1
|
Xiong C, He W, Xiao J, Hao G, Pu J, Chen H, Xu L, Zhu Y, Yang G. Assessment of the Immunoprotective Efficacy of Recombinant 14-3-3 Protein and Dense Granule Protein 10 (GRA10) as Candidate Antigens for Rabbit Vaccines against Eimeria intestinalis. Int J Mol Sci 2023; 24:14418. [PMID: 37833865 PMCID: PMC10572514 DOI: 10.3390/ijms241914418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Eimeria intestinalis infects rabbits, causing severe intestinal coccidiosis. Prolonged anticoccidial drug use might lead to coccidia resistance and drug residues in food. Thus, vaccines are required to control rabbit coccidiosis. In this study, recombinant E. intestinalis 14-3-3 and GRA10 proteins (rEi-14-3-3 and rEi-GRA10) were obtained via prokaryotic expression and used as recombinant subunit vaccines. Fifty 30-day-old rabbits were randomly grouped as follows: PBS-uninfected group, PBS-infected group, Trx-His-S control group, and rEi-14-3-3 and rEi-GRA10 immunized groups. The rabbits were subcutaneously immunized twice at 2-week intervals, challenged with 7 × 104 sporulated oocysts, and sacrificed 14 days later. The protective effects were assessed via clinical signs, relative weight gain, oocyst reduction, mean intestinal lesion score, ACI (anticoccidial index), cytokine, and specific antibody levels in sera. The rEi-14-3-3 and rEi-GRA10 groups had higher relative weight gain rates of 81.94% and 73.61% (p < 0.05), and higher oocyst reduction rates of 86.13% and 84.87% (p < 0.05), respectively. The two immunized groups had fewer intestinal lesions (p < 0.05) and higher IgG levels (p < 0.05). Higher levels of IL-2, IL-4, and IFN-γ cytokines in the rEi-14-3-3 group (p < 0.05) and a higher level of IFN-γ in the rEi-GRA10 group (p < 0.05) were observed. The ACI values of the rEi-14-3-3 and rEi-GRA10 groups were 168.24 and 159.91, with good and moderate protective effects, respectively. Both rEi-14-3-3 and rEi-GRA10 induced humoral immunity in the rabbits. In addition, rEi-14-3-3 induced Th1- and Th2-type immune responses. Both recombinant proteins were protective against E. intestinalis infection in rabbits, with rEi-14-3-3 showing a better protective effect.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guangyou Yang
- Department of Parasitology, College of Veterinary, Sichuan Agricultural University, Chengdu 611130, China; (C.X.); (W.H.); (J.X.); (G.H.); (J.P.); (H.C.); (L.X.); (Y.Z.)
| |
Collapse
|
2
|
Haseeb M, Huang J, Lakho SA, Yang Z, Hasan MW, Ehsan M, Aleem MT, Memon MA, Ali H, Song X, Yan R, Xu L, Li X. Em14-3-3 delivered by PLGA and chitosan nanoparticles conferred improved protection in chicken against Eimeria maxima. Parasitol Res 2022; 121:675-689. [PMID: 34984543 DOI: 10.1007/s00436-021-07420-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 12/21/2021] [Indexed: 11/28/2022]
Abstract
Eimeria maxima (E. maxima) are an intracellular apicomplexan protozoan that causes intestinal coccidiosis in chickens. The purpose of this research was to develop a novel delivery approach for recombinant E. maxima (rEm) 14-3-3 antigen to elicit enhanced immunogenic protection using poly (D, L-lactide-co-glycolide) (PLGA) and chitosan (CS) nanoparticles (NPs) against E. maxima challenge. The morphologies of prepared antigen-loaded NPs (PLGA/CS-rEm14-3-3 NPs) were visualized by a scanning electron microscope. The rEm14-3-3 and PLGA/CS-rEm14-3-3 NPs-immunized chicken-induced changes of serum cytokines, IgY-antibody level, and T-lymphocyte subsets and protective efficacies against E. maxima challenge were evaluated. The results revealed that encapsulated rEm14-3-3 in PLGA and CS NPs presented spherical morphology with a smooth surface. The chickens immunized with only rEm14-3-3 and PLGA/CS-rEm14-3-3 NPs elicited a significant (p<0.05) higher level of IFN-γ cytokine, stimulated the proportions of CD4+/CD3+, CD8+/CD3+ T-cells, and provoked sera IgY-antibody immune response compared to control groups (PBS, pET-32a, PLGA, and CS). Whereas, PLGA-rEm14-3-3 NP-immunized chicken provoked a higher level of IFN- γ production and IgY-antibody response rather than CS-rEm14-3-3 and bare antigen, relatively. The animal experiment results ratified that PLGA-rEm14-3-3 NP-immunized chicken significantly alleviated the relative body weight gain (%), decreased lesion score, and enhanced oocyst decrease ratio compared to CS-rEm14-3-3 NPs and only rEm14-3-3. The anti-coccidial index of the chicken vaccinated with the PLGA-rEm14-3-3 NPs was (180.1) higher than that of the Cs-rEm14-3-3 NPs (167.4) and bare antigen (165.9). Collectively, our statistics approved that PLGA NPs might be an efficient antigen carrier system (Em14-3-3) to act as a nanosubunit vaccine that can improve protective efficacies in chicken against E. maxima challenge.
Collapse
Affiliation(s)
- Muhammad Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Jianmei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Shakeel Ahmed Lakho
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Zhang Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Muhammad Waqqas Hasan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Muhammad Ehsan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Muhammad Ali Memon
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Haider Ali
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Li S, Zhang N, Liu S, Li J, Liu L, Wang X, Li X, Gong P, Zhang X. Protective Immunity Against Neospora caninum Infection Induced by 14-3-3 Protein in Mice. Front Vet Sci 2021; 8:638173. [PMID: 33748214 PMCID: PMC7965954 DOI: 10.3389/fvets.2021.638173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/03/2021] [Indexed: 11/16/2022] Open
Abstract
Neospora caninum is an apicomplexan parasite that infects many mammals and remains a threatening disease worldwide because of the lack of effective drugs and vaccines. Our previous studies demonstrated that N. caninum 14-3-3 protein (Nc14-3-3), which is included in N. caninum extracellular vesicles (NEVs), can induce effective immune responses and stimulate cytokine expression in mouse peritoneal macrophages. However, whether Nc14-3-3 has a protective effect and its mechanisms are poorly understood. Here, we evaluated the immune responses and protective effects of Nc14-3-3 against exposure to 2 × 107 Nc-1 tachyzoites. Antibody (IgG, IgGl, and IgG2a) levels and Th1-type (IFN-γ and IL-12) and Th2-type (IL-4 and IL-10) cytokines in mouse serum, survival rates, survival times, and parasite burdens were detected. In the present study, the immunostimulatory effect of Nc14-3-3 was confirmed, as it triggered Th1-type cytokine (IFN-γ and IL-12) production in mouse serum 2 weeks after the final immunization. Moreover, the immunization of C57BL/6 mice with Nc14-3-3 induced high IgG antibody levels and significant increases in CD8+ T lymphocytes in the spleens of mice, indicating that the cellular immune response was significantly stimulated. Mouse survival rates and times were significantly prolonged after immunization; the survival rates were 40% for Nc14-3-3 immunization and 60% for NEV immunization, while mice that received GST, PBS, or blank control all died at 13, 9, or 8 days, respectively, after intraperitoneal N. caninum challenge. In addition, qPCR analysis indicated that there was a reduced parasite burden and diminished pathological changes in the mice immunized with Nc14-3-3. Our data demonstrate that vaccination of mice with Nc14-3-3 elicits both cellular and humoral immune responses and provides partial protection against acute neosporosis. Thus, Nc14-3-3 could be an effective antigen candidate for vaccine development for neosporosis.
Collapse
Affiliation(s)
- Shan Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.,Department of Social Medicine and Public Health, School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shaoxiong Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianhua Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Li Liu
- College of Basic Medicine, Jilin University, Changchun, China
| | - Xiaocen Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
4
|
Haseeb M, Lakho SA, Huang J, Hasan MW, Ali-Ul-Husnain Naqvi M, Zhou Z, Yan R, Xu L, Song X, Li X. In vitro effects of 5 recombinant antigens of Eimeria maxima on maturation, differentiation, and immunogenic functions of dendritic cells derived from chicken spleen. Poult Sci 2020; 99:5331-5343. [PMID: 33142449 PMCID: PMC7647736 DOI: 10.1016/j.psj.2020.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/05/2020] [Accepted: 07/22/2020] [Indexed: 12/27/2022] Open
Abstract
Eimeria maxima possesses integral families of immunogenic constituents that promote differentiation of immune cells during host-parasite interactions. Dendritic cells (DCs) have an irreplaceable role in the modulation of the host immunity. However, the selection of superlative antigen with immune stimulatory efficacies on host DCs is lacking. In this study, 5 recombinant proteins of E. maxima (Em), including Em14-3-3, rhomboid family domain containing proteins (ROM) EmROM1 and EmROM2, microneme protein 2 (EmMIC2), and Em8 were identified to stimulate chicken splenic derived DCs in vitro. The cultured populations were incubated with recombinant proteins, and typical morphologies of stimulated DCs were obtained. DC-associated markers major histocompatibility complex class II, CD86, CD11c, and CD1.1, showed upregulatory expressions by flow cytometry assay. Immunofluorescence assay revealed that recombinant proteins could bind with the surface of chicken splenic derived DCs. Moreover, quantitative real-time PCR results showed that distinct gene expressions of Toll-like receptors and Wnt signaling pathway were upregulated after the coincubation of recombinant proteins with DCs. The ELISA results indicated that the DCs produced a significant higher level of interleukin (IL)-12 and interferon-γ secretions after incubation with recombinant proteins. While transforming growth factor-β was significantly increased with rEmROM1, rEmROM2, and rEmMIC2 as compared to control groups, and IL-10 did not show significant alteration. Taken together, these results concluded that among 5 potential recombinant antigens, rEm14-3-3 could promote immunogenic functions of chicken splenic derived DCs more efficiently, which might represent an effective molecule for inducing the host Th1-mediated immune response against Eimeria infection.
Collapse
Affiliation(s)
- Muhammad Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Shakeel Ahmed Lakho
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Jianmei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Muhammad Waqqas Hasan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Muhammad Ali-Ul-Husnain Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Zhouyang Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
5
|
Immunization with a Recombinant Protein of Trichinella britovi 14-3-3 Triggers an Immune Response but No Protection in Mice. Vaccines (Basel) 2020; 8:vaccines8030515. [PMID: 32916868 PMCID: PMC7564242 DOI: 10.3390/vaccines8030515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 11/17/2022] Open
Abstract
14-3-3 proteins are present in all eukaryotic organisms and are ubiquitously expressed in a broad range of tissues and cellular compartments. They are regulatory adapter proteins that play key roles in a variety of signaling pathways, and have been proposed as suitable targets for the control and detection of certain parasites. Trichinella britovi is a widely-distributed parasitic nematode, transmitted through ingestion of meat products containing invasive larvae. The present study describes the cloning and expression of Tb14-3-3, and investigates the immunological and protective potential of the recombinant protein. Immunization of mice with rTb14-3-3 triggered an IgG response, and significant differences, in the profiles of secreted cytokines observed in vitro, between experimental groups. Nonetheless, neither specific antibodies, nor increased secretion of IFNγ, IL-4, and IL-10 cytokines, conferred greater protection against infection. No reduction in larval burden was observed during recovery at 48 dpi. Additionally, rTb14-3-3 was not recognized by sera from the infected control mice, except for one, suggesting some mismatch between native and recombinant Tb14-3-3 antigenic sites. Therefore, before 14-3-3 can be considered a potential tool for Trichinella detection and vaccination, more research regarding its target proteins, and actual specific function, is needed.
Collapse
|
6
|
Immunization of Goats with Recombinant Protein 14-3-3 Isoform 2(rHcftt-2) Induced Moderate Protection against Haemonchus contortus Challenge. Pathogens 2020; 9:pathogens9010046. [PMID: 31935869 PMCID: PMC7168593 DOI: 10.3390/pathogens9010046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/05/2020] [Accepted: 01/05/2020] [Indexed: 12/13/2022] Open
Abstract
A previous study identified that isoform 2 (Hcftt-2) of the 14-3-3 protein of Haemonchus contortus (H. contortus) could suppress immune functions of goat peripheral blood mononuclear cells (PBMCs) and might be a potential vaccine target, as neutralization of the protein function may enhance anti-parasite immunity. In this research, the recombinant Hcftt-2 was evaluated for its immunoprotective efficacy against H. contortus infection in goats. Five experimental goats were immunized twice with rHcftt-2 along with Freund’s adjuvant. The five immunized goats and five nonimmunized goats (adjuvant only) were challenged with 5000 L3-stage H. contortus larvae after 14 days of second immunization. Five nonimmunized and uninfected goats (adjuvant only) were set as the uninfected group. A significant increase in the serum immunoglobin G(IgG) and serum IgA levels were identified in the rHcftt-2 immunized animals. The mean eggs per gram in feces (EPG) and the worm burdens of rHcftt-2 immunized group were reduced by 26.46% (p < 0.05) and 32.33%, respectively. In brief, immunization of goats with rHcftt-2 induced moderate protection against H. contortus challenge.
Collapse
|
7
|
Zheng JT, Zhang N, Yu YH, Gong PT, Li XH, Wu N, Wang C, Wang XC, Li X, Li JH, Zhang XC. Identification of a TRBD zinc finger-interacting protein in Giardia duodenalis and its regulation of telomerase. Parasit Vectors 2019; 12:568. [PMID: 31783771 PMCID: PMC6884763 DOI: 10.1186/s13071-019-3821-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/21/2019] [Indexed: 11/10/2022] Open
Abstract
Background Giardia duodenalis causes giardiasis, with diarrhea as the primary symptom. The trophozoite proliferation of this zoonotic parasite is mainly affected by telomerase, although the mechanism of telomerase regulation has not been thoroughly analyzed. Methods This study was performed to identify the telomerase RNA-binding domain (TRBD)-interacting protein in G. duodenalis and its regulation of telomerase. Interaction between TRBD and interacting proteins was verified via pulldown assays and co-immunoprecipitation (co-IP) techniques, and the subcellular localization of the protein interactions was determined in vivo via split SNAP-tag labeling. The hammerhead ribozyme was designed to deplete the mRNA of TRBD-interacting proteins. Results Using TRBD as bait, we identified zinc-finger domain (ZFD)-containing proteins and verified it via pulldown and co-IP experiments. Protein-protein interaction occurred in the nuclei of 293T cells and both nuclei of G. duodenalis. The hammerhead ribozyme depleted ZFD mRNA levels, which reduced the reproduction rate of G. duodenalis, telomerase activity and telomere length. Conclusions Our findings suggest that ZFD may regulate telomere function in G. duodenalis nuclei.
Collapse
Affiliation(s)
- Jing-Tong Zheng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China.,Department of Pathogenobiology, College of Basic Medicine, Jilin University, Changchun, 130021, Jilin, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China.,State and Local Joint Engineering Laboratory for Animal Models of Human Diseases, Academy of Translational Medicine, First Hospital, Jilin University, Changchun, 130021, China
| | - Yan-Hui Yu
- Clinical Laboratory of Second Hospital, Jilin University, Changchun, 130021, China
| | - Peng-Tao Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xian-He Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Na Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Can Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xiao-Cen Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xin Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Jian-Hua Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China.
| | - Xi-Chen Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China.
| |
Collapse
|
8
|
Li S, Gong P, Zhang N, Li X, Tai L, Wang X, Yang Z, Yang J, Zhu X, Zhang X, Li J. 14-3-3 Protein of Neospora caninum Modulates Host Cell Innate Immunity Through the Activation of MAPK and NF-κB Pathways. Front Microbiol 2019; 10:37. [PMID: 30740096 PMCID: PMC6355710 DOI: 10.3389/fmicb.2019.00037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022] Open
Abstract
Neospora caninum is an obligate intracellular apicomplexan parasite, the etiologic agent of neosporosis, and a major cause of reproductive loss in cattle. There is still a lack of effective prevention and treatment measures. The 14-3-3 protein is a widely expressed acidic protein that spontaneously forms dimers within apicomplexan parasites. This protein has been isolated and sequenced in many parasites; however, there are few reports about the N. caninum 14-3-3 protein. Here, we successfully expressed and purified a recombinant fusion protein of Nc14-3-3 (rNc14-3-3) and prepared a polyclonal antibody. Immunofluorescence and immunogold electron microscopy studies of tachyzoites or N. caninum-infected cells suggested that 14-3-3 was localized in the cytosol and the membrane. Western blotting analysis indicated that rNc14-3-3 could be recognized by N. caninum-infected mouse sera, suggesting that 14-3-3 may be an infection-associated antigen that is involved in the host immune response. We demonstrated that rNc14-3-3 induced cytokine expression by activating the MAPK and AKT signaling pathways, and inhibitors of p38, ERK, JNK, and AKT could significantly decrease the production of IL-6, IL-12p40, and TNF-α. In addition, phosphorylated nuclear factor-κB (NF-κB/p65) was observed in wild-type peritoneal macrophages (PMs) treated with rNc14-3-3, and the protein level of NF-κB/p65 was reduced in the cytoplasm but increased correspondingly in the nucleus after 2 h of treatment. These results were also observed in deficient in TLR2-/- PMs. Taken together, our results indicated that the N. caninum 14-3-3 protein can induce effective immune responses and stimulate cytokine expression by activating the MAPK, AKT, and NF-κB signaling pathways but did not dependent TLR2, suggesting that Nc14-3-3 is a novel vaccine candidate against neosporosis.
Collapse
Affiliation(s)
- Shan Li
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Li
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lixin Tai
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xu Wang
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhengtao Yang
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ju Yang
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xingquan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianhua Li
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
9
|
Liu J, Liu L, Li L, Tian D, Li W, Xu L, Yan R, Li X, Song X. Protective immunity induced by Eimeria common antigen 14-3-3 against Eimeria tenella, Eimeria acervulina and Eimeria maxima. BMC Vet Res 2018; 14:337. [PMID: 30419898 PMCID: PMC6233286 DOI: 10.1186/s12917-018-1665-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 10/23/2018] [Indexed: 12/01/2022] Open
Abstract
Background Avian coccidiosis is often caused by co-infection with several species of Eimeria worldwide. Developing a multivalent vaccine with an antigen common to multiple Eimeria species is a promising strategy for controlling clinical common co-infection of Eimeria. In the previous study, 14–3-3 was identified as one of the immunogenic common antigen in E. tenella, E. acervulina and E. maxima. The aim of the present study was to evaluate the immunogenicity and protective efficacy of Ea14–3-3 in the form of DNA vaccine against infection with three species of Eimeria both individually and simultaneously. Results After vaccination with pVAX-Ea14–3-3, the Ea14–3-3 gene was transcribed and expressed in the injected muscles. Vaccination with pVAX-Ea14–3-3 significantly increased the proportion of CD4+ and CD8+ T lymphocytes and produced a strong IgY response in immunized chickens. Similarly, pVAX-Ea14–3-3 stimulated the chicken’s splenocytes to produce high levels of Th1-type (IFN-γ, IL-2) and Th2-type (IL-4) cytokines. The vaccine-induced immune response was responsible to increase weight gain, decreased the oocyst output, and alleviated enteric lesions significantly in immunized chickens as compared to control group, in addition to induce moderate anti-coccidial index (ACI). Conclusion These results indicate that Ea14–3-3 is highly immunogenic and capable to induce significant immune responses. Furthermore, Ea14–3-3 antigen can provide effective protection against infection with Eimeria tenella, Eimeria acervulina, Eimeria maxima both individually and in combination with three Eimeria species. Significant outcomes of our study provide an effective candidate antigen for developing a multivalent Eimeria vaccine against mixed infection with various Eimeria species under natural conditions. Electronic supplementary material The online version of this article (10.1186/s12917-018-1665-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianhua Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Lianrui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Lingjuan Li
- Henan Muxiang Veterinary Pharmaceutical Co., ltd, Zhengzhou, 450000, People's Republic of China
| | - Di Tian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Wenyu Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
10
|
Proteomic analysis of protein interactions between Eimeria maxima sporozoites and chicken jejunal epithelial cells by shotgun LC-MS/MS. Parasit Vectors 2018; 11:226. [PMID: 29618377 PMCID: PMC5885459 DOI: 10.1186/s13071-018-2818-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/26/2018] [Indexed: 11/12/2022] Open
Abstract
Background Eimeria maxima initiates infection by invading the jejunal epithelial cells of chicken. However, the proteins involved in invasion remain unknown. The research of the molecules that participate in the interactions between E. maxima sporozoites and host target cells will fill a gap in our understanding of the invasion system of this parasitic pathogen. Methods In the present study, chicken jejunal epithelial cells were isolated and cultured in vitro. Western blot was employed to analyze the soluble proteins of E. maxima sporozoites that bound to chicken jejunal epithelial cells. Co-immunoprecipitation (co-IP) assay was used to separate the E. maxima proteins that bound to chicken jejunal epithelial cells. Shotgun LC-MS/MS technique was used for proteomics identification and Gene Ontology was employed for the bioinformatics analysis. Results The results of Western blot analysis showed that four proteins bands from jejunal epithelial cells co-cultured with soluble proteins of E. maxima sporozoites were recognized by the positive sera, with molecular weights of 70, 90, 95 and 130 kDa. The co-IP dilutions were analyzed by shotgun LC-MS/MS. A total of 204 proteins were identified in the E. maxima protein database using the MASCOT search engine. Thirty-five proteins including microneme protein 3 and 7 had more than two unique peptide counts and were annotated using Gene Ontology for molecular function, biological process and cellular localization. The results revealed that of the 35 annotated peptides, 22 (62.86%) were associated with binding activity and 15 (42.86%) were involved in catalytic activity. Conclusions Our findings provide an insight into the interaction between E. maxima and the corresponding host cells and it is important for the understanding of molecular mechanisms underlying E. maxima invasion. Electronic supplementary material The online version of this article (10.1186/s13071-018-2818-4) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Liu L, Huang X, Liu J, Li W, Ji Y, Tian D, Tian L, Yang X, Xu L, Yan R, Li X, Song X. Identification of common immunodominant antigens of Eimeria tenella, Eimeria acervulina and Eimeria maxima by immunoproteomic analysis. Oncotarget 2018; 8:34935-34945. [PMID: 28432276 PMCID: PMC5471023 DOI: 10.18632/oncotarget.16824] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/24/2017] [Indexed: 11/25/2022] Open
Abstract
Clinical chicken coccidiosis is mostly caused by simultaneous infection of several Eimeria species, and host immunity against Eimeria is species-specific. It is urgent to identify common immunodominant antigen of Eimeria for developing multivalent anticoccidial vaccines. In this study, sporozoite proteins of Eimeria tenella, Eimeria acervulina and Eimeria maxima were analyzed by two-dimensional electrophoresis (2DE). Western bot analysis was performed on the yielded 2DE gel using antisera of E. tenella E. acervulina and E. maxima respectively. Next, the detected immunodominant spots were identified by comparing the data from MALDI-TOF-MS/MS with available databases. Finally, Eimeria common antigens were identified by comparing amino acid sequence between the three Eimeria species. The results showed that analysis by 2DE of sporozoite proteins detected 629, 626 and 632 protein spots from E. tenella, E. acervulina and E. maxima respectively. Western bot analysis revealed 50 (E. tenella), 64 (E. acervulina) and 57 (E. maxima) immunodominant spots from the sporozoite 2DE gels of the three Eimeria species. The immunodominant spots were identified as 33, 27 and 25 immunodominant antigens of E. tenella, E. acervulina and E. maxima respectively. Fifty-four immunodominant proteins were identified as 18 ortholog proteins among the three Eimeria species. Finally, 5 of the 18 ortholog proteins were identified as common immunodominant antigens including elongation factor 2 (EF-2), 14-3-3 protein, ubiquitin-conjugating enzyme domain-containing protein (UCE) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In conclusion, our results not only provide Eimeria sporozoite immunodominant antigen map and additional immunodominant antigens, but also common immunodominant antigens for developing multivalent anticoccidial vaccines.
Collapse
Affiliation(s)
- Lianrui Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinmei Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu 210014, China
| | - Jianhua Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyu Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihong Ji
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Di Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinchao Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Tian AL, Lu M, Calderón-Mantilla G, Petsalaki E, Dottorini T, Tian X, Wang Y, Huang SY, Hou JL, Li X, Elsheikha HM, Zhu XQ. A recombinant Fasciola gigantica 14-3-3 epsilon protein (rFg14-3-3e) modulates various functions of goat peripheral blood mononuclear cells. Parasit Vectors 2018; 11:152. [PMID: 29510740 PMCID: PMC5840819 DOI: 10.1186/s13071-018-2745-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Background The molecular structure of Fasciola gigantica 14-3-3 protein has been characterized. However, the involvement of this protein in parasite pathogenesis remains elusive and its effect on the functions of innate immune cells is unknown. We report on the cloning and expression of a recombinant F. gigantica 14-3-3 epsilon protein (rFg14-3-3e), and testing its effects on specific functions of goat peripheral blood mononuclear cells (PBMCs). Methods rFg14-3-3e protein was expressed in Pichia pastoris. Western blot and immunofluorescence assay (IFA) were used to examine the reactivity of rFg14-3-3e protein to anti-F. gigantica and anti-rFg14-3-3e antibodies, respectively. Various assays were used to investigate the stimulatory effects of the purified rFg14-3-3e protein on specific functions of goat PBMCs, including cytokine secretion, proliferation, migration, nitric oxide (NO) production, phagocytosis, and apoptotic capabilities. Potential protein interactors of rFg14-3-3e were identified by querying the databases Intact, String, BioPlex and BioGrid. A Total Energy analysis of each of the identified interaction was performed. Gene Ontology (GO) enrichment analysis was conducted using Funcassociate 3.0. Results Sequence analysis revealed that rFg14-3-3e protein had 100% identity to 14-3-3 protein from Fasciola hepatica. Western blot analysis showed that rFg14-3-3e protein is recognized by sera from goats experimentally infected with F. gigantica and immunofluorescence staining using rat anti-rFg14-3-3e antibodies demonstrated the specific binding of rFg14-3-3e protein to the surface of goat PBMCs. rFg14-3-3e protein stimulated goat PBMCs to produce interleukin-10 (IL-10) and transforming growth factor beta (TGF-β), corresponding with low levels of IL-4 and interferon gamma (IFN-γ). Also, this recombinant protein promoted the release of NO and cell apoptosis, and inhibited the proliferation and migration of goat PBMCs and suppressed monocyte phagocytosis. Homology modelling revealed 65% identity between rFg14-3-3e and human 14-3-3 protein YWHAE. GO enrichment analysis of the interacting proteins identified terms related to apoptosis, protein binding, locomotion, hippo signalling and leukocyte and lymphocyte differentiation, supporting the experimental findings. Conclusions Our data suggest that rFg14-3-3e protein can influence various cellular and immunological functions of goat PBMCs in vitro and may be involved in mediating F. gigantica pathogenesis. Because of its involvement in F. gigantica recognition by innate immune cells, rFg14-3-3e protein may have applications for development of diagnostics and therapeutic interventions. Electronic supplementary material The online version of this article (10.1186/s13071-018-2745-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ai-Ling Tian
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - MingMin Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Guillermo Calderón-Mantilla
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Tania Dottorini
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - XiaoWei Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - YuJian Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Si-Yang Huang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - XiangRui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
| |
Collapse
|
13
|
Liu T, Huang J, Ehsan M, Wang S, Fei H, Zhou Z, Song X, Yan R, Xu L, Li X. Protective immunity against Eimeria maxima induced by vaccines of Em14-3-3 antigen. Vet Parasitol 2018; 253:79-86. [PMID: 29605008 DOI: 10.1016/j.vetpar.2018.02.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 11/26/2022]
Abstract
Eimeria maxima 14-3-3 (Em14-3-3) open reading frame (ORF) which consisted of 861 bp encoding a protein of 286 amino acids was successfully amplified and sequenced. Subsequently, the Em14-3-3 ORF was subcloned into pET-32a (+) and pVAX1, respectively. RT-PCR and immunoblot analyses confirmed that the target gene was successfully transcribed and expressed in vivo. Immunofluorescence analysis showed that Em14-3-3 was expressed in both the sporozoites and merozoites. The animal experiments demonstrated that both rEm14-3-3 and pVAX1-14-3-3 could clearly alleviate jejunum lesions and body weight loss. The Em14-3-3 vaccines could increase oocyst decrease ratio, as well as produce an anticoccidial index of more than 165. The percentages of CD4+ in both the Em14-3-3 immunized groups were much higher, when compared with those of PBS, pET32a (+), and pVAX1 controls (P < 0.05). Similarly, the anti-Em14-3-3 antibody titers of both rEm14-3-3 and pVAX1-14-3-3 immunized groups showed higher levels compared with those of PBS, pET32a (+), and pVAX1 controls (P < 0.05). The IFN-γ and tumor growth factor-β (TGF-β) levels showed significant increments in the rEm14-3-3 and pVAX1-14-3-3 immunized groups, when compared with those in the negative controls (P < 0.05). These results demonstrated that Em14-3-3 could be used as a promising antigen candidate for developing vaccines against E. maxima.
Collapse
Affiliation(s)
- Tingqi Liu
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Jingwei Huang
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Muhammad Ehsan
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Shuai Wang
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Hong Fei
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Zhouyang Zhou
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
14
|
Wang P, Wang W, Yang J, Ai Y, Gong P, Zhang X. A novel telomerase-interacting OTU protein of Eimeria tenella and its telomerase-regulating activity. Acta Biochim Biophys Sin (Shanghai) 2017; 49:744-745. [PMID: 28575158 DOI: 10.1093/abbs/gmx057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/17/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- Pu Wang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Weirong Wang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ju Yang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yongxing Ai
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Pengtao Gong
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xichen Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
15
|
Gadahi JA, Ehsan M, Wang S, Zhang Z, Wang Y, Yan R, Song X, Xu L, Li X. Recombinant protein of Haemonchus contortus 14-3-3 isoform 2 (rHcftt-2) decreased the production of IL-4 and suppressed the proliferation of goat PBMCs in vitro. Exp Parasitol 2016; 171:57-66. [PMID: 27751769 DOI: 10.1016/j.exppara.2016.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 10/09/2016] [Accepted: 10/13/2016] [Indexed: 12/12/2022]
Abstract
14-3-3 proteins have been found to be an excreted/secreted antigen and assumed to be released into the host-parasite interface and described in several unicellular and multicellular parasites. However, little is known about the immunomodulatory effects of H. controtus 14-3-3 protein on host cell. In present study, 14-3-3 isoform 2 gene, designated as Hcftt-2, was amplified by reverse transcription-polymerase chain reaction (RT-PCR) from the adult H. contortus cDNA and cloned into expression plasmid pET32a (+) and expression of the recombinant protein (rHcftt-2) was induced by IPTG. Binding activity of rHcftt-2 to goat peripheral blood mononuclear cells (PBMCs) was confirmed by immunofluorescence assay (IFA) and modulatory effects on cytokine production, cell proliferation, cell migration and nitric oxide (NO) production were observed by co-incubation of rHcftt-2 with goat PBMCs. Sequence analysis showed that it had significant homology with the known 14-3-3 protein isoform 2. Results of IFA revealed that, the rHcftt-2 was bound to the cell surface. We found that, the productions of IL10, IL-17, IFN-γ and cell migration of PBMCs were increased after the cells were incubated with rHCftt-2. However, the productions of IL-4, NO and cell proliferation of the PBMCs were significantly decreased in dose depended manner. Our results showed that the Hcftt-2 played important suppressive regulatory effects on the goat PBMCs.
Collapse
Affiliation(s)
- Javaid Ali Gadahi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Muhammad Ehsan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Shuai Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - ZhenChao Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Yujian Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - RuoFeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - XiaoKai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - LiXin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - XiangRui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|