1
|
Coelho FS, Oliveira MM, Vieira DP, Torres PHM, Moreira ICF, Martins-Duarte ES, Gonçalves IC, Cabanelas A, Pascutti PG, Fragoso SP, Lopes AH. A novel receptor for platelet-activating factor and lysophosphatidylcholine in Trypanosoma cruzi. Mol Microbiol 2021; 116:890-908. [PMID: 34184334 DOI: 10.1111/mmi.14778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 01/12/2023]
Abstract
The lipid mediators, platelet-activating factor (PAF) and lysophosphatidylcholine (LPC), play relevant pathophysiological roles in Trypanosoma cruzi infection. Several species of LPC, including C18:1 LPC, which mimics the effects of PAF, are synthesized by T. cruzi. The present study identified a receptor in T. cruzi, which was predicted to bind to PAF, and found it to be homologous to members of the progestin and adiponectin family of receptors (PAQRs). We constructed a three-dimensional model of the T. cruzi PAQR (TcPAQR) and performed molecular docking to predict the interactions of the TcPAQR model with C16:0 PAF and C18:1 LPC. We knocked out T. cruzi PAQR (TcPAQR) gene and confirmed the identity of the expressed protein through immunoblotting and immunofluorescence assays using an anti-human PAQR antibody. Wild-type and knockout (KO) parasites were also used to investigate the in vitro cell differentiation and interactions with peritoneal mouse macrophages; TcPAQR KO parasites were unable to react to C16:0 PAF or C18:1 LPC. Our data are highly suggestive that PAF and LPC act through TcPAQR in T. cruzi, triggering its cellular differentiation and ability to infect macrophages.
Collapse
Affiliation(s)
- Felipe S Coelho
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio M Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Pedro H M Torres
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabel C F Moreira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Erica S Martins-Duarte
- Departmento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Inês C Gonçalves
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Cabanelas
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro G Pascutti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stenio P Fragoso
- Laboratório de Biologia Molecular e Sistêmica de Tripanossomatídeos, Instituto Carlos Chagas, Curitiba, Brazil
| | - Angela H Lopes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Tavares VDS, de Castro MV, Souza RDSO, Gonçalves IKA, Lima JB, Borges VDM, Araújo-Santos T. Lipid droplets of protozoan parasites: survival and pathogenicity. Mem Inst Oswaldo Cruz 2021; 116:e210270. [PMID: 35195194 PMCID: PMC8851939 DOI: 10.1590/0074-02760210270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/14/2021] [Indexed: 12/04/2022] Open
Abstract
Lipid droplets (LDs; lipid bodies) are intracellular sites of lipid storage and metabolism present in all cell types. Eukaryotic LDs are involved in eicosanoid production during several inflammatory conditions, including infection by protozoan parasites. In parasites, LDs play a role in the acquisition of cholesterol and other neutral lipids from the host. The number of LDs increases during parasite differentiation, and the biogenesis of these organelles use specific signaling pathways involving protein kinases. In addition, LDs are important in cellular protection against lipotoxicity. Recently, these organelles have been implicated in eicosanoid and specialised lipid metabolism. In this article, we revise the main functions of protozoan parasite LDs and discuss future directions in the comprehension of these organelles in the context of pathogen virulence.
Collapse
Affiliation(s)
| | | | | | | | - Jonilson Berlink Lima
- Universidade Federal do Oeste da Bahia, Brasil; Fundação Oswaldo Cruz-Fiocruz, Brasil
| | | | - Théo Araújo-Santos
- Universidade Federal do Oeste da Bahia, Brasil; Fundação Oswaldo Cruz-Fiocruz, Brasil
| |
Collapse
|
3
|
Druggable Targets in Cyclic Nucleotide Signaling Pathways in Apicomplexan Parasites and Kinetoplastids against Disabling Protozoan Diseases in Humans. Int J Mol Sci 2019; 20:ijms20010138. [PMID: 30609697 PMCID: PMC6337498 DOI: 10.3390/ijms20010138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 12/20/2022] Open
Abstract
Cell signaling in eukaryotes is an evolutionarily conserved mechanism to respond and adapt to various environmental changes. In general, signal sensation is mediated by a receptor which transfers the signal to a cascade of effector proteins. The cyclic nucleotides 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic guanosine monophosphate (cGMP) are intracellular messengers mediating an extracellular stimulus to cyclic nucleotide-dependent kinases driving a change in cell function. In apicomplexan parasites and kinetoplastids, which are responsible for a variety of neglected, tropical diseases, unique mechanisms of cyclic nucleotide signaling are currently identified. Collectively, cyclic nucleotides seem to be essential for parasitic proliferation and differentiation. However, there is no a genomic evidence for canonical G-proteins in these parasites while small GTPases and secondary effector proteins with structural differences to host orthologues occur. Database entries encoding G-protein-coupled receptors (GPCRs) are still without functional proof. Instead, signals from the parasite trigger GPCR-mediated signaling in the host during parasite invasion and egress. The role of cyclic nucleotide signaling in the absence of G-proteins and GPCRs, with a particular focus on small GTPases in pathogenesis, is reviewed here. Due to the absence of G-proteins, apicomplexan parasites and kinetoplastids may use small GTPases or their secondary effector proteins and host canonical G-proteins during infection. Thus, the feasibility of targeting cyclic nucleotide signaling pathways in these parasites, will be an enormous challenge for the identification of selective, pharmacological inhibitors since canonical host proteins also contribute to pathogenesis.
Collapse
|
4
|
Mukherjee S, Mukhopadhyay A, Andriani G, Machado FS, Ashton AW, Huang H, Weiss LM, Tanowitz HB. Trypanosoma cruzi invasion is associated with trogocytosis. Microbes Infect 2015; 17:62-70. [PMID: 25448052 PMCID: PMC4302017 DOI: 10.1016/j.micinf.2014.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 01/17/2023]
Abstract
Trogocytosis was originally thought to be restricted to the interaction of cells of the immune system with cancer cells. Such membrane exchanges are probably a general process in cell biology, and membrane exchange has been demonstrated to occur between non-immune cells within an organism. Herein, we report that membrane and protein exchange, consistent with trogocytosis, between Trypanosoma cruzi (both the Brazil and Tulahuen strains) and the mammalian cells it infects. Transfer of labeled membrane patches was monitored by labeling of either parasites or host cells, i.e. human foreskin fibroblasts and rat myoblasts. Trypomastigotes and amastigotes transferred specific surface glycoproteins to the host cells along with membranes. Exchange of membranes between the parasite and host cells occurred during successful invasion. Extracellular amastigotes did not transfer membrane patches and were did not transfer either membranes or proteins to the host cells. Membrane exchange was also found to occur between interacting epimastigotes in cell-free culture and may be important in parasite-parasite interactions as well. Further studies should provide new insights into pathogenesis and provide targets for therapeutic intervention.
Collapse
Affiliation(s)
- Shankar Mukherjee
- Department of Pathology, Albert Einstein College of Medicine, NY, USA.
| | - Aparna Mukhopadhyay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, NY, USA; Department of Physiology, Presidency University, Kolkata, India
| | | | - Fabiana Simão Machado
- Program in Health Sciences, Infectious Diseases and Tropical Medicine/Interdisciplinary, Laboratory of Medical Investigation, Faculty of Medicine, and the Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anthony W Ashton
- Division of Perinatal Research, Kolling Institute of Medical Research, Royal North Shore Hospital, St. Leonards, N.S.W., Australia
| | - Huan Huang
- Department of Pathology, Albert Einstein College of Medicine, NY, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, NY, USA; Department of Medicine, Albert Einstein College of Medicine, NY, USA
| | - Herbert B Tanowitz
- Department of Pathology, Albert Einstein College of Medicine, NY, USA; Department of Medicine, Albert Einstein College of Medicine, NY, USA.
| |
Collapse
|
5
|
Moreno-Rodríguez A, Salazar-Schettino PM, Bautista JL, Hernández-Luis F, Torrens H, Guevara-Gómez Y, Pina-Canseco S, Torres MB, Cabrera-Bravo M, Martinez CM, Pérez-Campos E. In vitro antiparasitic activity of new thiosemicarbazones in strains of Trypanosoma cruzi. Eur J Med Chem 2014; 87:23-29. [PMID: 25238291 DOI: 10.1016/j.ejmech.2014.09.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 12/22/2022]
Abstract
In this study thiosemicarbazones derivatives of 5-[(trifluoromethyl)phenylthio]-2-furaldehyde were synthesized and evaluated in terms of their efficiency in challenging the growth of epimastigote forms of Trypanosoma cruzi, the etiological agent of Chagas' disease. A number of compounds were synthesized from 5-bromo-2-furfuraldehyde using nucleophilic aromatic substitution, with a series of trifluoromethyl thiolates, followed by condensation reactions with thiosemicarbazide. Their molecular structures were determined by (1)H, (13)C and (19)F NMR, MS and IR spectroscopy. When tested with T. cruzi, they showed a stronger reaction, similar to nifurtimox and benznidazole, with the 5-[nitro-4-(trifluoromethyl)phenyltio]-2-furaldehyde thiosemicarbazone (compound 4) showing the highest antiparasitic activity. This improved activity may be explained due to the nitro group present in the molecule, which potentiates its activity. The thiosemicarbazone derivatives in this study showed no apoptosis in platelets or monocytes, nor did they induce platelet activation. The trypanocidal activity of these substances represents a good starting point for a medicinal chemistry program aimed at therapy for Chagas' disease.
Collapse
Affiliation(s)
- Adriana Moreno-Rodríguez
- Facultad de Ciencias Químicas, Área de Inorgánica, UABJO, Oaxaca 68120, Mexico; Unidad de Bioquímica e Inmunología, ITO-UNAM, Oaxaca 68030, Mexico
| | | | - Juan Luis Bautista
- Facultad de Ciencias Químicas, Área de Inorgánica, UABJO, Oaxaca 68120, Mexico
| | | | - Hugo Torrens
- Facultad de Química, UNAM, México DF 04510, Mexico
| | - Yolanda Guevara-Gómez
- Facultad de Medicina, Departamento de Microbiología y Parasitología, UNAM, México DF 04510, Mexico
| | | | - Martha Bucio Torres
- Facultad de Medicina, Departamento de Microbiología y Parasitología, UNAM, México DF 04510, Mexico
| | - Margarita Cabrera-Bravo
- Facultad de Medicina, Departamento de Microbiología y Parasitología, UNAM, México DF 04510, Mexico
| | | | - Eduardo Pérez-Campos
- Unidad de Bioquímica e Inmunología, ITO-UNAM, Oaxaca 68030, Mexico; Centro de Investigación Facultad de Medicina UNAM-UABJO, Oaxaca CP68020, Mexico.
| |
Collapse
|
6
|
Abstract
Chagas heart disease, the leading cause of heart failure in Latin America, results from infection with the parasite Trypanosoma cruzi. Although T. cruzi disseminates intravascularly, how the parasite contends with the endothelial barrier to escape the bloodstream and infect tissues has not been described. Understanding the interaction between T. cruzi and the vascular endothelium, likely a key step in parasite dissemination, could inform future therapies to interrupt disease pathogenesis. We adapted systems useful in the study of leukocyte transmigration to investigate both the occurrence of parasite transmigration and its determinants in vitro. Here we provide the first evidence that T. cruzi can rapidly migrate across endothelial cells by a mechanism that is distinct from productive infection and does not disrupt monolayer integrity or alter permeability. Our results show that this process is facilitated by a known modulator of cellular infection and vascular permeability, bradykinin, and can be augmented by the chemokine CCL2. These represent novel findings in our understanding of parasite dissemination, and may help identify new therapeutic strategies to limit the dissemination of the parasite.
Collapse
|