s)
- Bruna Ferreira Leal
- Laboratório de Imunologia e Microbiologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil.
| | - Carlos Alexandre Sanchez Ferreira
- Laboratório de Imunologia e Microbiologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil.
| |
Collapse
|
19
|
Mendoza-Martínez N, Alonso-Díaz MA, Merino O, Fernández-Salas A, Lagunes-Quintanilla R. Protective efficacy of the peptide Subolesin antigen against the cattle tick Rhipicephalus microplus under natural infestation. Vet Parasitol 2021; 299:109577. [PMID: 34560320 DOI: 10.1016/j.vetpar.2021.109577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
The cattle tick Rhipicephalus microplus affect animal health, welfare, and cattle production in tropical and subtropical zones of the world. Anti-tick vaccines have been an effective alternative for cattle tick control instead of traditional chemical products. To date, Subolesin antigen has shown efficacy for the control of tick infestation in cattle, and previous studies showed that one peptide derived from this protein has demonstrated to elicit a strong and specific humoral immune response. Based on these findings, herein we characterized the efficacy of the peptide Subolesin for the control of cattle tick, R. microplus infestation under field conditions. Twenty-four female calves were assigned to four experimental groups and immunized with three subcutaneous doses of the peptide Subolesin, Bm86, both antigens (dual vaccine) and adjuvant/saline alone, respectively. Serum antibody levels (IgG) were assessed by ELISA and confirmed by Western blot; also, reproductive performance of naturally infested R. microplus was determined. The results showed that immunizations with the experimental antigens reduced tick infestations with vaccine's efficacy of 67 % (peptide Subolesin), 56 % (Bm86), and 49 % (dual vaccine) based on adult tick numbers, oviposition, and egg fertility between vaccinated and control animals. Peptide Subolesin-immunized calves developed a strong humoral immune response expressed by high anti-pSubolesin IgG levels, and the Western blot analysis confirmed that it is immunogenic. Cattle receiving Bm86 and dual vaccine showed less protection, although Bm86 was within the range reported previously. The negative correlation between antibody levels and reduction of naturally infested R. microplus strongly suggested that the effect of the vaccine was the result of the antibody response in immunized cattle. In conclusion, it was demonstrated that the peptide Subolesin induced a specific immune response in cattle under field conditions, resulting in reduced R. microplus populations in subsequent generations. Finally, integrated tick control must consider anti-tick vaccines as a cost-effective, sustainable, and successful tool for controlling cattle tick infestations.
Collapse
Affiliation(s)
- Nancy Mendoza-Martínez
- Centro de Enseñanza, Investigación y Extensión en Ganadería Tropical, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Km. 5.5 Carretera Federal Tlapacoyan-Martínez de La Torre, C.P. 93600, Martínez de La Torre, Veracruz, Mexico
| | - Miguel Angel Alonso-Díaz
- Centro de Enseñanza, Investigación y Extensión en Ganadería Tropical, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Km. 5.5 Carretera Federal Tlapacoyan-Martínez de La Torre, C.P. 93600, Martínez de La Torre, Veracruz, Mexico
| | - Octavio Merino
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Km. 5, Carretera Victoria‑Mante, CP 87000, Ciudad Victoria, Tamaulipas, Mexico
| | - Agustín Fernández-Salas
- Centro de Enseñanza, Investigación y Extensión en Ganadería Tropical, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Km. 5.5 Carretera Federal Tlapacoyan-Martínez de La Torre, C.P. 93600, Martínez de La Torre, Veracruz, Mexico
| | - Rodolfo Lagunes-Quintanilla
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad - INIFAP, Carretera Federal Cuernavaca - Cuautla 8534, Col. Progreso, C.P. 62550, Jiutepec, Morelos, Mexico.
| |
Collapse
|
20
|
Pereira DFS, Ribeiro HS, Gonçalves AAM, da Silva AV, Lair DF, de Oliveira DS, Boas DFV, Conrado IDSS, Leite JC, Barata LM, Reis PCC, Mariano RMDS, Santos TAP, Coutinho DCO, Gontijo NDF, Araujo RN, Galdino AS, Paes PRDO, Melo MM, Nagem RAP, Dutra WO, Silveira-Lemos DD, Rodrigues DS, Giunchetti RC. Rhipicephalus microplus: An overview of vaccine antigens against the cattle tick. Ticks Tick Borne Dis 2021; 13:101828. [PMID: 34628330 DOI: 10.1016/j.ttbdis.2021.101828] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/08/2023]
Abstract
Rhipicephalus microplus, popularly known as the cattle tick, is the most important tick of livestock as it is responsible for significant economic losses. The use of chemical acaricides is still the most widely used control method despite its known disadvantages. Vaccination would be a safe alternative for the control of R. microplus and holds advantages over the use of chemical acaricides as it is environmental-friendly and leaves no residues in meat or milk. Two vaccines based on the Bm86 protein were commercialized, TickGARD® and Gavac®, with varying reported efficacies in different countries. The use of other vaccines, such as Tick Vac®, Go-Tick®, and Bovimune Ixovac® have been restricted to some countries. Several other proteins have been analyzed as possible antigens for more effective vaccines against R. microplus, including peptidases, serine proteinase inhibitors, glutathione S-transferases, metalloproteases, and ribosomal proteins, with efficacies ranging from 14% to 96%. Nonetheless, more research is needed to develop safe and efficient tick vaccines, such as the evaluation of the efficacy of antigens against other tick species to verify cross-reactivity and inclusion of additional antigens to promote the blocking of the infection and spreading of tick-borne diseases. This review summarizes the discoveries of candidate antigens for R. microplus tick vaccines as well as the methods used to test their efficacy.
Collapse
Affiliation(s)
- Diogo Fonseca Soares Pereira
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Helen Silva Ribeiro
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Ana Alice Maia Gonçalves
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Augusto Ventura da Silva
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Daniel Ferreira Lair
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Diana Souza de Oliveira
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Diego Fernandes Vilas Boas
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Ingrid Dos Santos Soares Conrado
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Jaqueline Costa Leite
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Luccas Miranda Barata
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Pedro Campos Carvalhaes Reis
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Reysla Maria da Silveira Mariano
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Thaiza Aline Pereira Santos
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Danielle Carvalho Oliveira Coutinho
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Nelder de Figueiredo Gontijo
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Nascimento Araujo
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alexsandro Sobreira Galdino
- Microbial Biotechnology Laboratory, Biochemistry, Federal University of São João Del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Paulo Ricardo de Oliveira Paes
- Department of Veterinary Clinical Medicine and Surgery, College of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marília Martins Melo
- Department of Veterinary Clinical Medicine and Surgery, College of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ronaldo Alves Pinto Nagem
- Structural Biology and Biotechnology Laboratory, Department of biochemistry and immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Walderez Ornelas Dutra
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | | | | | - Rodolfo Cordeiro Giunchetti
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| |
Collapse
|
21
|
Martínez Velázquez M, Barragán Álvarez CP, Flores Fernández JM, Lagunes Quintanilla RE, Saines EC, Ramírez Rodríguez PB, Herrera Rodríguez SE, Gutiérrez RH, Ortega AG, Álvarez ÁH. Immunoprotection evaluation of the recombinant N-terminal domain of Cys-loop receptors against Rhipicephalus (Boophilus) microplus tick infestation. Parasite 2021; 28:65. [PMID: 34533454 PMCID: PMC8447868 DOI: 10.1051/parasite/2021064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022] Open
Abstract
Rhipicephalus (Boophilus) microplus ticks are obligatory hematophagous ectoparasites of cattle and act as vectors for disease-causing microorganisms. Conventional tick control is based on the application of chemical acaricides; however, their uncontrolled use has increased resistant tick populations, as well as food and environmental contamination. Alternative immunological tick control has shown to be partially effective. Therefore, there is a need to characterize novel antigens in order to improve immunological protection. The aim of this work was to evaluate Cys-loop receptors as vaccine candidates. N-terminal domains of a glutamate receptor and of a glycine-like receptor were recombinantly produced in Escherichia coli. Groups of BALB/c mice were independently immunized with four doses of each recombinant protein emulsified with Freund’s adjuvant. Both vaccine candidates were immunogenic in mice as demonstrated by western blot analysis. Next, recombinant proteins were independently formulated with the adjuvant Montanide ISA 50 V2 and evaluated in cattle infested with Rhipicephalus microplus tick larvae. Groups of three European crossbred calves were immunized with three doses of each adjuvanted protein. ELISA test was used to evaluate the IgG immune response elicited against the recombinant proteins. Results showed that vaccine candidates generated a moderate humoral response on vaccinated cattle. Vaccination significantly affected the number of engorged adult female ticks, having no significant effects on tick weight, egg weight and egg fertility values. Vaccine efficacies of 33% and 25% were calculated for the glutamate receptor and the glycine-like receptor, respectively.
Collapse
Affiliation(s)
- Moisés Martínez Velázquez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, AC, Av. Normalistas 800, Col. Colinas de la Normal, 44270, Guadalajara, Jalisco, México
| | - Carla Patricia Barragán Álvarez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, AC, Av. Normalistas 800, Col. Colinas de la Normal, 44270, Guadalajara, Jalisco, México
| | - José Miguel Flores Fernández
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, AC, Av. Normalistas 800, Col. Colinas de la Normal, 44270, Guadalajara, Jalisco, México
| | - Rodolfo Esteban Lagunes Quintanilla
- Centro Nacional de Investigaciones en Parasitología Veterinaria-INIFAP, Carretera Federal Cuernavaca Cuautla 8534, Col. Progreso, 62550, Jiutepec, Morelos, México
| | - Edgar Castro Saines
- Centro Nacional de Investigaciones en Parasitología Veterinaria-INIFAP, Carretera Federal Cuernavaca Cuautla 8534, Col. Progreso, 62550, Jiutepec, Morelos, México
| | - Patricia Berenice Ramírez Rodríguez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, AC, Av. Normalistas 800, Col. Colinas de la Normal, 44270, Guadalajara, Jalisco, México
| | - Sara Elisa Herrera Rodríguez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, AC, Av. Normalistas 800, Col. Colinas de la Normal, 44270, Guadalajara, Jalisco, México
| | - Rodolfo Hernández Gutiérrez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, AC, Av. Normalistas 800, Col. Colinas de la Normal, 44270, Guadalajara, Jalisco, México
| | - Abel Gutiérrez Ortega
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, AC, Av. Normalistas 800, Col. Colinas de la Normal, 44270, Guadalajara, Jalisco, México
| | - Ángel H Álvarez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, AC, Av. Normalistas 800, Col. Colinas de la Normal, 44270, Guadalajara, Jalisco, México
| |
Collapse
|
22
|
Identification and Characterization of Immunodominant Proteins from Tick Tissue Extracts Inducing a Protective Immune Response against Ixodes ricinus in Cattle. Vaccines (Basel) 2021; 9:vaccines9060636. [PMID: 34200738 PMCID: PMC8229163 DOI: 10.3390/vaccines9060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Ixodes ricinus is the main vector of tick-borne diseases in Europe. An immunization trial of calves with soluble extracts of I. ricinus salivary glands (SGE) or midgut (ME) previously showed a strong response against subsequent tick challenge, resulting in diminished tick feeding success. Immune sera from these trials were used for the co-immunoprecipitation of tick tissue extracts, followed by LC-MS/MS analyses. This resulted in the identification of 46 immunodominant proteins that were differentially recognized by the serum of immunized calves. Some of these proteins had previously also drawn attention as potential anti-tick vaccine candidates using other approaches. Selected proteins were studied in more detail by measuring their relative expression in tick tissues and RNA interference (RNAi) studies. The strongest RNAi phenotypes were observed for MG6 (A0A147BXB7), a protein containing eight fibronectin type III domains predominantly expressed in tick midgut and ovaries of feeding females, and SG2 (A0A0K8RKT7), a glutathione-S-transferase that was found to be upregulated in all investigated tissues upon feeding. The results demonstrated that co-immunoprecipitation of tick proteins with host immune sera followed by protein identification using LC-MS/MS is a valid approach to identify antigen–antibody interactions, and could be integrated into anti-tick vaccine discovery pipelines.
Collapse
|
23
|
Additional evidence on the efficacy of different Akirin vaccines assessed on Anopheles arabiensis (Diptera: Culicidae). Parasit Vectors 2021; 14:209. [PMID: 33879250 PMCID: PMC8056099 DOI: 10.1186/s13071-021-04711-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/31/2021] [Indexed: 11/17/2022] Open
Abstract
Background Anopheles arabiensis is an opportunistic malaria vector that rests and feeds outdoors, circumventing current indoor vector control methods. Furthermore, this vector will readily feed on both animals and humans. Targeting this vector while feeding on animals can provide an additional intervention for the current vector control activities. Previous results have displayed the efficacy of using Subolesin/Akirin ortholog vaccines for the control of multiple ectoparasite infestations. This made Akirin a potential antigen for vaccine development against An. arabiensis. Methods The efficacy of three antigens, namely recombinant Akirin from An. arabiensis, recombinant Akirin from Aedes albopictus, and recombinant Q38 (Akirin/Subolesin chimera) were evaluated as novel interventions for An. arabiensis vector control. Immunisation trials were conducted based on the concept that mosquitoes feeding on vaccinated balb/c mice would ingest antibodies specific to the target antigen. The antibodies would interact with the target antigen in the arthropod vector, subsequently disrupting its function. Results All three antigens successfully reduced An. arabiensis survival and reproductive capacities, with a vaccine efficacy of 68–73%. Conclusions These results were the first to show that hosts vaccinated with recombinant Akirin vaccines could develop a protective response against this outdoor malaria transmission vector, thus providing a step towards the development of a novel intervention for An. arabiensis vector control. Graphic Abstract Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04711-8.
Collapse
|
24
|
Vaccine approaches applied to controlling dog ticks. Ticks Tick Borne Dis 2021; 12:101631. [PMID: 33494026 DOI: 10.1016/j.ttbdis.2020.101631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022]
Abstract
Ticks are considered the most important vectors in veterinary medicine with a profound impact on animal health worldwide, as well as being key vectors of diseases affecting household pets. The leading strategy applied to dog tick control is the continued use of acaricides. However, this approach is not sustainable due to surging tick resistance, growing public concern over pesticide residues in food and in the environment, and the rising costs associated with their development. In contrast, tick vaccines are a cost-effective and environmentally friendly alternative against tick-borne diseases by controlling vector infestations and reducing pathogen transmission. These premises have encouraged researchers to develop an effective vaccine against ticks, with several proteins having been characterized and used in native, synthetic, and recombinant forms as antigens in immunizations. The growing interaction between domestic pets and people underscores the importance of developing new tick control measures that require effective screening platforms applied to vaccine development. However, as reviewed in this paper, very little progress has been made in controlling ectoparasite infestations in pets using the vaccine approach. The control of tick infestations and pathogen transmission could be obtained through immunization programs aimed at reducing the tick population and interfering in the pathogenic transmission that affects human and animal health on a global scale.
Collapse
|
25
|
Lee SH, Li J, Moumouni PFA, Okado K, Zheng W, Liu M, Ji S, Kim S, Umemiya-Shirafuji R, Xuan X. Subolesin vaccination inhibits blood feeding and reproduction of Haemaphysalis longicornis in rabbits. Parasit Vectors 2020; 13:478. [PMID: 32948229 PMCID: PMC7501621 DOI: 10.1186/s13071-020-04359-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/11/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Ticks can transmit numerous tick-borne pathogens and cause a huge economic loss to the livestock industry. Tick vaccines can contribute to the prevention of tick-borne diseases by inhibiting tick infestation or reproduction. Subolesin is an antigenic molecule proven to be a potential tick vaccine against different tick species and even some tick-borne pathogens. However, its effectivity has not been verified in Haemaphysalis longicornis, which is a widely distributed tick species, especially in East Asian countries. Therefore, the purpose of this study was to evaluate the effectivity of subolesin vaccination against H. longicornis in a rabbit model. METHODS Haemaphysalis longicornis (Okayama strain, female, adult, parthenogenetic strain) and Japanese white rabbits were used as the model tick and animal, respectively. The whole open reading frame of H. longicornis subolesin (HlSu) was identified and expressed as a recombinant protein using E. coli. The expression was verified using sodium dodecyl sulfate polyacrylamide gel electrophoresis, and the immunogenicity of rHlSu against anti-H. longicornis rabbit serum was confirmed using Western blotting. After vaccination of rHlSu in rabbits, experimental infestation of H. longicornis was performed. Variables related to blood-feeding periods, pre-oviposition periods, body weight at engorgement, egg mass, egg mass to body weight ratio, and egg-hatching periods were measured to evaluate the effectiveness of subolesin vaccination. RESULTS The whole open reading frame of HlSu was 540 bp, and it was expressed as a recombinant protein. Vaccination with rHlSu stimulated an immune response in rabbits. In the rHlSu-vaccinated group, body weight at engorgement, egg mass, and egg mass to body weight ratio were statistically significantly lower than those in the control group. Besides, egg-hatching periods were extended significantly. Blood-feeding periods and pre-oviposition periods were not different between the two groups. In total, the calculated vaccine efficacy was 37.4%. CONCLUSIONS Vaccination of rabbits with rHlSu significantly affected the blood-feeding and reproduction in H. longicornis. Combined with findings from previous studies, our findings suggest subolesin has the potential to be used as a universal tick vaccine.
Collapse
Affiliation(s)
- Seung-Hun Lee
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
- College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644 South Korea
| | - Jixu Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
| | - Paul Franck Adjou Moumouni
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
| | - Kiyoshi Okado
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
| | - Weiqing Zheng
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
| | - Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
| | - Shengwei Ji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
| | - Soochong Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644 South Korea
| | - Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
| |
Collapse
|
26
|
Githaka NW, Konnai S, Isezaki M, Goto S, Xavier MA, Fujisawa S, Yamada S, Okagawa T, Maekawa N, Logullo C, da Silva Vaz I, Murata S, Ohashi K. Identification and functional analysis of ferritin 2 from the Taiga tick Ixodes persulcatus Schulze. Ticks Tick Borne Dis 2020; 11:101547. [PMID: 32993953 DOI: 10.1016/j.ttbdis.2020.101547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/14/2020] [Accepted: 08/18/2020] [Indexed: 11/28/2022]
Abstract
Ferritin 2 (FER2) is an iron storage protein, which has been shown to be critical for iron homeostasis during blood feeding and reproduction in ticks and is therefore suitable as a component for anti-tick vaccines. In this study, we identified the FER2 of Ixodes persulcatus, a major vector for zoonotic diseases such as Lyme borreliosis and tick-borne relapsing fever in Japan, and investigated its functions. Ixodes persulcatus-derived ferritin 2 (Ip-FER2) showed concentration-dependent iron-binding ability and high amino acid conservation, consistent with FER2s of other tick species. Vaccines containing the recombinant Ip-FER2 elicited a significant reduction of the engorgement weight of adult I. persulcatus. Interestingly, the reduction of engorgement weight was also observed in Ixodes ovatus, a sympatric species of I. persulcatus. In silico analyses of FER2 sequences of I. persulcatus and other ticks showed a greater similarity with I. scapularis and I. ricinus and lesser similarity with Hyalomma anatolicum, Haemaphysalis longicornis, Rhipicephalus microplus, and R. appendiculatus. Moreover, it was observed that the tick FER2 sequences possess conserved regions within the primary structures, and in silico epitope mapping analysis revealed that antigenic regions were also conserved, particularly among Ixodes spp ticks. In conclusion, the data support further protective tick vaccination applications using the Ip-FER2 antigens identified herein.
Collapse
Affiliation(s)
- Naftaly Wang'ombe Githaka
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan.
| | - Masayoshi Isezaki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Shinya Goto
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Marina Amaral Xavier
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil
| | - Sotaro Fujisawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Shinji Yamada
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Carlos Logullo
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Morfologia, NUPEM-UFRJ, Macaé, RJ, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| |
Collapse
|
27
|
Rodríguez Mallón A, Javier González L, Encinosa Guzmán PE, Bechara GH, Sanches GS, Pousa S, Cabrera G, Cabrales A, Garay H, Mejías R, López Álvarez JR, Bello Soto Y, Almeida F, Guirola O, Rodríguez Fernández R, Fuentes Castillo A, Méndez L, Jiménez S, Licea-Navarro A, Portela M, Durán R, Estrada MP. Functional and Mass Spectrometric Evaluation of an Anti-Tick Antigen Based on the P0 Peptide Conjugated to Bm86 Protein. Pathogens 2020; 9:pathogens9060513. [PMID: 32630414 PMCID: PMC7350365 DOI: 10.3390/pathogens9060513] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 11/16/2022] Open
Abstract
A synthetic 20 amino acid peptide of the ribosomal protein P0 from ticks, when conjugated to keyhole limpet hemocyanin from Megathura crenulata and used as an immunogen against Rhipicephalus microplus and Rhipicephalus sanguineus s.l. species, has shown efficacies of around 90%. There is also experimental evidence of a high efficacy of this conjugate against Amblyomma mixtum and Ixodes ricinus species, which suggest that this antigen could be a good broad-spectrum anti-tick vaccine candidate. In this study, the P0 peptide (pP0) was chemically conjugated to Bm86 as a carrier protein. SDS-PAGE analysis of this conjugate demonstrated that it is highly heterogeneous in size, carrying from 1 to 18 molecules of pP0 per molecule of Bm86. Forty-nine out of the 54 lysine residues and the N-terminal end of Bm86 were found partially linked to pP0 by using LC-MS/MS analysis and the combination of four different softwares. Several post-translational modifications of Bm86 protein were also identified by mass spectrometry. High immunogenicity and efficacy were achieved when dogs and cattle were vaccinated with the pP0-Bm86 conjugate and challenged with R. sanguineus s.l. and R. microplus, respectively. These results encourage the development of this antigen with promising possibilities as an anti-tick vaccine.
Collapse
Affiliation(s)
- Alina Rodríguez Mallón
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (P.E.E.G.); (Y.B.S.); (M.P.E.)
- Correspondence: ; Tel.: +53-72504407
| | - Luis Javier González
- Mass Spectrometry Laboratory and GlycoLab, Department of Proteomics, CIGB, Havana 10600, Cuba; (L.J.G.); (S.P.); (G.C.); (F.A.)
| | - Pedro Enrique Encinosa Guzmán
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (P.E.E.G.); (Y.B.S.); (M.P.E.)
| | - Gervasio Henrique Bechara
- Programa de Pós-graduação em Ciência Animal, Pontifícia Universidade Católica do Paraná (PUCPR), Paraná 80215-901, Brazil; (G.H.B.); (G.S.S.)
- Departamento de Patologia Veterinária, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (FCAV-UNESP), São Paulo 14884-900, Brazil
| | - Gustavo Seron Sanches
- Programa de Pós-graduação em Ciência Animal, Pontifícia Universidade Católica do Paraná (PUCPR), Paraná 80215-901, Brazil; (G.H.B.); (G.S.S.)
- Departamento de Patologia Veterinária, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (FCAV-UNESP), São Paulo 14884-900, Brazil
| | - Satomy Pousa
- Mass Spectrometry Laboratory and GlycoLab, Department of Proteomics, CIGB, Havana 10600, Cuba; (L.J.G.); (S.P.); (G.C.); (F.A.)
| | - Gleysin Cabrera
- Mass Spectrometry Laboratory and GlycoLab, Department of Proteomics, CIGB, Havana 10600, Cuba; (L.J.G.); (S.P.); (G.C.); (F.A.)
| | - Ania Cabrales
- Synthetic Peptides Group, CIGB, Havana 10600, Cuba; (A.C.); (H.G.)
| | - Hilda Garay
- Synthetic Peptides Group, CIGB, Havana 10600, Cuba; (A.C.); (H.G.)
| | - Raúl Mejías
- Instituto de Ciencia Animal (ICA), San José de las Lajas 32700, Cuba; (R.M.); (J.R.L.Á.)
| | | | - Yamil Bello Soto
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (P.E.E.G.); (Y.B.S.); (M.P.E.)
| | - Fabiola Almeida
- Mass Spectrometry Laboratory and GlycoLab, Department of Proteomics, CIGB, Havana 10600, Cuba; (L.J.G.); (S.P.); (G.C.); (F.A.)
| | | | | | - Alier Fuentes Castillo
- National Laboratory for Parasitology, San Antonio de los Banos 32500, Cuba; (R.R.F.); (A.F.C.); (L.M.)
| | - Luis Méndez
- National Laboratory for Parasitology, San Antonio de los Banos 32500, Cuba; (R.R.F.); (A.F.C.); (L.M.)
| | - Samanta Jiménez
- Departamento de Innovación Biomédica, CICESE, Ensenada 22860, Mexico; (S.J.); (A.L.-N.)
| | - Alexei Licea-Navarro
- Departamento de Innovación Biomédica, CICESE, Ensenada 22860, Mexico; (S.J.); (A.L.-N.)
| | - Madelón Portela
- Unidad de Bioquímica y Proteómica Analítica, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (M.P.); (R.D.)
- Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo 11600, Uruguay
| | - Rosario Durán
- Unidad de Bioquímica y Proteómica Analítica, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (M.P.); (R.D.)
- Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo 11600, Uruguay
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (P.E.E.G.); (Y.B.S.); (M.P.E.)
| |
Collapse
|
28
|
Lugo-Caro Del Castillo SM, Hernández-Ortiz R, Gómez-Romero N, Martínez-Velázquez M, Castro-Saines E, Lagunes-Quintanilla R. Genetic diversity of the ATAQ gene in Rhipicephalus microplus collected in Mexico and implications as anti-tick vaccine. Parasitol Res 2020; 119:3523-3529. [PMID: 32572573 PMCID: PMC7306492 DOI: 10.1007/s00436-020-06773-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/14/2020] [Indexed: 11/30/2022]
Abstract
The cattle tick Rhipicephalus microplus has a large impact on cattle production due to its bloodsucking habit and transmission of pathogens that cause babesiosis and anaplasmosis. Application of acaricides constitutes the major control method but is often accompanied by serious drawbacks, including environmental contamination and an increase in acaricide resistance by ticks. The recent development of anti-tick vaccines has provided positive results in the post-genomic era, owing to the rise of reverse vaccinological and bioinformatics approaches to analyze and identify candidate protective antigens for use against ticks. The ATAQ protein is considered a novel antigen for the control of the cattle tick R. microplus; it is expressed in midguts and Malpighian tubules of all ticks from the Rhipicephalus genus. However, genetic diversity studies are required. Here, the ATAQ gene was sequenced of seven R. microplus tick isolates from different regions in Mexico to understand the genetic diversity. The results showed that sequence identity among the Mexican isolates ranged between 98 and 100% and 97.8-100% at the nucleotide and protein levels, respectively. Alignments of deduced amino acid sequences from different R. microplus ATAQ isolates in Mexico revealed a high degree of conservation. However, the Mexican isolates differed from the R. microplus "Mozambique" strain, at 20 amino acid residues. Finally, the analysis of more R. microplus isolates, and possibly of other Rhipicephalus species, to determine the genetic diversity in the ATAQ locus is essential to suggest this antigen as a vaccine candidate that might control tick infestations.
Collapse
Affiliation(s)
| | - Rubén Hernández-Ortiz
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad - INIFAP, Carretera Federal Cuernavaca - Cuautla 8534, Col. Progreso, CP 62574, Jiutepec, Morelos, México
| | - Ninnet Gómez-Romero
- Laboratorio de Vacunología y Constatación, Facultad de Medicina Veterinaria y Zootecnia - UNAM, Avenida Universidad 3000, CP 04510, Ciudad de México, México
| | - Moisés Martínez-Velázquez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Av. Normalistas 800, Col. Colinas de la Normal, CP 44270, Guadalajara, Jalisco, México
| | - Edgar Castro-Saines
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad - INIFAP, Carretera Federal Cuernavaca - Cuautla 8534, Col. Progreso, CP 62574, Jiutepec, Morelos, México
| | - Rodolfo Lagunes-Quintanilla
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad - INIFAP, Carretera Federal Cuernavaca - Cuautla 8534, Col. Progreso, CP 62574, Jiutepec, Morelos, México.
| |
Collapse
|
29
|
Almazán C, Fourniol L, Rouxel C, Alberdi P, Gandoin C, Lagrée AC, Boulouis HJ, de la Fuente J, Bonnet SI. Experimental Ixodes ricinus-Sheep Cycle of Anaplasma phagocytophilum NV2Os Propagated in Tick Cell Cultures. Front Vet Sci 2020; 7:40. [PMID: 32118063 PMCID: PMC7015893 DOI: 10.3389/fvets.2020.00040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/15/2020] [Indexed: 11/13/2022] Open
Abstract
The causative agent of tick-borne fever and human granulocytic anaplasmosis, Anaplasma phagocytophilum, is transmitted by Ixodes ricinus, and is currently considered an emerging disease throughout Europe. In this study, we established a model of A. phagocytophilum sheep infection and I. ricinus transmission using the European Norway variant 2 ovine strain (NV2Os) propagated in both IDE8 and ISE6 tick cells. Two sheep were inoculated with IDE8 tick cells infected with NV2Os. Both sheep developed A. phagocytophilum infection as determined by qPCR and PCR, the presence of fever 4 days post inoculation (dpi), the observation of morulae in granulocytes at 6 dpi, and the detection of A. phagocytophilum antibodies at 14 dpi. A. phagocytophilum was detected by PCR in skin, lung, small intestine, liver, spleen, uterus, bone marrow, and mesenteric lymph node from necropsies performed at 14 and 15 dpi. One sheep was infested during the acute phase of infection with I. ricinus nymphs from a pathogen-free colony. After molting, A. phagocytophilum transstadial transmission in ticks was validated with qPCR positive bacterial detection in 80% of salivary glands and 90% of midguts from female adults. Infected sheep blood collected at 14 dpi was demonstrated to be able to infect ISE6 tick cells, thus enabling the infection of two additional naive sheep, which then went on to develop similar clinical signs to the sheep infected previously. One of the sheep remained persistently infected until 115 dpi when it was euthanized, and transmitted bacteria to 70 and 2.7% of nymphs engorged as larvae during the acute and persistent infection stages, respectively. We then demonstrated that these infected nymphs were able to transmit the bacteria to one of two other naive infested sheep. As expected, when I. ricinus females were engorged during the acute phase of infection, no A. phagocytophilum transovarial transmission was detected. The development of this new experimental model will facilitate future research on this tick-borne bacterium of increasing importance, and enable the evaluation of any new tick/transmission control strategies.
Collapse
Affiliation(s)
- Consuelo Almazán
- UMR BIPAR, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Lisa Fourniol
- UMR BIPAR, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Clotilde Rouxel
- UMR BIPAR, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Christelle Gandoin
- UMR BIPAR, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Anne-Claire Lagrée
- UMR BIPAR, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Henri-Jean Boulouis
- UMR BIPAR, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Sarah I Bonnet
- UMR BIPAR, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
30
|
Lima-Barbero JF, Contreras M, Mateos-Hernández L, Mata-Lorenzo FM, Triguero-Ocaña R, Sparagano O, Finn RD, Strube C, Price DR, Nunn F, Bartley K, Höfle U, Boadella M, Nisbet AJ, de la Fuente J, Villar M. A vaccinology Approach to the Identification and Characterization of Dermanyssus Gallinae Candidate Protective Antigens for the Control of Poultry Red Mite Infestations. Vaccines (Basel) 2019; 7:vaccines7040190. [PMID: 31756972 PMCID: PMC6963798 DOI: 10.3390/vaccines7040190] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/07/2019] [Accepted: 11/15/2019] [Indexed: 11/16/2022] Open
Abstract
The poultry red mite (PRM), Dermanyssus gallinae, is a hematophagous ectoparasite considered as the major pest in the egg-laying industry. Its pesticide-based control is only partially successful and requires the development of new control interventions such as vaccines. In this study, we follow a vaccinology approach to identify PRM candidate protective antigens. Based on proteomic data from fed and unfed nymph and adult mites, we selected a novel PRM protein, calumenin (Deg-CALU), which is tested as a vaccine candidate on an on-hen trial. Rhipicephalus microplus Subolesin (Rhm-SUB) was chosen as a positive control. Deg-CALU and Rhm-SUB reduced the mite oviposition by 35 and 44%, respectively. These results support Deg-CALU and Rhm-SUB as candidate protective antigens for the PRM control.
Collapse
Affiliation(s)
- José Francisco Lima-Barbero
- SaBio. Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (J.F.L.-B.); (M.C.); (F.M.M.-L.); (R.T.-O.); (U.H.)
- Sabiotec, S.A. Ed., Polivalente UCLM, Camino de Moledores, 13005 Ciudad Real, Spain;
| | - Marinela Contreras
- SaBio. Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (J.F.L.-B.); (M.C.); (F.M.M.-L.); (R.T.-O.); (U.H.)
| | - Lourdes Mateos-Hernández
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d´Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France;
| | - Francisco Manuel Mata-Lorenzo
- SaBio. Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (J.F.L.-B.); (M.C.); (F.M.M.-L.); (R.T.-O.); (U.H.)
| | - Roxana Triguero-Ocaña
- SaBio. Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (J.F.L.-B.); (M.C.); (F.M.M.-L.); (R.T.-O.); (U.H.)
| | - Olivier Sparagano
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong SAR, China;
| | - Robert D. Finn
- Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK;
- St George’s International School of Medicine, Keith B. Taylor Global Scholars Program, Northumbria University, Newcastle NE1 8ST, UK
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Daniel R.G. Price
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, UK (F.N.); (K.B.); (A.J.N.)
| | - Francesca Nunn
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, UK (F.N.); (K.B.); (A.J.N.)
| | - Kathryn Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, UK (F.N.); (K.B.); (A.J.N.)
| | - Ursula Höfle
- SaBio. Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (J.F.L.-B.); (M.C.); (F.M.M.-L.); (R.T.-O.); (U.H.)
| | - Mariana Boadella
- Sabiotec, S.A. Ed., Polivalente UCLM, Camino de Moledores, 13005 Ciudad Real, Spain;
| | - Alasdair J. Nisbet
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, UK (F.N.); (K.B.); (A.J.N.)
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (J.F.L.-B.); (M.C.); (F.M.M.-L.); (R.T.-O.); (U.H.)
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078-2007 USA
- Correspondence: (J.F.); (M.V.)
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (J.F.L.-B.); (M.C.); (F.M.M.-L.); (R.T.-O.); (U.H.)
- Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research [CRIB], University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Correspondence: (J.F.); (M.V.)
| |
Collapse
|
31
|
Hassan IA, Wang Y, Zhou Y, Cao J, Zhang H, Zhou J. Cross protection induced by combined Subolesin-based DNA and protein immunizations against adult Haemaphysalis longicornis. Vaccine 2019; 38:907-915. [PMID: 31699505 DOI: 10.1016/j.vaccine.2019.10.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/20/2019] [Accepted: 10/25/2019] [Indexed: 01/31/2023]
Abstract
Vaccination against ticks is an environmentally friendly alternative control method compared to chemical acaricide applications. Subolesin is a conserved protein in ticks, which can provide protection against some tick species. In this study, we evaluated the capacity of cocktail vaccination with Subolesin and ribosomal acidic protein 0 (P0) peptide against adults of Haemaphysalis longicornis. Priming with DNA vaccine expressing subolesin, followed by boosters of a single antigen (rRhSub) or a chimeric polypeptide (rRhSub/P0), provided cross protection. This treatment resulted in significant mortality, reduced blood ingestion and reduced reproduction in H. longicornis adults. Vaccination efficacies of 79.3% and 86.6% are reported in groups supplemented with rRhSub and rRhSub/P0, respectively. Conserved antigens, such as subolesin, formulated as DNA vaccine and enhanced with chimeric polypeptides, could be used as an anti-tick vaccine application, especially for control of infestation involving several tick species.
Collapse
Affiliation(s)
- Ibrahim A Hassan
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| |
Collapse
|
32
|
Trentelman JJA, Teunissen H, Kleuskens JAGM, van de Crommert J, de la Fuente J, Hovius JWR, Schetters TPM. A combination of antibodies against Bm86 and Subolesin inhibits engorgement of Rhipicephalus australis (formerly Rhipicephalus microplus) larvae in vitro. Parasit Vectors 2019; 12:362. [PMID: 31345265 PMCID: PMC6657053 DOI: 10.1186/s13071-019-3616-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/13/2019] [Indexed: 11/29/2022] Open
Abstract
Background Rhipicephalus microplus is a hard tick species that has a high impact on cattle health and production in tropical and subtropical regions. Recently, ribosomal DNA and morphological analysis resulted in the reinstatement of R. australis as a separate species from R. microplus. Both feed on cattle and can transmit bovine pathogens such as Anaplasma and Babesia species. The current treatment with acaricides is becoming increasingly less effective due to the emergence of resistant tick strains. A promising alternative can be found in the form of anti-tick vaccines. The available commercial vaccines can be used to control tick infestation, but the lack of a knockdown effect (> 90% reduction in tick numbers as seen with effective acaricides) hampers its widespread use, hence higher efficacious vaccines are needed. Instead of searching for new protective antigens, we investigated the efficacy of vaccines that contain more than one (partially) protective antigen. For screening vaccine formulations, a previously developed in vitro feeding assay was used in which R. australis larvae are fed sera that were raised against the candidate vaccine antigens. In the present study, the efficacy of the Bm86 midgut antigen and the cytosolic Subolesin (SUB) antigen were evaluated in vitro. Results Antiserum against recombinant Bm86 (rBm86) partially inhibited larval engorgement, whereas antiserum against recombinant SUB (rSUB) did not have any effect on feeding of larvae. Importantly, when larvae were fed a combination of antiserum against rBm86 and rSUB, a synergistic effect on significantly reducing larval infestations was found. Immunohistochemical analysis revealed that the rBm86 antiserum reacted with gut epithelium of R. australis larvae, whereas the antiserum against rSUB stained salivary glands and rectal sac epithelium. Conclusions Combining anti-Bm86 and anti-subolesin antibodies synergistically reduced R. australis larval feeding in vitro. Rhipicephalus australis is a one host tick, meaning that the larvae develop to nymphs and subsequently adults on the same host. Hence, this protective effect could be even more pronounced when larvae are used for infestation of vaccinated cattle, as the antibodies could then affect all three developmental stages. This will be tested in future in vivo experiments.
Collapse
Affiliation(s)
- Jos J A Trentelman
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity, Amsterdam UMC, Univ of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
| | - Hendry Teunissen
- Mérieux NutriSciences, Pascalstraat 25, 6716 AZ, Ede, The Netherlands
| | - Jos A G M Kleuskens
- MSD Animal Health, Wim de Körverstraat 35, 5830 AA, Boxmeer, The Netherlands
| | | | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), 13005, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Joppe W R Hovius
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity, Amsterdam UMC, Univ of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Theo P M Schetters
- ProtActivity, Sering 36, 5432 DD, Cuijk, The Netherlands.,Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, 0110, South Africa
| |
Collapse
|
33
|
Martínez-Arzate SG, Sánchez-Bermúdez JC, Sotelo-Gómez S, Diaz-Albiter HM, Hegazy-Hassan W, Tenorio-Borroto E, Barbabosa-Pliego A, Vázquez-Chagoyán JC. Genetic diversity of Bm86 sequences in Rhipicephalus (Boophilus) microplus ticks from Mexico: analysis of haplotype distribution patterns. BMC Genet 2019; 20:56. [PMID: 31299900 PMCID: PMC6626424 DOI: 10.1186/s12863-019-0754-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/20/2019] [Indexed: 11/25/2022] Open
Abstract
Background Ticks are a problem for cattle production mainly in tropical and subtropical regions, because they generate great economic losses. Acaricides and vaccines have been used to try to keep tick populations under control. This has been proven difficult given the resistance to acaricides and vaccines observed in ticks. Resistance to protein rBm86-based vaccines has been associated with the genetic diversity of Bm86 among the ectoparasite’s populations. So far, neither genetic diversity, nor spatial distribution of circulating Bm86 haplotypes, have been studied within the Mexican territory. Here, we explored the genetic diversity of 125 Bm86 cDNA gene sequences from R. microplus from 10 endemic areas of Mexico by analyzing haplotype distribution patterns to help in understanding the population genetic structure of Mexican ticks. Results Our results showed an average nucleotide identity among the Mexican isolates of 98.3%, ranging from 91.1 to 100%. Divergence between the Mexican and Yeerongpilly (the Bm86 reference vaccine antigen) sequences ranged from 3.1 to 7.4%. Based on the geographic distribution of Bm86 haplotypes in Mexico, our results suggest gene flow occurrence within different regions of the Mexican territory, and even the USA. Conclusions The polymorphism of Bm86 found in the populations included in this study, could account for the poor efficacy of the current Bm86 antigen based commercial vaccine in many regions of Mexico. Our data may contribute towards designing new, highly-specific, Bm86 antigen vaccine candidates against R. microplus circulating in Mexico.
Collapse
Affiliation(s)
- S G Martínez-Arzate
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Kilometro 15.5 Carretera Panamericana, CP 50200, Toluca-Atlacomulco, Mexico
| | - J C Sánchez-Bermúdez
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Kilometro 15.5 Carretera Panamericana, CP 50200, Toluca-Atlacomulco, Mexico
| | - S Sotelo-Gómez
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Kilometro 15.5 Carretera Panamericana, CP 50200, Toluca-Atlacomulco, Mexico
| | - H M Diaz-Albiter
- Wellcome Centre for Molecular Parasitology, University of Glasgow, University Place, Glasgow, G12 8TA, UK.,Colegio de la Frontera del Sur, Carretera Villahermosa-Reforma Km 15.5, Ranchería Guineo, sección II, CP 86280, Villahermosa, Tabasco, Mexico
| | - W Hegazy-Hassan
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Kilometro 15.5 Carretera Panamericana, CP 50200, Toluca-Atlacomulco, Mexico
| | - E Tenorio-Borroto
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Kilometro 15.5 Carretera Panamericana, CP 50200, Toluca-Atlacomulco, Mexico
| | - A Barbabosa-Pliego
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Kilometro 15.5 Carretera Panamericana, CP 50200, Toluca-Atlacomulco, Mexico
| | - J C Vázquez-Chagoyán
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Kilometro 15.5 Carretera Panamericana, CP 50200, Toluca-Atlacomulco, Mexico.
| |
Collapse
|
34
|
Contreras M, Kasaija PD, Merino O, de la Cruz-Hernandez NI, Gortazar C, de la Fuente J. Oral Vaccination With a Formulation Combining Rhipicephalus microplus Subolesin With Heat Inactivated Mycobacterium bovis Reduces Tick Infestations in Cattle. Front Cell Infect Microbiol 2019; 9:45. [PMID: 30881925 PMCID: PMC6407321 DOI: 10.3389/fcimb.2019.00045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/13/2019] [Indexed: 02/02/2023] Open
Abstract
Vaccines are an environmentally friendly alternative to acaracides for the control of tick infestations, to reduce the risk for tick-borne diseases affecting human and animal health worldwide, and to improve animal welfare and production. Subolesin (SUB, also known as 4D8) is the functional homolog of Akirin2 involved in the regulation of development and innate immune response, and a proven protective antigen for the control of ectoparasite infestations and pathogen infection. Oral vaccination combining protein antigens with immunostimulants has proven efficacy with increased host welfare and safety, but has not been used for the control of tick infestations. Here we describe the efficacy of oral vaccination with a formulation combining Rhipicephalus microplus SUB and heat inactivated Mycobacterium bovis (IV) on cattle tick infestations and fertility. The levels of IgG antibody titers against SUB and M. bovis P22, and the expression of selected immune response genes were determined and analyzed as possible correlates of protection. We demonstrated that oral immunization with the SUB+IV formulation resulted in 51% reduction in the number of female ticks and 30% reduction in fertility with an overall efficacy of 65% in the control of R. microplus infestations by considering the cumulative effect on reducing tick survival and fertility in cattle. The akr2, IL-1β, and C3 mRNA levels together with antibody levels against SUB correlated with vaccine efficacy. The effect of the oral immunization with SUB+IV in cattle on tick survival and fertility is essential to reduce tick infestations, and extended previous results on the effect of R. microplus SUB for the control of cattle tick infestations. These results support the development of oral vaccines formulations for the control of tick infestations and the incidence of tick-borne diseases.
Collapse
Affiliation(s)
- Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Paul D Kasaija
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.,National Livestock Resources Research Institute (NaLIRRI/NARO), Tororo, Uganda
| | - Octavio Merino
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Mexico
| | - Ned I de la Cruz-Hernandez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Mexico
| | - Christian Gortazar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
35
|
Brock CM, Temeyer KB, Tidwell J, Yang Y, Blandon MA, Carreón-Camacho D, Longnecker MT, Almazán C, Pérez de León AA, Pietrantonio PV. The leucokinin-like peptide receptor from the cattle fever tick, Rhipicephalus microplus, is localized in the midgut periphery and receptor silencing with validated double-stranded RNAs causes a reproductive fitness cost. Int J Parasitol 2019; 49:287-299. [PMID: 30673587 DOI: 10.1016/j.ijpara.2018.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 12/25/2022]
Abstract
The cattle fever tick, Rhipicephalus microplus (Canestrini) (Acari: Ixodidae), is a one-host tick that infests primarily cattle in tropical and sub-tropical regions of the world. This species transmits deadly cattle pathogens, especially Babesia spp., for which a recombinant vaccine is not available. Therefore, disease control depends on tick vector control. Although R. microplus was eradicated in the USA, tick populations in Mexico and South America have acquired resistance to many of the applied acaricides. Recent acaricide-resistant tick reintroductions detected in the U.S. underscore the need for novel tick control methods. The octopamine and tyramine/octopamine receptors, both G protein-coupled receptors (GPCR), are believed to be the main molecular targets of the acaricide amitraz. This provides the proof of principle that investigating tick GPCRs, especially those that are invertebrate-specific, may be a feasible strategy for discovering novel targets and subsequently new anti-tick compounds. The R. microplus leucokinin-like peptide receptor (LKR), also known as the myokinin- or kinin receptor, is such a GPCR. While the receptor was previously characterized in vitro, the function of the leucokinin signaling system in ticks remains unknown. In this work, the LKR was immunolocalized to the periphery of the female midgut and silenced through RNA interference (RNAi) in females. To optimize RNAi experiments, a dual-luciferase system was developed to determine the silencing efficiency of LKR-double stranded RNA (dsRNA) constructs prior to testing those in ticks placed on cattle. This assay identified two effective dsRNAs. Silencing of the LKR with these two validated dsRNA constructs was verified by quantitative real time PCR (qRT-PCR) of female tick dissected tissues. Silencing was significant in midguts and carcasses. Silencing caused decreases in weights of egg masses and in the percentages of eggs hatched per egg mass, as well as delays in time to oviposition and egg hatching. A role of the kinin receptor in tick reproduction is apparent.
Collapse
Affiliation(s)
- Christina M Brock
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | - Kevin B Temeyer
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture - Agricultural Research Service, 2700 Fredericksburg Road Kerrville, TX 78028-9184, USA
| | - Jason Tidwell
- Cattle Fever Tick Research Laboratory, United States Department of Agriculture - Agricultural Research Service, 22675 N. Moorefield Rd. Building 6419 Edinburg, TX 78541-5033, USA
| | - Yunlong Yang
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | - Maria A Blandon
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | - Diana Carreón-Camacho
- Universidad Autónoma de Tamaulipas, Facultad de Medicina Veterinaria y Zootecnia, CP87000 Victoria, Tamaulipas, Mexico
| | - Michael T Longnecker
- Department of Statistics, Texas A&M University, College Station, TX 77843-2475, USA
| | - Consuelo Almazán
- Universidad Autónoma de Tamaulipas, Facultad de Medicina Veterinaria y Zootecnia, CP87000 Victoria, Tamaulipas, Mexico
| | - Adalberto A Pérez de León
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture - Agricultural Research Service, 2700 Fredericksburg Road Kerrville, TX 78028-9184, USA
| | | |
Collapse
|
36
|
Artigas-Jerónimo S, Villar M, Cabezas-Cruz A, Valdés JJ, Estrada-Peña A, Alberdi P, de la Fuente J. Functional Evolution of Subolesin/Akirin. Front Physiol 2018; 9:1612. [PMID: 30542290 PMCID: PMC6277881 DOI: 10.3389/fphys.2018.01612] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/25/2018] [Indexed: 01/18/2023] Open
Abstract
The Subolesin/Akirin constitutes a good model for the study of functional evolution because these proteins have been conserved throughout the metazoan and play a role in the regulation of different biological processes. Here, we investigated the evolutionary history of Subolesin/Akirin with recent results on their structure, protein-protein interactions and function in different species to provide insights into the functional evolution of these regulatory proteins, and their potential as vaccine antigens for the control of ectoparasite infestations and pathogen infection. The results suggest that Subolesin/Akirin evolved conserving not only its sequence and structure, but also its function and role in cell interactome and regulome in response to pathogen infection and other biological processes. This functional conservation provides a platform for further characterization of the function of these regulatory proteins, and how their evolution can meet species-specific demands. Furthermore, the conserved functional evolution of Subolesin/Akirin correlates with the protective capacity shown by these proteins in vaccine formulations for the control of different arthropod and pathogen species. These results encourage further research to characterize the structure and function of these proteins, and to develop new vaccine formulations by combining Subolesin/Akirin with interacting proteins for the control of multiple ectoparasite infestations and pathogen infection.
Collapse
Affiliation(s)
- Sara Artigas-Jerónimo
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla – La Mancha (JCCM), Ciudad Real, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla – La Mancha (JCCM), Ciudad Real, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Paris, France
| | - James J. Valdés
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Virology, Veterinary Research Institute, Brno, Czechia
| | | | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla – La Mancha (JCCM), Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla – La Mancha (JCCM), Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
37
|
Ghosh M, Sangwan N, Chakravarti S, Banerjee S, Ghosh A, Kumar R, Sangwan AK. Molecular Characterization and Immunogenicity Analysis of 4D8 Protective Antigen of Hyalomma anatolicum Ticks Collected from Western India. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9776-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Stutzer C, Richards SA, Ferreira M, Baron S, Maritz-Olivier C. Metazoan Parasite Vaccines: Present Status and Future Prospects. Front Cell Infect Microbiol 2018; 8:67. [PMID: 29594064 PMCID: PMC5859119 DOI: 10.3389/fcimb.2018.00067] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/26/2018] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic parasites and pathogens continue to cause some of the most detrimental and difficult to treat diseases (or disease states) in both humans and animals, while also continuously expanding into non-endemic countries. Combined with the ever growing number of reports on drug-resistance and the lack of effective treatment programs for many metazoan diseases, the impact that these organisms will have on quality of life remain a global challenge. Vaccination as an effective prophylactic treatment has been demonstrated for well over 200 years for bacterial and viral diseases. From the earliest variolation procedures to the cutting edge technologies employed today, many protective preparations have been successfully developed for use in both medical and veterinary applications. In spite of the successes of these applications in the discovery of subunit vaccines against prokaryotic pathogens, not many targets have been successfully developed into vaccines directed against metazoan parasites. With the current increase in -omics technologies and metadata for eukaryotic parasites, target discovery for vaccine development can be expedited. However, a good understanding of the host/vector/pathogen interface is needed to understand the underlying biological, biochemical and immunological components that will confer a protective response in the host animal. Therefore, systems biology is rapidly coming of age in the pursuit of effective parasite vaccines. Despite the difficulties, a number of approaches have been developed and applied to parasitic helminths and arthropods. This review will focus on key aspects of vaccine development that require attention in the battle against these metazoan parasites, as well as successes in the field of vaccine development for helminthiases and ectoparasites. Lastly, we propose future direction of applying successes in pursuit of next generation vaccines.
Collapse
Affiliation(s)
- Christian Stutzer
- Tick Vaccine Group, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | | | | | | | | |
Collapse
|
39
|
Hernandez EP, Kusakisako K, Talactac MR, Galay RL, Hatta T, Matsuo T, Fujisaki K, Tsuji N, Tanaka T. Characterization and expression analysis of a newly identified glutathione S-transferase of the hard tick Haemaphysalis longicornis during blood-feeding. Parasit Vectors 2018; 11:91. [PMID: 29422079 PMCID: PMC5806375 DOI: 10.1186/s13071-018-2667-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/22/2018] [Indexed: 12/27/2022] Open
Abstract
Background Ticks are obligate hematophagous parasites important economically and to health. Ticks consume large amounts of blood for their survival and reproduction; however, large amounts of iron in blood could lead to oxidative stress. Ticks use several molecules such as glutathione S-transferases (GSTs), ferritins, and peroxiredoxins to cope with oxidative stress. This study aimed to identify and characterize the GSTs of the hard tick Haemaphysalis longicornis in order to determine if they have a role in coping with oxidative stress. Methods Genes encoding GSTs of H. longicornis were isolated from the midgut CDNA library. Genes have been cloned and recombinant GSTs have been expressed. The enzymatic activities, enzyme kinetic constants, and optimal pH of the recombinant GSTs toward 1-chloro-2,4-dinitrobenzene (CDNB) were determined. The gene transcription and protein expression profiles were determined in the whole ticks and internal organs, and developmental stages using real time RT-PCR and Western blotting during blood feeding. The localization of GST proteins in organs was also observed using immunofluorescent antibody test (IFAT). Results We have isolated two genes encoding GSTs (HlGST and HlGST2). The enzymatic activity toward CDNB is 9.75 ± 3.04 units/mg protein for recombinant HlGST and 11.63 ± 4.08 units/mg protein for recombinant HlGST2. Kinetic analysis of recombinant HlGST showed Km values of 0.82 ± 0.14 mM and 0.64 ± 0.32 mM for the function of CDNB and GSH, respectively. Meanwhile, recombinant HlGST2 has Km values of 0.61 ± 0.20 mM and 0.53 ± 0.02 mM for the function of CDNB and GSH, respectively. The optimum pH of recombinant HlGST and recombinant HlGST2 activity was 7.5–8.0. Transcription of both GSTs increases in different developmental stages and organs during blood-feeding. GST proteins are upregulated during blood-feeding but decreased upon engorgement in whole ticks and in some organs, such as the midgut and hemocytes. Interestingly, salivary glands, ovaries, and fat bodies showed decreasing protein expression during blood-feeding to engorgement. Varying localization of GSTs in the midgut, salivary glands, fat bodies, ovaries, and hemocytes was observed depending on the feeding state, especially in the midgut and salivary glands. Conclusions In summary, a novel GST of H. longicornis has been identified. Characterization of the GSTs showed that GSTs have positive correlation with the degree and localization of oxidative stress during blood-feeding. This could indicate their protective role during oxidative stress. Electronic supplementary material The online version of this article (10.1186/s13071-018-2667-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emmanuel Pacia Hernandez
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan.,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan
| | - Kodai Kusakisako
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan.,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan
| | - Melbourne Rio Talactac
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan.,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.,Department of Clinical and Population Health, College of Veterinary Medicine and Biomedical Sciences, Cavite State University, 4122, Cavite, Philippines
| | - Remil Linggatong Galay
- Department of Veterinary Paraclinical Sciences, University of the Philippines at Los Baños, College, 3004, Laguna, Philippines
| | - Takeshi Hatta
- Department of Parasitology, Kitasato University School of Medicine, Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Tomohide Matsuo
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.,Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan
| | - Kozo Fujisaki
- National Agricultural and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Naotoshi Tsuji
- Department of Parasitology, Kitasato University School of Medicine, Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan. .,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
40
|
Liu L, Cheng TY, He XM. Proteomic profiling of the midgut contents of Haemaphysalis flava. Ticks Tick Borne Dis 2018; 9:490-495. [PMID: 29371124 DOI: 10.1016/j.ttbdis.2018.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/06/2018] [Accepted: 01/13/2018] [Indexed: 12/12/2022]
Abstract
Scant information is available regarding the proteins involved in blood meal processing in ticks. Here, we aimed to highlight the midgut proteins involved in preventing blood meal coagulation, and in facilitating intracellular digestion in the tick Haemaphysalis flava. Proteins were extracted from the midgut contents of fully engorged and partially engorged ticks. We used liquid chromatography tandem-mass spectrometry (LC-MS/MS) analysis to identify 131 unique peptides, and 102 proteins. Of these, 15 proteins, each with at least two unique peptides, were recognized with high confidence. We also retrieved 18 unigenes from our previous published transcriptomic libraries of the midguts and salivary glands of H. flava, and inferred the primary structures of nine proteins and fragments of five proteins. There were 23 and 21 unique proteins in the midgut contents of fully engorged and partially engorged ticks, respectively. We detected 58 shared proteins in the midgut contents of both fully engorged and partially engorged ticks. Of these, seven were significantly differentially expressed between fully engorged and partially engorged ticks: actin, calmodulin, elongation factor-1α, hsp90, multifunctional chaperone, tubulin α, and tubulin β. Our results demonstrated that the proteome of the midgut contents, combined with the transcriptome of the midgut, was a viable method for the reinforcement of protein identification. This method will facilitate further study of blood meal processing by ticks, as well as the identification of clues for tick infestation control. The existence of numerous proteins detected in the midgut contents also highlight the complexity of blood digestion in ticks; this area is in need of further investigation.
Collapse
Affiliation(s)
- Lei Liu
- College of Veterinary Medicine, Hunan Collaborative Innovation Center of Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, China
| | - Tian-Yin Cheng
- College of Veterinary Medicine, Hunan Collaborative Innovation Center of Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, China.
| | - Xiao-Ming He
- College of Veterinary Medicine, Hunan Collaborative Innovation Center of Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, China
| |
Collapse
|
41
|
Martínez-Arzate SG, Tenorio-Borroto E, Barbabosa Pliego A, Díaz-Albiter HM, Vázquez-Chagoyán JC, González-Díaz H. PTML Model for Proteome Mining of B-Cell Epitopes and Theoretical–Experimental Study of Bm86 Protein Sequences from Colima, Mexico. J Proteome Res 2017; 16:4093-4103. [DOI: 10.1021/acs.jproteome.7b00477] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Saúl G. Martínez-Arzate
- Molecular
Biology Laboratory, CIESA, FMVZ, Autonomous University of The State of Mexico (UAEM), Toluca, 50200 Mexico State, Mexico
| | - Esvieta Tenorio-Borroto
- Molecular
Biology Laboratory, CIESA, FMVZ, Autonomous University of The State of Mexico (UAEM), Toluca, 50200 Mexico State, Mexico
| | - Alberto Barbabosa Pliego
- Molecular
Biology Laboratory, CIESA, FMVZ, Autonomous University of The State of Mexico (UAEM), Toluca, 50200 Mexico State, Mexico
| | - Héctor M. Díaz-Albiter
- Laboratory
of Biochemistry and Physiology of Insects, Oswaldo Cruz Institute, FIOCRUZ, 4365 Rio de Janeiro, Brazil
- Wellcome
Trust Centre for Molecular Parasitology, University of Glasgow, University Place, Glasgow G12 8TA, United Kingdom
| | - Juan C. Vázquez-Chagoyán
- Molecular
Biology Laboratory, CIESA, FMVZ, Autonomous University of The State of Mexico (UAEM), Toluca, 50200 Mexico State, Mexico
| | - Humbert González-Díaz
- Department
of Organic Chemistry II, University of the Basque Country (UPV/EHU), Bilbao, 48940 Biscay, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48011 Biscay, Spain
| |
Collapse
|
42
|
Functional characterization of candidate antigens of Hyalomma anatolicum and evaluation of its cross-protective efficacy against Rhipicephalus microplus. Vaccine 2017; 35:5682-5692. [PMID: 28911904 DOI: 10.1016/j.vaccine.2017.08.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/14/2017] [Accepted: 08/19/2017] [Indexed: 01/12/2023]
Abstract
Hyalomma anatolicum and Rhipicephalus microplus seriously affect dairy animals and immunization of host is considered as a sustainable option for the management of the tick species. Identification and validation of protective molecules are the major challenges in developing a cross-protective vaccine. The subolesin (SUB), calreticulin (CRT) and cathepsin L-like cysteine proteinase (CathL) genes of H. anatolicum were cloned, sequenced and analysed for sequence homology. Both Ha-SUB and Ha-CRT genes showed very high level of homogeneity within the species (97.6-99.4% and 98.2-99.7%) and among the tick species (77.3-99.3% and 85.1-99.7%) while for Ha-CathL the homogeneity was lower among ticks (57.5-89.5%). Besides tick species, both Ha-SUB and Ha- CRT genes showed high level of homogeneity with dipterans (47.2-53.4% and 72.0-74.4%) and nematodes (64.0% by CRT). The level of expression of the conserved genes in different stages of the tick species was studied. The differences in fold change of expression (FCE) of the targeted genes in life stages of tick were not statistically significant except Ha-SUB in eggs and in frustrated females, Ha-CRT in fed male and Ha-CathL in unfed and frustrated females where highest FCE was recorded. The functional properties of the genes were studied by RNAi technology and a significant level of gene suppression (p<0.05) resulted in very low percentage of engorgement of treated ticks viz., 3.7%, 11.1% and 30.0% in Ha-SUB, Ha-CRT and Ha-CathL respectively, in comparison to control was recorded. The recombinant proteins rHa-SUB, rHa-CRT and rHa-CathL encoded by the genes were expressed in prokaryotic expression system. They were evaluated for cross-protective efficacy and found to be respectively, 65.4%, 41.3% and 30.2% protective against H. anatolicum and 54.0%, 37.6% and 22.2%, against R. microplus infestations.
Collapse
|
43
|
Kuleš J, Horvatić A, Guillemin N, Galan A, Mrljak V, Bhide M. New approaches and omics tools for mining of vaccine candidates against vector-borne diseases. MOLECULAR BIOSYSTEMS 2017; 12:2680-94. [PMID: 27384976 DOI: 10.1039/c6mb00268d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vector-borne diseases (VBDs) present a major threat to human and animal health, as well as place a substantial burden on livestock production. As a way of sustainable VBD control, focus is set on vaccine development. Advances in genomics and other "omics" over the past two decades have given rise to a "third generation" of vaccines based on technologies such as reverse vaccinology, functional genomics, immunomics, structural vaccinology and the systems biology approach. The application of omics approaches is shortening the time required to develop the vaccines and increasing the probability of discovery of potential vaccine candidates. Herein, we review the development of new generation vaccines for VBDs, and discuss technological advancement and overall challenges in the vaccine development pipeline. Special emphasis is placed on the development of anti-tick vaccines that can quell both vectors and pathogens.
Collapse
Affiliation(s)
- Josipa Kuleš
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Anita Horvatić
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Nicolas Guillemin
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Asier Galan
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Vladimir Mrljak
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Mangesh Bhide
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia. and Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia and Institute of Neuroimmunology, Slovakia Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
44
|
Maruyama SR, Garcia GR, Teixeira FR, Brandão LG, Anderson JM, Ribeiro JMC, Valenzuela JG, Horackova J, Veríssimo CJ, Katiki LM, Banin TM, Zangirolamo AF, Gardinassi LG, Ferreira BR, de Miranda-Santos IKF. Mining a differential sialotranscriptome of Rhipicephalus microplus guides antigen discovery to formulate a vaccine that reduces tick infestations. Parasit Vectors 2017; 10:206. [PMID: 28446245 PMCID: PMC5406933 DOI: 10.1186/s13071-017-2136-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 04/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ticks cause massive damage to livestock and vaccines are one sustainable substitute for the acaricides currently heavily used to control infestations. To guide antigen discovery for a vaccine that targets the gamut of parasitic strategies mediated by tick saliva and enables immunological memory, we exploited a transcriptome constructed from salivary glands from all stages of Rhipicephalus microplus ticks feeding on genetically tick-resistant and susceptible bovines. RESULTS Different levels of host anti-tick immunity affected gene expression in tick salivary glands; we thus selected four proteins encoded by genes weakly expressed in ticks attempting to feed on resistant hosts or otherwise abundantly expressed in ticks fed on susceptible hosts; these sialoproteins mediate four functions of parasitism deployed by male ticks and that do not induce antibodies in naturally infected, susceptible bovines. We then evaluated in tick-susceptible heifers an alum-adjuvanted vaccine formulated with recombinant proteins. Parasite performance (i.e. weight and numbers of females finishing their parasitic cycle) and titres of antigen-specific antibodies were significantly reduced or increased, respectively, in vaccinated versus control heifers, conferring an efficacy of 73.2%; two of the antigens were strong immunogens, rich in predicted T-cell epitopes and challenge infestations boosted antibody responses against them. CONCLUSION Mining sialotranscriptomes guided by the immunity of tick-resistant hosts selected important targets and infestations boosted immune memory against salivary antigens.
Collapse
Affiliation(s)
- Sandra R Maruyama
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Gustavo R Garcia
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Felipe R Teixeira
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Lucinda G Brandão
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.,LGB: Faculdade de Tecnologia de Araçatuba, Araçatuba, SP, 16052045, Brazil
| | - Jennifer M Anderson
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20852, USA
| | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20852, USA
| | - Jesus G Valenzuela
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20852, USA
| | - Jana Horackova
- Faculty of Biological Sciences, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | | | - Luciana M Katiki
- São Paulo Institute of Animal Science, Nova Odessa, SP, 13460-000, Brazil
| | - Tamy M Banin
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Amanda F Zangirolamo
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Luiz G Gardinassi
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.,LGG: Division of Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Beatriz R Ferreira
- Ribeirão Preto School of Nursing, University of São Paulo, Ribeirão Preto, SP, 14049-902, Brazil
| | - Isabel K F de Miranda-Santos
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
45
|
Rangel CK, Parizi LF, Sabadin GA, Costa EP, Romeiro NC, Isezaki M, Githaka NW, Seixas A, Logullo C, Konnai S, Ohashi K, da Silva Vaz I. Molecular and structural characterization of novel cystatins from the taiga tick Ixodes persulcatus. Ticks Tick Borne Dis 2017; 8:432-441. [PMID: 28174118 DOI: 10.1016/j.ttbdis.2017.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/27/2017] [Accepted: 01/27/2017] [Indexed: 11/19/2022]
Abstract
Cystatins are cysteine peptidase inhibitors that in ticks mediate processes such as blood feeding and digestion. The ixodid tick Ixodes persulcatus is endemic to the Eurasia, where it is the principal vector of Lyme borreliosis. To date, no I. persulcatus cystatin has been characterized. In the present work, we describe three novel cystatins from I. persulcatus, named JpIpcys2a, JpIpcys2b and JpIpcys2c. In addition, the potential of tick cystatins as cross-protective antigens was evaluated by vaccination of hamsters using BrBmcys2c, a cystatin from Rhipicephalus microplus, against I. persulcatus infestation. Sequence analysis showed that motifs that are characteristic of cystatins type 2 are fully conserved in JpIpcys2b, while mutations are present in both JpIpcys2a and JpIpcys2c. Protein-protein docking simulations further revealed that JpIpcys2a, JpIpcys2b and JpIpcys2c showed conserved binding sites to human cathepsins L, all of them covering the active site cleft. Cystatin transcripts were detected in different I. persulcatus tissues and instars, showing their ubiquitous expression during I. persulcatus development. Serological analysis showed that although hamsters immunized with BrBmcys2c developed a humoral immune response, this response was not adequate to protect against a heterologous challenge with I. persulcatus adult ticks. The lack of cross-protection provided by BrBmcys2c immunization is perhaps linked to the fact that cystatins cluster into multigene protein families that are expressed differentially and exhibit functional redundancy. How to target such small proteins that are secreted in low quantities remains a challenge in the development of suitable anti-tick vaccine antigens.
Collapse
Affiliation(s)
- Carolina K Rangel
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre 91501-970, RS, Brazil
| | - Luís F Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre 91501-970, RS, Brazil; Laboratory of Infectious Diseases, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, 060-0818, Sapporo, Hokkaido, Japan
| | - Gabriela A Sabadin
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre 91501-970, RS, Brazil
| | - Evenilton P Costa
- Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacases, 28035-200, RJ, Brazil
| | - Nelilma C Romeiro
- LICC-Laboratório Integrado de Computação Científica-Universidade Federal do Rio de Janeiro-Campus Macaé, Macaé, 27901-000, RJ, Brazil
| | - Masayoshi Isezaki
- Laboratory of Infectious Diseases, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, 060-0818, Sapporo, Hokkaido, Japan
| | - Naftaly W Githaka
- Laboratory of Infectious Diseases, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, 060-0818, Sapporo, Hokkaido, Japan
| | - Adriana Seixas
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite, 245, Porto Alegre 90050-170, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil
| | - Carlos Logullo
- Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacases, 28035-200, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, 060-0818, Sapporo, Hokkaido, Japan
| | - Kazuhiko Ohashi
- Laboratory of Infectious Diseases, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, 060-0818, Sapporo, Hokkaido, Japan
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre 91501-970, RS, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil.
| |
Collapse
|
46
|
Olds CL, Mwaura S, Odongo DO, Scoles GA, Bishop R, Daubenberger C. Induction of humoral immune response to multiple recombinant Rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission. Parasit Vectors 2016; 9:484. [PMID: 27589998 PMCID: PMC5010713 DOI: 10.1186/s13071-016-1774-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/25/2016] [Indexed: 11/22/2022] Open
Abstract
Background Rhipicephalus appendiculatus is the primary vector of Theileria parva, the etiological agent of East Coast fever (ECF), a devastating disease of cattle in sub-Saharan Africa. We hypothesized that a vaccine targeting tick proteins that are involved in attachment and feeding might affect feeding success and possibly reduce tick-borne transmission of T. parva. Here we report the evaluation of a multivalent vaccine cocktail of tick antigens for their ability to reduce R. appendiculatus feeding success and possibly reduce tick-transmission of T. parva in a natural host-tick-parasite challenge model. Methods Cattle were inoculated with a multivalent antigen cocktail containing recombinant tick protective antigen subolesin as well as two additional R. appendiculatus saliva antigens: the cement protein TRP64, and three different histamine binding proteins. The cocktail also contained the T. parva sporozoite antigen p67C. The effect of vaccination on the feeding success of nymphal and adult R. appendiculatus ticks was evaluated together with the effect on transmission of T. parva using a tick challenge model. Results To our knowledge, this is the first evaluation of the anti-tick effects of these antigens in the natural host-tick-parasite combination. In spite of evidence of strong immune responses to all of the antigens in the cocktail, vaccination with this combination of tick and parasite antigens did not appear to effect tick feeding success or reduce transmission of T. parva. Conclusion The results of this study highlight the importance of early evaluation of anti-tick vaccine candidates in biologically relevant challenge systems using the natural tick-host-parasite combination. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1774-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cassandra L Olds
- International Livestock Research Institute, Box 30709, Nairobi, 00100, Kenya. .,Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland. .,University of Basel, Petersplatz 1, CH-4003, Basel, Switzerland.
| | - Stephen Mwaura
- International Livestock Research Institute, Box 30709, Nairobi, 00100, Kenya
| | - David O Odongo
- International Livestock Research Institute, Box 30709, Nairobi, 00100, Kenya.,School of Biological Sciences, University of Nairobi, P.O Box 30197, G.P.O, Nairobi, Kenya
| | - Glen A Scoles
- USDA Agricultural Research Service, Animal Disease Research Unit, Pullman, WA, 99164-6630, USA
| | - Richard Bishop
- International Livestock Research Institute, Box 30709, Nairobi, 00100, Kenya
| | - Claudia Daubenberger
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, CH-4003, Basel, Switzerland
| |
Collapse
|
47
|
Suarez M, Rubi J, Pérez D, Cordova V, Salazar Y, Vielma A, Barrios F, Gil CA, Segura N, Carrillo Y, Cartaya R, Palacios M, Rubio E, Escalona C, Ramirez RC, Baker RB, Machado H, Sordo Y, Bermudes J, Vargas M, Montero C, Cruz A, Puente P, Rodriguez JL, Mantilla E, Oliva O, Smith E, Castillo A, Ramos B, Ramirez Y, Abad Z, Morales A, Gonzalez EM, Hernandez A, Ceballo Y, Callard D, Cardoso A, Navarro M, Gonzalez JL, Pina R, Cueto M, Borroto C, Pimentel E, Carpio Y, Estrada MP. High impact and effectiveness of Gavac™ vaccine in the national program for control of bovine ticks Rhipicephalus microplus in Venezuela. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis. PLoS Negl Trop Dis 2016; 10:e0004541. [PMID: 27027307 PMCID: PMC4814110 DOI: 10.1371/journal.pntd.0004541] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/23/2016] [Indexed: 11/26/2022] Open
Abstract
Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen multiplication and promote survival, facilitating pathogen transmission. Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) are zoonotic pathogens representing a serious health problem for humans and animals worldwide. The life cycle of mycobacteria is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar are natural reservoir hosts for MTBC and a model for mycobacterial infections and tuberculosis. The results of this study broaden our understanding of the molecular epidemiology of zoonotic tuberculosis and fill important gaps in knowledge of this topic. The results suggested that mycobacteria manipulate host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen multiplication and promote survival, facilitating pathogen transmission. As previously reported in other obligate intracellular bacteria, host-mycobacteria interactions probably reflect a co-evolutionary process in which pathogens evolved mechanisms to subvert host response to establish infection, but hosts also evolved mechanisms to limit pathogen infection and promote survival. Subsequently, mycobacteria benefit from host survival by increasing the probability for transmission to continue their life cycle. These results provide relevant information to develop tools to evaluate risks for tuberculosis caused by MTBC and for disease control in humans and animals.
Collapse
|
49
|
Kim TK, Radulovic Z, Mulenga A. Target validation of highly conserved Amblyomma americanum tick saliva serine protease inhibitor 19. Ticks Tick Borne Dis 2015; 7:405-14. [PMID: 26746129 DOI: 10.1016/j.ttbdis.2015.12.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/20/2015] [Accepted: 12/21/2015] [Indexed: 12/27/2022]
Abstract
Amblyomma americanum tick serine protease inhibitor (serpin, AAS) 19, is a highly conserved protein that is characterized by its functional domain being 100% conserved across tick species. We also reported that AAS19 was an immunogenic tick saliva protein with anti-haemostatic functions and an inhibitor of trypsin-like proteases including five of the eight serine protease factors in the blood clotting cascade. In this study the goal was to validate the importance of AAS19 in A. americanum tick physiology, assess immunogenicity and investigate tick vaccine efficacy of yeast-expressed recombinant (r) AAS19. We confirm that AAS19 is important to A. americanum fitness and blood meal feeding. AAS19 mRNA disruption by RNAi silencing caused ticks to obtain blood meals that were 50% smaller than controls, and treated ticks being morphologically deformed with 100% of the deformed ticks dying in incubation. We show that rAAS19 is highly immunogenic in that two 500 μg inoculations mixed with TiterMax Gold adjuvant provoked antibody titers of more than 1:320,000 that specifically reacted with native AAS19 in unfed and partially fed tick tissue. Since AAS19 is injected into animals during tick feeding, we challenge infested immunized rabbits twice to test if tick infestations of immunized rabbits could act as booster. While in the first infestation significantly smaller tick blood meals were observed on one of the two immunized rabbits, smaller blood meals were observed on both rabbits, but 60% of ticks that engorged on immunized rabbits in the second infestation failed to lay eggs. It is notable that ticks fed faster on immunized animals despite obtaining smaller blood meals. We conclude that rAAS19 is a potential component of cocktail tick vaccine.
Collapse
Affiliation(s)
- Tae K Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Zeljko Radulovic
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
50
|
McCooke JK, Guerrero FD, Barrero RA, Black M, Hunter A, Bell C, Schilkey F, Miller RJ, Bellgard MI. The mitochondrial genome of a Texas outbreak strain of the cattle tick, Rhipicephalus (Boophilus) microplus, derived from whole genome sequencing Pacific Biosciences and Illumina reads. Gene 2015; 571:135-41. [DOI: 10.1016/j.gene.2015.06.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 05/14/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
|