1
|
Non-Human Primate Malaria Infections: A Review on the Epidemiology in Malaysia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137888. [PMID: 35805545 PMCID: PMC9265734 DOI: 10.3390/ijerph19137888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023]
Abstract
Malaria remains a public health problem in many parts of the world, including Malaysia. Although Malaysia has been recognized as one of the countries free from indigenous human malaria since 2018, the rising trend of zoonotic malaria, particularly Plasmodium knowlesi cases, poses a threat to public health and is of great concern to the country’s healthcare system. We reviewed previously scattered information on zoonotic malaria infections in both Peninsular Malaysia and Malaysian Borneo to determine the epidemiology and distribution of emerging zoonotic malaria infections. Given the high prevalence of zoonotic malaria in Malaysia, efforts should be made to detect zoonotic malaria in humans, mosquito vectors, and natural hosts to ensure the success of the National Malaria Elimination Strategic Plan.
Collapse
|
2
|
Abstract
SUMMARYThe study of malaria in the laboratory relies on either thein vitroculture of human parasites, or the use of non-human malaria parasites in laboratory animals. In this review, we address the use of non-human primate malaria parasite species (NHPMPs) in laboratory research. We describe the features of the most commonly used NHPMPs, review their contribution to our understanding of malaria to date, and discuss their potential contribution to future studies.
Collapse
|
3
|
Madukaku CU, Chimezie OM, Chima NG, Hope O, Simplicius DIN. Assessment of the haematological profile of children with malaria parasitaemia treated with three different artemisinin-based combination therapies. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2015. [DOI: 10.1016/s2222-1808(15)60813-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Zhan XY, Wang N, Liu G, Qin L, Xu W, Zhao S, Qin L, Chen X. Plasmodium infection reduces the volume of the viral reservoir in SIV-infected rhesus macaques receiving antiretroviral therapy. Retrovirology 2014; 11:112. [PMID: 25487036 PMCID: PMC4269176 DOI: 10.1186/s12977-014-0112-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/24/2014] [Indexed: 12/21/2022] Open
Abstract
Background Previous studies indicated that Plasmodium infection activates the immune system, including memory CD4+ T cells, which constitute the reservoir of human immunodeficiency virus type-1 (HIV-1). Therefore, we postulated that co-infection with malaria might activate the reservoir of HIV-1. To test this hypothesis, we used a rhesus macaque model of co-infection with malaria and simian immunodeficiency virus (SIV), along with antiretroviral therapy (ART). Results Our results showed that Plasmodium infection reduced both the replication-competent virus pool in resting CD4+ T cells and the integrated virus DNA (iDNA) load in peripheral blood mononuclear cells in the monkeys. This reduction might be attributable to malaria-mediated activation and apoptotic induction of memory CD4+ T cells. Further studies indicated that histone acetylation and NF-kappaB (NF-κB) activation in resting CD4+ T cells may also play an important role in this reduction. Conclusions The findings of this work expand our knowledge of the interaction between these two diseases. As more HIV-1-infected individuals in malaria-endemic areas receive ART, we should explore whether any of the patients co-infected with Plasmodium experience virologic benefits. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0112-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Yong Zhan
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Luogang District, Guangzhou Science Park, Guangzhou, 510530, Guangdong Province, China.
| | - Nina Wang
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Luogang District, Guangzhou Science Park, Guangzhou, 510530, Guangdong Province, China.
| | - Guangjie Liu
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Luogang District, Guangzhou Science Park, Guangzhou, 510530, Guangdong Province, China.
| | - Limei Qin
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Luogang District, Guangzhou Science Park, Guangzhou, 510530, Guangdong Province, China.
| | - Wanwan Xu
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Luogang District, Guangzhou Science Park, Guangzhou, 510530, Guangdong Province, China.
| | - Siting Zhao
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Luogang District, Guangzhou Science Park, Guangzhou, 510530, Guangdong Province, China.
| | - Li Qin
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Luogang District, Guangzhou Science Park, Guangzhou, 510530, Guangdong Province, China.
| | - Xiaoping Chen
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Luogang District, Guangzhou Science Park, Guangzhou, 510530, Guangdong Province, China.
| |
Collapse
|
5
|
Dudley DM, Karl JA, Creager HM, Bohn PS, Wiseman RW, O'Connor DH. Full-length novel MHC class I allele discovery by next-generation sequencing: two platforms are better than one. Immunogenetics 2014; 66:15-24. [PMID: 24241691 PMCID: PMC3910708 DOI: 10.1007/s00251-013-0744-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
Abstract
Deep sequencing has revolutionized major histocompatibility complex (MHC) class I analysis of nonhuman primates by enabling high-throughput, economical, and comprehensive genotyping. Full-length MHC class I cDNA sequences, which are required to generate reagents such as MHC-peptide tetramers, cannot be directly obtained by short read deep sequencing. We combined data from two next-generation sequencing platforms to discover novel full-length MHC class I mRNA/cDNA transcripts in Chinese rhesus macaques. We first genotyped macaques by Roche/454 pyrosequencing using a 530-bp amplicon spanning the densely polymorphic exons 2 through 4 of the MHC class I loci that encode the peptide-binding region. We then mapped short paired-end 250 bp Illumina sequence reads spanning the full-length transcript to each 530-bp amplicon at high stringency and used paired-end information to reconstruct full-length allele sequences. We characterized 65 full-length sequences from six Chinese rhesus macaques. Overall, approximately 70 % of the alleles distinguished in these six animals contained new sequence information, including 29 novel transcripts. The flexibility of this approach should make full-length MHC class I allele genotyping accessible for any nonhuman primate population of interest. We are currently optimizing this method for full-length characterization of other highly polymorphic, duplicated loci such as the MHC class II DRB and killer immunoglobulin-like receptors. We anticipate that this method will facilitate rapid expansion and near completion of sequence libraries of polymorphic loci, such as MHC class I, within a few years.
Collapse
Affiliation(s)
- Dawn M. Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Julie A. Karl
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Hannah M. Creager
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Patrick S. Bohn
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Roger W. Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - David H. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| |
Collapse
|
6
|
Karl JA, Bohn PS, Wiseman RW, Nimityongskul FA, Lank SM, Starrett GJ, O’Connor DH. Major histocompatibility complex class I haplotype diversity in Chinese rhesus macaques. G3 (BETHESDA, MD.) 2013; 3:1195-201. [PMID: 23696100 PMCID: PMC3704247 DOI: 10.1534/g3.113.006254] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/14/2013] [Indexed: 12/28/2022]
Abstract
The use of Chinese-origin rhesus macaques (Macaca mulatta) for infectious disease immunity research is increasing despite the relative lack of major histocompatibility complex (MHC) class I immunogenetics information available for this population. We determined transcript-based MHC class I haplotypes for 385 Chinese rhesus macaques from five different experimental cohorts, providing a concise representation of the full complement of MHC class I major alleles expressed by each animal. In total, 123 Mamu-A and Mamu-B haplotypes were defined in the full Chinese rhesus macaque cohort. We then performed an analysis of haplotype frequencies across the experimental cohorts of Chinese rhesus macaques, as well as a comparison against a group of 96 Indian rhesus macaques. Notably, 35 of the 51 Mamu-A and Mamu-B haplotypes observed in Indian rhesus macaques were also detected in the Chinese population, with 85% of the 385 Chinese-origin rhesus macaques expressing at least one of these class I haplotypes. This unexpected conservation of Indian rhesus macaque MHC class I haplotypes in the Chinese rhesus macaque population suggests that immunologic insights originally gleaned from studies using Indian rhesus macaques may be more applicable to Chinese rhesus macaques than previously appreciated and may provide an opportunity for studies of CD8(+) T-cell responses between populations. It may also be possible to extend these studies across multiple species of macaques, as we found evidence of shared ancestral haplotypes between Chinese rhesus and Mauritian cynomolgus macaques.
Collapse
Affiliation(s)
- Julie A. Karl
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715
| | - Patrick S. Bohn
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715
| | - Roger W. Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715
| | | | - Simon M. Lank
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715
| | - Gabriel J. Starrett
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715
| | - David H. O’Connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705
| |
Collapse
|