1
|
Sun H, Jia F, Zhao W, Zhou Z, Li C, Wang J, Yao Y. Population Genetics Reveals That the Western Tianshan Mountains Populations of Agrilus mali (Coleoptera: Buprestidae) May Have Not been Recently Introduced. Front Genet 2022; 13:857866. [PMID: 35401710 PMCID: PMC8988243 DOI: 10.3389/fgene.2022.857866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Agrilus mali Matsumura is a wood-boring beetle that aggressively attacks species of the genus Malus, that has recently caused serious damage to the wild apple tree M. sieversii (Lebed.) in the western Tianshan Mountains in Xinjiang. It was first detected there in the early 1990s and spread rapidly, being thus considered a regional invasive pest. To explore the possible outbreak mechanism of the local population and characterize the genetic differentiation of A. mali across different regions of China, we used three mitochondrial genes (COI, COII, and CytB) to investigate the genetic diversity and genetic structure of 17 A. mali populations containing 205 individuals collected from five Chinese provinces. Among them, nine populations were from the western Tianshan Mountains. Ultimately, of the 136 pairwise Fst comparisons, 99 showed high genetic differentiation among overall populations, and Tianshan populations exhibited significant differentiation with most of the non-Tianshan populations. Furthermore, A. mali populations represented relatively abundant haplotypes (54 haplotypes). Nine populations from the Tianshan Mountains showed 32 haplotypes (26 of which were unique), displaying relatively high genetic diversity. Additionally, the Mantel test revealed population genetic differentiation among either overall populations or the Tianshan Mountains populations, likely caused by geographical isolation. Phylogenic relationships showed that all populations clustered into three clades, and Tianshan Mountains populations, including CY, occupied one of the three clades. These results suggest that A. mali in the western Tianshan region has possibly been present in the area for a long period, and may not have been introduced recently. Highly frequent gene flows within Tianshan populations are possibly caused by human activities and may enhance the adaptability of A. mali along the western Tianshan Mountains, leading to periodic outbreaks. These findings enhance our understanding of jewel beetle population genetics and provide valuable information for pest management.
Collapse
Affiliation(s)
- Huiquan Sun
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Feiran Jia
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Wenxia Zhao
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Zhongfu Zhou
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Chengjin Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Jianjun Wang
- Liaoning Academy of Forest Science, Shenyang, China
| | - Yanxia Yao
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- *Correspondence: Yanxia Yao,
| |
Collapse
|
2
|
Garjito TA, Widiarti W, Hidajat MC, Handayani SW, Mujiyono M, Prihatin MT, Ubaidillah R, Sudomo M, Satoto TBT, Manguin S, Gavotte L, Frutos R. Homogeneity and Possible Replacement of Populations of the Dengue Vectors Aedes aegypti and Aedes albopictus in Indonesia. Front Cell Infect Microbiol 2021; 11:705129. [PMID: 34307199 PMCID: PMC8294392 DOI: 10.3389/fcimb.2021.705129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Currently, Aedes aegypti, the principal vector of dengue virus in Indonesia, has spread throughout the archipelago. Aedes albopictus is also present. Invasion and high adaptability of the Aedes mosquitoes to all of these areas are closely related to their ecology and biology. Between June 2016 and July 2017, larval and adult mosquito collections were conducted in 43 locations in 25 provinces of Indonesia using standardized sampling methods for dengue vector surveillance. The samples collected were analyzed for polymorphism and phylogenetic relationship using the mitochondrial cox1 gene and the nuclear ribosomal internal transcribed spacer 2 (ITS2). Almost all Ae. aegypti samples collected in this study (89%) belonged to the same haplotype. A similar situation is observed with the nuclear ITS2 marker. Populations of Ae. aegypti characterized few years ago were genetically different. A closely related observation was made with Aedes albopictus for which the current populations are different from those described earlier. Ae. aegypti populations were found to be highly homogenous all over Indonesia with all samples belonging to the same maternal lineage. Although difficult to demonstrate formally, there is a possibility of population replacement. Although to a lower extent, a similar conclusion was reached with Ae. albopictus.
Collapse
Affiliation(s)
- Triwibowo Ambar Garjito
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, The Ministry of Health of Indonesia, Salatiga, Indonesia
| | - Widiarti Widiarti
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, The Ministry of Health of Indonesia, Salatiga, Indonesia
| | - Muhammad Choirul Hidajat
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, The Ministry of Health of Indonesia, Salatiga, Indonesia.,Doctoral School of Medical Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Sri Wahyuni Handayani
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, The Ministry of Health of Indonesia, Salatiga, Indonesia
| | - Mujiyono Mujiyono
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, The Ministry of Health of Indonesia, Salatiga, Indonesia
| | - Mega Tyas Prihatin
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, The Ministry of Health of Indonesia, Salatiga, Indonesia
| | - Rosichon Ubaidillah
- Research Center for Biology, Indonesian Institute of Sciences, Cibinong, Indonesia
| | - Mohammad Sudomo
- National Institute of Health Research and Development, The Ministry of Health of Indonesia, Jakarta, Indonesia
| | - Tri Baskoro Tunggul Satoto
- Department of Parasitology, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - Sylvie Manguin
- HydroSciences Montpellier (UMR-HSM), IRD, CNRS, Montpellier, France
| | | | | |
Collapse
|
3
|
Md Naim D, Kamal NZM, Mahboob S. Population structure and genetic diversity of Aedes aegypti and Aedes albopictus in Penang as revealed by mitochondrial DNA cytochrome oxidase I. Saudi J Biol Sci 2020; 27:953-967. [PMID: 32127775 PMCID: PMC7042630 DOI: 10.1016/j.sjbs.2020.01.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 11/24/2022] Open
Abstract
The population genetics study is crucial as it helps in understanding the epidemiological aspects of dengue and help improving a vector control measures. This research aims to investigate the population genetics structure of two common species of Aedes mosquitoes in Penang; Aedes aegypti and Aedes albopictus using Cytochrome Oxidase I (COI) mitochondrial DNA (mtDNA) marker. Molecular investigations were derived from 440 bp and 418 bp mtDNA COI on 125 and 334 larvae of Aedes aegypti and Aedes albopictus respectively, from 32 locations in Penang. All samples were employed in the BLASTn for species identification. The haplotype diversity, nucleotide diversity, neutrality test and mismatch distribution analysis were conducted in DnaSP version 5.10.1. AMOVA analysis was conducted in ARLEQUIN version 3.5 and the phylogenetic reconstructions based on maximum likelihood (ML) and neighbor-joining (NJ) methods were implemented in MEGA X. The relationships among haplotypes were further tested by creating a minimum spanning tree using Network version 4.6.1. All samples were genetically identified and clustered into six distinct species. Among the species, Ae. albopictus was the most abundant (67.2%), followed by Ae. aegypti (25.2%) and the rest were counted for Culex sp. and Toxorhynchites sp. Both Ae. aegypti and Ae. albopictus show low nucleotide diversity (π) and high haplotype diversity (h), while the neutrality test shows a negative value in most of the population for both species. There are a total of 39 and 64 haplotypes recorded for Ae. aegypti and Ae. albopictus respectively. AMOVA analysis revealed that most of the variation occurred within population for both species. Mismatch distribution analysis showed bimodal characteristic of population differentiation for Ae. aegypti but Ae. albopictus showed unimodal characteristics of population differentiation. Genetic distance based on Tamura-Nei parameter showed low genetic divergent within population and high genetic divergent among population for both species. The maximum likelihood tree showed no obvious pattern of population genetic structure for both Ae. aegypti and Ae. albopictus from Penang and a moderate to high bootstrap values has supported this conclusion. The minimum spanning network for Ae. aegypti and Ae. albopictus showed five and three dominant haplotypes respectively, which indicates a mixture of haplotypes from the regions analysed. This study revealed that there is no population genetic structure exhibited by both Ae. aegypti and Ae. albopictus in Penang. Mutation has occurred rapidly in both species and this will be challenging in controlling the populations. However, further analysis needed to confirm this statement.
Collapse
Affiliation(s)
- Darlina Md Naim
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| | | | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Ruiling Z, Tongkai L, Zhendong H, Guifen Z, Dezhen M, Zhong Z. Genetic analysis of Aedes albopictus (Diptera, Culicidae) reveals a deep divergence in the original regions. Acta Trop 2018; 185:27-33. [PMID: 29729282 DOI: 10.1016/j.actatropica.2018.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 04/28/2018] [Accepted: 05/01/2018] [Indexed: 12/28/2022]
Abstract
Aedes albopictus has been described as one of the 100 worst invasive species in the world. This mosquito originated from southeastern Asia and currently has a widespread presence in every continent except Antarctica. The rapid global expansion of Ae. albopictus has increased public health concerns about arbovirus-related disease threats. Adaptation, adaption to novel areas is a biological challenge for invasive species, and the underlying processes can be studied at the molecular level. In this study, genetic analysis was performed using mitochondrial gene NADH dehydrogenase subunit 5 (ND5), based on both native and invasive populations. Altogether, 38 haplotypes were detected with H1 being the dominant and widely distributed in 21 countries. Both phylogenetic and network analyses supported the existence of five clades, with only clade I being involved in the subsequent global spread of Asian tiger mosquito. The other four clades (II, III, IV and V) were restricted to their original regions, which could be ancestral populations that had diverged from clade I in the early stages of evolution. Neutrality tests suggested that most of the populations had experienced recent expansion. Analysis of molecular variance and the population-pair statistic FST revealed that most populations lacked genetic structure, while high variability was detected within populations. Multiple and independent human-mediated introductions may explain the present results.
Collapse
|
5
|
Sherpa S, Rioux D, Pougnet-Lagarde C, Després L. Genetic diversity and distribution differ between long-established and recently introduced populations in the invasive mosquito Aedes albopictus. INFECTION GENETICS AND EVOLUTION 2017; 58:145-156. [PMID: 29275191 DOI: 10.1016/j.meegid.2017.12.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/04/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022]
Abstract
The Asian tiger mosquito Aedes albopictus, native to South-eastern Asia, is currently the most invasive mosquito in the world. The spatio-temporal dynamics of its expansion through the genetic characterization of invasive populations has been challenged so far by the limited number of genetic markers variable enough to infer the genetic structure in recently invaded areas. Here we applied the double-digest Restriction-site Associated DNA sequencing method (ddRADseq) to mosquitoes collected in two invaded areas, Reunion Island (12 localities) and Europe (18 localities). Analyses of genetic diversity, Bayesian clustering, Maximum Likelihood inference and isolation-by-distance tests based on 1561 genome-wide distributed Single Nucleotide Polymorphisms (SNPs) revealed that Reunion Island and Europe form two distinct genetic clusters, supporting no contemporary gene flow and suggesting two different and independent invasion histories. Long-established populations (Reunion Island) were more genetically diverse than recently introduced European populations. The largest part of genetic variance was found at the intra-individual level (>85%) and most FIS values were positive, suggesting inbreeding at the local scale. The two invaded areas showed contrasting patterns of genetic structure. Significant isolation-by-distance was found among Reunion Island populations, suggesting that these populations are at the drift-migration equilibrium. In contrast, long-distance human-assisted transport is probably the main dispersal mechanism in Europe.
Collapse
Affiliation(s)
- Stéphanie Sherpa
- Laboratoire d'Ecologie Alpine, CNRS UMR 5553, Université Grenoble Alpes, Grenoble, France
| | - Delphine Rioux
- Laboratoire d'Ecologie Alpine, CNRS UMR 5553, Université Grenoble Alpes, Grenoble, France
| | | | - Laurence Després
- Laboratoire d'Ecologie Alpine, CNRS UMR 5553, Université Grenoble Alpes, Grenoble, France.
| |
Collapse
|
6
|
Schmidt TL, Rašić G, Zhang D, Zheng X, Xi Z, Hoffmann AA. Genome-wide SNPs reveal the drivers of gene flow in an urban population of the Asian Tiger Mosquito, Aedes albopictus. PLoS Negl Trop Dis 2017; 11:e0006009. [PMID: 29045401 PMCID: PMC5662242 DOI: 10.1371/journal.pntd.0006009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/30/2017] [Accepted: 10/04/2017] [Indexed: 11/24/2022] Open
Abstract
Aedes albopictus is a highly invasive disease vector with an expanding worldwide distribution. Genetic assays using low to medium resolution markers have found little evidence of spatial genetic structure even at broad geographic scales, suggesting frequent passive movement along human transportation networks. Here we analysed genetic structure of Aedes albopictus collected from 12 sample sites in Guangzhou, China, using thousands of genome-wide single nucleotide polymorphisms (SNPs). We found evidence for passive gene flow, with distance from shipping terminals being the strongest predictor of genetic distance among mosquitoes. As further evidence of passive dispersal, we found multiple pairs of full-siblings distributed between two sample sites 3.7 km apart. After accounting for geographical variability, we also found evidence for isolation by distance, previously undetectable in Ae. albopictus. These findings demonstrate how large SNP datasets and spatially-explicit hypothesis testing can be used to decipher processes at finer geographic scales than formerly possible. Our approach can be used to help predict new invasion pathways of Ae. albopictus and to refine strategies for vector control that involve the transformation or suppression of mosquito populations. Aedes albopictus, the Asian Tiger Mosquito, is a highly invasive disease vector with a growing global distribution. Designing strategies to prevent invasion and to control Ae. albopictus populations in invaded regions requires knowledge of how Ae. albopictus disperses. Studies comparing Ae. albopictus populations have found little evidence of genetic structure even between distant populations, suggesting that dispersal along human transportation networks is common. However, a more specific understanding of dispersal processes has been unavailable due to an absence of studies using high-resolution genetic markers. Here we present a study using high-resolution markers, which investigates genetic structure among 152 Ae. albopictus from Guangzhou, China. We found that human transportation networks, particularly shipping terminals, had an influence on genetic structure. We also found genetic distance was correlated with geographical distance, the first such observation in this species. This study demonstrates how high-resolution markers can be used to investigate ecological processes that may otherwise escape detection. We conclude that strategies for controlling Ae. albopictus will have to consider both passive reinvasion along human transportation networks and active reinvasion from neighbouring regions.
Collapse
Affiliation(s)
- Thomas L Schmidt
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Gordana Rašić
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Dongjing Zhang
- Department of Parasitology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Diseases, Guangzhou, Guangdong, China
| | - Xiaoying Zheng
- Department of Parasitology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Diseases, Guangzhou, Guangdong, China
| | - Zhiyong Xi
- Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Diseases, Guangzhou, Guangdong, China.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Ary A Hoffmann
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Goubert C, Henri H, Minard G, Valiente Moro C, Mavingui P, Vieira C, Boulesteix M. High-throughput sequencing of transposable element insertions suggests adaptive evolution of the invasive Asian tiger mosquito towards temperate environments. Mol Ecol 2017; 26:3968-3981. [DOI: 10.1111/mec.14184] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Clement Goubert
- Université de Lyon; Lyon France
- Université Lyon 1; Villeurbanne France
- Laboratoire de Biometrie et Biologie Evolutive; UMR CNRS 5558; Villeurbanne France
- Department of Human Genetics; University of Utah; Salt Lake City UT USA
| | - Helene Henri
- Université de Lyon; Lyon France
- Université Lyon 1; Villeurbanne France
- Laboratoire de Biometrie et Biologie Evolutive; UMR CNRS 5558; Villeurbanne France
| | - Guillaume Minard
- Université de Lyon; Lyon France
- Université Lyon 1; Villeurbanne France
- Ecologie Microbienne; UMR CNRS 5557; UMR INRA 1418; Villeurbanne France
- Department of Biosciences; Metapopulation Research Center; University of Helsinki; Helsinki Finland
| | - Claire Valiente Moro
- Université de Lyon; Lyon France
- Université Lyon 1; Villeurbanne France
- Ecologie Microbienne; UMR CNRS 5557; UMR INRA 1418; Villeurbanne France
| | - Patrick Mavingui
- Université de Lyon; Lyon France
- Université Lyon 1; Villeurbanne France
- Ecologie Microbienne; UMR CNRS 5557; UMR INRA 1418; Villeurbanne France
- UMR PIMIT; INSERM 1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI; Universite de La Reunion; Sainte-Clotilde Reunion
| | - Cristina Vieira
- Université de Lyon; Lyon France
- Université Lyon 1; Villeurbanne France
- Laboratoire de Biometrie et Biologie Evolutive; UMR CNRS 5558; Villeurbanne France
| | - Matthieu Boulesteix
- Université de Lyon; Lyon France
- Université Lyon 1; Villeurbanne France
- Laboratoire de Biometrie et Biologie Evolutive; UMR CNRS 5558; Villeurbanne France
| |
Collapse
|
8
|
Population genetics of the Asian tiger mosquito Aedes albopictus, an invasive vector of human diseases. Heredity (Edinb) 2016; 117:125-34. [PMID: 27273325 PMCID: PMC4981682 DOI: 10.1038/hdy.2016.35] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/24/2016] [Accepted: 04/08/2016] [Indexed: 12/25/2022] Open
Abstract
The Asian tiger mosquito Aedes albopictus is currently one of the most threatening invasive species in the world. Native to Southeast Asia, the species has spread throughout the world in the past 30 years and is now present in every continent but Antarctica. Because it was the main vector of recent Dengue and Chikungunya outbreaks, and because of its competency for numerous other viruses and pathogens such as the Zika virus, A. albopictus stands out as a model species for invasive diseases vector studies. A synthesis of the current knowledge about the genetic diversity of A. albopictus is needed, knowing the interplays between the vector, the pathogens, the environment and their epidemiological consequences. Such resources are also valuable for assessing the role of genetic diversity in the invasive success. We review here the large but sometimes dispersed literature about the population genetics of A. albopictus. We first debate about the experimental design of these studies and present an up-to-date assessment of the available molecular markers. We then summarize the main genetic characteristics of natural populations and synthesize the available data regarding the worldwide structuring of the vector. Finally, we pinpoint the gaps that remain to be addressed and suggest possible research directions.
Collapse
|