1
|
Applied Proteomics in 'One Health'. Proteomes 2021; 9:proteomes9030031. [PMID: 34208880 PMCID: PMC8293331 DOI: 10.3390/proteomes9030031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
‘One Health’ summarises the idea that human health and animal health are interdependent and bound to the health of ecosystems. The purpose of proteomics methodologies and studies is to determine proteins present in samples of interest and to quantify changes in protein expression during pathological conditions. The objectives of this paper are to review the application of proteomics technologies within the One Health concept and to appraise their role in the elucidation of diseases and situations relevant to One Health. The paper develops in three sections. Proteomics Applications in Zoonotic Infections part discusses proteomics applications in zoonotic infections and explores the use of proteomics for studying pathogenetic pathways, transmission dynamics, diagnostic biomarkers and novel vaccines in prion, viral, bacterial, protozoan and metazoan zoonotic infections. Proteomics Applications in Antibiotic Resistance part discusses proteomics applications in mechanisms of resistance development and discovery of novel treatments for antibiotic resistance. Proteomics Applications in Food Safety part discusses the detection of allergens, exposure of adulteration, identification of pathogens and toxins, study of product traits and characterisation of proteins in food safety. Sensitive analysis of proteins, including low-abundant ones in complex biological samples, will be achieved in the future, thus enabling implementation of targeted proteomics in clinical settings, shedding light on biomarker research and promoting the One Health concept.
Collapse
|
2
|
Stryiński R, Łopieńska-Biernat E, Carrera M. Proteomic Insights into the Biology of the Most Important Foodborne Parasites in Europe. Foods 2020; 9:E1403. [PMID: 33022912 PMCID: PMC7601233 DOI: 10.3390/foods9101403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
Foodborne parasitoses compared with bacterial and viral-caused diseases seem to be neglected, and their unrecognition is a serious issue. Parasitic diseases transmitted by food are currently becoming more common. Constantly changing eating habits, new culinary trends, and easier access to food make foodborne parasites' transmission effortless, and the increase in the diagnosis of foodborne parasitic diseases in noted worldwide. This work presents the applications of numerous proteomic methods into the studies on foodborne parasites and their possible use in targeted diagnostics. Potential directions for the future are also provided.
Collapse
Affiliation(s)
- Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Mónica Carrera
- Department of Food Technology, Marine Research Institute (IIM), Spanish National Research Council (CSIC), 36-208 Vigo, Spain
| |
Collapse
|
3
|
A quantitative proteomic and bioinformatics analysis of proteins in metacyclogenesis of Leishmania tropica. Acta Trop 2020; 202:105227. [PMID: 31647897 DOI: 10.1016/j.actatropica.2019.105227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/07/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
Recently there has a growing interest in MS-based analysis on Leishmania for biology study, host-parasite interaction and drug target discovery. The aims of this study were to analyzed protein profiles in the procyclic and metacyclic stages of L. tropica, and investigate their potential role in metacyclogenesis molecular mechanisms. Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) analysis was used to analyze protein profiles in each of procyclic and metacyclic stages. Proteins with a fold change>2 or <0.5 and p < 0.05 were considered to be significantly differentially expressed proteins (DEPs). The DEPs were subjected to gene ontology (GO), KEGG pathway and network analysis using PANTHER and STRING database, respectively. Quantitative real-time PCR of six selected genes validated the proteomic data. We quantified a total of 352 proteins in procyclic and metacyclic cells and 56 differentially expressed proteins (27 up/ 29down-regulated in metacyclic compared to procyclic). On the basis of biological processes in GO, the DEPs were primarily involved in ``metabolic process'' (GO: 0008152) and ``cellular process'' (GO: 0009987). In addition, several enriched GO terms were identified via molecular function, which among them ``catalytic activity'' (GO: 0003824) and ``binding'' (GO: 0005488) were disclosed as top category. The KEGG pathway analysis indicated ``metabolic pathways'' (p-value: 3.80E-08) including 17 genes term as the top pathway in DEPs. These findings bring a new insight in our understanding of the molecular characterization of metacyclogenesis and infective form in L. tropica. Comparative analysis of the proteome of both developmental stages of the L. tropica would help to the identification of proteins candidates for the development of new potential drug targets and vaccines.
Collapse
|
4
|
Chen KY, Lu PJ, Cheng CJ, Jhan KY, Yeh SC, Wang LC. Proteomic analysis of excretory-secretory products from young adults of Angiostrongylus cantonensis. Mem Inst Oswaldo Cruz 2019; 114:e180556. [PMID: 31241649 PMCID: PMC6594673 DOI: 10.1590/0074-02760180556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Angiostrongyliasis is caused by the nematode Angiostrongylus
cantonensis and can lead to eosinophilic meningitis and
meningoencephalitis in humans. The young adult worms play central pathogenic
roles in the central nervous system (CNS); however, the underlying mechanism
is unclear. Excretory-secretory products (ESPs) are good investigation
targets for studying the relationship between a host and its parasite. OBJECTIVES We aimed to profile, identify, and characterise the proteins in the ESPs of
A. cantonensis young adults. METHODS The ESPs of young adult worms were collected from culture medium after
incubation ranging from 24 to 96 h. Proteomic and bioinformatics analyses
were performed to characterise the ESPs. FINDINGS A total of 51 spots were identified, and the highly expressed proteins
included two protein disulphide isomerases, one calreticulin, and three
uncharacterised proteins. Subsequently, approximately 254 proteins were
identified in the ESPs of A. cantonensis young adults via
liquid chromatography-mass spectrometry (LC-MS/MS) analysis, and these were
further classified according to their characteristics and biological
functions. Finally, we identified the immunoreactive proteins from a
reference map of ESPs from A. cantonensis young adults.
Approximately eight proteins were identified, including a protein disulphide
isomerase, a putative aspartic protease, annexin, and five uncharacterised
proteins. The study established and identified protein reference maps for
the ESPs of A. cantonensis young adults. MAIN CONCLUSIONS The identified proteins may be potential targets for the development of
diagnostic or therapeutic agents for human angiostrongyliasis.
Collapse
Affiliation(s)
- Kuang-Yao Chen
- China Medical University, School of Medicine, Department of Parasitology, Taichung, Taiwan.,Chang Gung University, College of Medicine, Department of Parasitology, Taoyuan, Taiwan
| | - Pei-Jhen Lu
- Chang Gung University, College of Medicine, Department of Parasitology, Taoyuan, Taiwan
| | - Chien-Ju Cheng
- Chang Gung University, College of Medicine, Department of Parasitology, Taoyuan, Taiwan
| | - Kai-Yuan Jhan
- Chang Gung University, College of Medicine, Graduate Institute of Biomedical Sciences, Taoyuan, Taiwan
| | - Shih-Chien Yeh
- Chang Gung University, College of Medicine, Department of Parasitology, Taoyuan, Taiwan
| | - Lian-Chen Wang
- Chang Gung University, College of Medicine, Department of Parasitology, Taoyuan, Taiwan.,Chang Gung University, College of Medicine, Graduate Institute of Biomedical Sciences, Taoyuan, Taiwan.,Molecular Infectious Disease Research Centre, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
5
|
She D, Zhang X, Mo Z, Yang G, Shin JW, Chen X, Cui L, Li H. Proteomic Analysis of Differentially Expressed Proteins in Intracranial Angiostrongylus cantonensis Larvae in Permissive and Non-Permissive Hosts. J Parasitol 2017; 103:718-726. [PMID: 28953426 DOI: 10.1645/15-933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Angiostrongylus cantonensis infection can lead to severe neuropathological damage caused by the development of these nematodes in the central nervous system after penetrating the blood-brain barrier. They commonly cause eosinophilic meningitis or meningoencephalitis in non-permissive hosts (e.g., mice). It has been shown that differences exist in the brains of permissive and non-permissive hosts during the larval development of A. cantonensis; however, the mechanism underlying the difference is not completely understood. This study analyzed and characterized the differentially expressed proteins in the intracranial A. cantonensis larvae in rat (ILR) and mouse (ILM) brains by using proteomics. We found that 29 proteins were differentially expressed: 12 of these proteins were highly expressed in ILR, whereas the remaining 17 proteins were highly expressed in ILM. Three protein spots were homologous to the actin-2, actin-1, and disorganized muscle protein 1 (dim-1) of Caenorhabditis elegans. In addition, proteomic analyses revealed that act-1 and act-2 were up-regulated in ILM compared to ILR, whereas dim-1 was down-regulated in ILM. Annotation using gene ontology revealed that act-1, act-2, and dim-1 were mainly associated with adenosine triphosphate (ATP) catabolic processes and ATP binding. Quantitative real-time polymerase chain reaction analyses of act-1 and dim-1 using the first internal transcribed spacers of A. cantonensis 18S ribosomal RNA (rRNA) was consistent with 2-dimensional gel electrophoresis (2-DE) and the sizes of these parasites; ILR was longer and wider than ILM. These results indicate that the differentially expressed proteins dim-1 and act-1 could be related to the development and pathogenicity of A. cantonensis in different hosts.
Collapse
Affiliation(s)
- Dan She
- Department of Pathogen Biology and Experimental Teaching Centre of Preventive Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Key Laboratory for Tropical Disease Research of Guangdong Province, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xin Zhang
- Department of Pathogen Biology and Experimental Teaching Centre of Preventive Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Key Laboratory for Tropical Disease Research of Guangdong Province, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zexun Mo
- Department of Pathogen Biology and Experimental Teaching Centre of Preventive Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Key Laboratory for Tropical Disease Research of Guangdong Province, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Guilan Yang
- Department of Pathogen Biology and Experimental Teaching Centre of Preventive Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Key Laboratory for Tropical Disease Research of Guangdong Province, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jyh-Wei Shin
- Department of Pathogen Biology and Experimental Teaching Centre of Preventive Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Key Laboratory for Tropical Disease Research of Guangdong Province, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoguang Chen
- Department of Pathogen Biology and Experimental Teaching Centre of Preventive Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Key Laboratory for Tropical Disease Research of Guangdong Province, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Liwang Cui
- Department of Pathogen Biology and Experimental Teaching Centre of Preventive Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Key Laboratory for Tropical Disease Research of Guangdong Province, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Hua Li
- Department of Pathogen Biology and Experimental Teaching Centre of Preventive Medicine, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Key Laboratory for Tropical Disease Research of Guangdong Province, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
6
|
Stoltzfus JD, Pilgrim AA, Herbert DR. Perusal of parasitic nematode 'omics in the post-genomic era. Mol Biochem Parasitol 2016; 215:11-22. [PMID: 27887974 DOI: 10.1016/j.molbiopara.2016.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 01/09/2023]
Abstract
The advent of high-throughput, next-generation sequencing methods combined with advances in computational biology and bioinformatics have greatly accelerated discovery within biomedical research. This "post-genomics" era has ushered in powerful approaches allowing one to quantify RNA transcript and protein abundance for every gene in the genome - often for multiple conditions. Herein, we chronicle how the post-genomics era has advanced our overall understanding of parasitic nematodes through transcriptomics and proteomics and highlight some of the important advances made in each major nematode clade. We primarily focus on organisms relevant to human health, given that nematode infections significantly impact disability-adjusted life years (DALY) scores within the developing world, but we also discuss organisms of veterinary importance as well as those used as laboratory models. As such, we envision that this review will serve as a comprehensive resource for those seeking a better understanding of basic parasitic nematode biology as well as those interested in targets for vaccination and pharmacological intervention.
Collapse
Affiliation(s)
- Jonathan D Stoltzfus
- Department of Biology, Millersville University, Millersville, PA, United States.
| | - Adeiye A Pilgrim
- Emory University School of Medicine MD/PhD Program, Atlanta, GA, United States
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
Sperotto RL, Kremer FS, Aires Berne ME, Costa de Avila LF, da Silva Pinto L, Monteiro KM, Caumo KS, Ferreira HB, Berne N, Borsuk S. Proteomic analysis of Toxocara canis excretory and secretory (TES) proteins. Mol Biochem Parasitol 2016; 211:39-47. [PMID: 27638150 DOI: 10.1016/j.molbiopara.2016.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 11/29/2022]
Abstract
Toxocariasis is a neglected disease, and its main etiological agent is the nematode Toxocara canis. Serological diagnosis is performed by an enzyme-linked immunosorbent assay using T. canis excretory and secretory (TES) antigens produced by in vitro cultivation of larvae. Identification of TES proteins can be useful for the development of new diagnostic strategies since few TES components have been described so far. Herein, we report the results obtained by proteomic analysis of TES proteins using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach. TES fractions were separated by one-dimensional SDS-PAGE and analyzed by LC-MS/MS. The MS/MS spectra were compared with a database of protein sequences deduced from the genome sequence of T. canis, and a total of 19 proteins were identified. Classification according to the signal peptide prediction using the SignalP server showed that seven of the identified proteins were extracellular, 10 had cytoplasmic or nuclear localization, while the subcellular localization of two proteins was unknown. Analysis of molecular functions by BLAST2GO showed that the majority of the gene ontology (GO) terms associated with the proteins present in the TES sample were associated with binding functions, including but not limited to protein binding (GO:0005515), inorganic ion binding (GO:0043167), and organic cyclic compound binding (GO:0097159). This study provides additional information about the exoproteome of T. canis, which can lead to the development of new strategies for diagnostics or vaccination.
Collapse
Affiliation(s)
- Rita Leal Sperotto
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - Frederico Schmitt Kremer
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico- UFPel, Pelotas, Brazil
| | | | - Luciana F Costa de Avila
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - Luciano da Silva Pinto
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico- UFPel, Pelotas, Brazil
| | - Karina Mariante Monteiro
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| | - Karin Silva Caumo
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| | - Natália Berne
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - Sibele Borsuk
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico- UFPel, Pelotas, Brazil.
| |
Collapse
|
8
|
Baird FJ, Su X, Aibinu I, Nolan MJ, Sugiyama H, Otranto D, Lopata AL, Cantacessi C. The Anisakis Transcriptome Provides a Resource for Fundamental and Applied Studies on Allergy-Causing Parasites. PLoS Negl Trop Dis 2016; 10:e0004845. [PMID: 27472517 PMCID: PMC4966942 DOI: 10.1371/journal.pntd.0004845] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/22/2016] [Indexed: 11/18/2022] Open
Abstract
Background Food-borne nematodes of the genus Anisakis are responsible for a wide range of illnesses (= anisakiasis), from self-limiting gastrointestinal forms to severe systemic allergic reactions, which are often misdiagnosed and under-reported. In order to enhance and refine current diagnostic tools for anisakiasis, knowledge of the whole spectrum of parasite molecules transcribed and expressed by this parasite, including those acting as potential allergens, is necessary. Methodology/Principal Findings In this study, we employ high-throughput (Illumina) sequencing and bioinformatics to characterise the transcriptomes of two Anisakis species, A. simplex and A. pegreffii, and utilize this resource to compile lists of potential allergens from these parasites. A total of ~65,000,000 reads were generated from cDNA libraries for each species, and assembled into ~34,000 transcripts (= Unigenes); ~18,000 peptides were predicted from each cDNA library and classified based on homology searches, protein motifs and gene ontology and biological pathway mapping. Using comparative analyses with sequence data available in public databases, 36 (A. simplex) and 29 (A. pegreffii) putative allergens were identified, including sequences encoding ‘novel’ Anisakis allergenic proteins (i.e. cyclophilins and ABA-1 domain containing proteins). Conclusions/Significance This study represents a first step towards providing the research community with a curated dataset to use as a molecular resource for future investigations of the biology of Anisakis, including molecules putatively acting as allergens, using functional genomics, proteomics and immunological tools. Ultimately, an improved knowledge of the biological functions of these molecules in the parasite, as well as of their immunogenic properties, will assist the development of comprehensive, reliable and robust diagnostic tools. Nematodes within the genus Anisakis (i.e. A. simplex and A. pegreffii, also known as herring worms) are the causative agents of the fish-borne gastrointestinal illness known as ‘anisakiasis’, with infections resulting in symptoms ranging from mild gastric forms to severe allergic reactions leading to urticaria, gastrointestinal and/or respiratory signs and/or anaphylaxis (‘allergic anisakiasis’). Despite significant advances in knowledge of the pathobiology of allergic anisakiasis, thus far, the exact number and nature of parasite molecules acting as potential allergens are currently unknown; filling this gap is necessary to the development of robust and reliable diagnostics for allergic anisakiasis which, in turn, underpins the implementation of effective therapeutic strategies. Here, we use RNA-Seq and bioinformatics to sequence and annotate the transcriptomes of A. simplex and A. pegreffii, and, as an example application of these resources, mine this data to identify and characterise putative novel parasite allergens based on comparisons with known allergen sequence data from other parasites and other organisms.
Collapse
Affiliation(s)
- Fiona J. Baird
- Centre for Biodiscovery & Molecular Development of Therapeutics, James Cook University, Townsville, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
- * E-mail: (FJB); (CC)
| | - Xiaopei Su
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ibukun Aibinu
- School of Applied Sciences, RMIT University, Bundoora, Australia
| | - Matthew J. Nolan
- Department of Pathology and Pathogen Biology, Royal Veterinary College, University of London, Hatfield, United Kingdom
| | - Hiromu Sugiyama
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Andreas L. Lopata
- Centre for Biodiscovery & Molecular Development of Therapeutics, James Cook University, Townsville, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (FJB); (CC)
| |
Collapse
|
9
|
Angiostrongylus cantonensis: a review of its distribution, molecular biology and clinical significance as a human pathogen. Parasitology 2016; 143:1087-118. [PMID: 27225800 DOI: 10.1017/s0031182016000652] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Angiostrongylus cantonensis is a metastrongyloid nematode found widely in the Asia-Pacific region, and the aetiological agent of angiostrongyliasis; a disease characterized by eosinophilic meningitis. Rattus rats are definitive hosts of A. cantonensis, while intermediate hosts include terrestrial and aquatic molluscs. Humans are dead-end hosts that usually become infected upon ingestion of infected molluscs. A presumptive diagnosis is often made based on clinical features, a history of mollusc consumption, eosinophilic pleocytosis in cerebral spinal fluid, and advanced imaging such as computed tomography. Serological tests are available for angiostrongyliasis, though many tests are still under development. While there is no treatment consensus, therapy often includes a combination of anthelmintics and corticosteroids. Angiostrongyliasis is relatively rare, but is often associated with morbidity and sometimes mortality. Recent reports suggest the parasites' range is increasing, leading to fatalities in regions previously considered Angiostrongylus-free, and sometimes, delayed diagnosis in newly invaded regions. Increased awareness of angiostrongyliasis would facilitate rapid diagnosis and improved clinical outcomes. This paper summarizes knowledge on the parasites' life cycle, clinical aspects and epidemiology. The molecular biology of Angiostrongylus spp. is also discussed. Attention is paid to the significance of angiostrongyliasis in Australia, given the recent severe cases reported from the Sydney region.
Collapse
|