1
|
Li ZB, Xiang M, Yang T, Hu H, Shu M, Huang CQ. The complete mitochondrial genome analysis of Haemaphysalis hystricis Supino, 1897 (Ixodida: Ixodidae) and its phylogenetic implications. Open Life Sci 2025; 20:20220875. [PMID: 40109772 PMCID: PMC11920765 DOI: 10.1515/biol-2022-0875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 03/22/2025] Open
Abstract
In order to study the sequence characteristics, gene order, and codon usage of the mitochondrial genome of Haemaphysalis hystricis, and to explore its phylogenetic relationship, a total of 36 H. hystricis isolated from dogs were used as sample in this study. The mitochondrial genome of a H. hystricis was amplified with several pairs of specific primers by PCR, and was sequenced by first generation sequencing. The mitochondrial genome of H. hystricis was 14,719 bp in size, and it contained 37 genes including 13 protein coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and AT-rich region. Each PCG sequence had different lengths, the sequence longest and shortest gene were nad5 (1,652 bp) and atp8 (155 bp), respectively, among the 13 PCGs. All PCGs used ATN as their initiation codon, 10 of 13 PCGs used TAN as their termination codon, and 3 of which had incomplete termination codon (TA/T). Most of the 22 tRNAs with different sizes could form the classical cloverleaf structures expect for tRNA-Ala, tRNA-Ser1, tRNA-Ser2, and tRNA-Glu, and there were base mismatch (U-U and U-G) in all the 22 tRNAs sequences. Two rRNAs, namely rrnL and rrnS, had different lengths, rrnL located between tRNA-Leu1 and tRNA-Val, and rrnS located between tRNA-Val and tRNA-Ile, respectively. Two AT (D-loop) control areas with different lengths were in the mitochondrial genome, the NCRL was located between tRNA-Leu2 and tRNA-Cys, and the NCRS was located between rrnS and tRNA-Ile. The complete mitochondrial genome sequence of H. hystricis was AT preferences, and the gene order is the same as that of other Haemaphysalis family ticks. However, phylogenetic analysis showed that H. hystricis was most closely related to Haemaphysalis longicornis among the selected ticks. The mitochondrial genome not only enriches the genome database, provides more novel genetic markers for identifying tick species, and studying its molecular epidemiology, population genetics, systematics, but also have implications for the diagnosis, prevention, and control of ticks and tick-borne diseases in animals and humans.
Collapse
Affiliation(s)
- Zhong-Bo Li
- College of Animal Science and Technology, HuaiHua Vocational and Technical College, Huaihua, Hunan, 418000, PR China
- College of Life Science, Longyan University, Longyan, Fujian, 364012, PR China
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province University, College of Life Science, Longyan University, Longyan, Fujian, 364012, PR China
| | - Min Xiang
- College of Animal Science and Technology, HuaiHua Vocational and Technical College, Huaihua, Hunan, 418000, PR China
| | - Tian Yang
- College of Animal Science and Technology, HuaiHua Vocational and Technical College, Huaihua, Hunan, 418000, PR China
| | - Hui Hu
- College of Animal Science and Technology, HuaiHua Vocational and Technical College, Huaihua, Hunan, 418000, PR China
| | - Ming Shu
- College of Animal Science and Technology, HuaiHua Vocational and Technical College, Huaihua, Hunan, 418000, PR China
| | - Cui-Qin Huang
- College of Life Science, Longyan University, Longyan, Fujian, 364012, PR China
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province University, College of Life Science, Longyan University, Longyan, Fujian, 364012, PR China
| |
Collapse
|
2
|
Yousaf MA, Sun YN, Chen HX, Khan AU, Li L. Morphology, complete mitochondrial genome and molecular phylogeny of Heterakis pucrasia sp. n. (Nematoda: Ascaridida) from the koklass pheasant Pucrasia macrolopha (Lesson) (Galliformes: Phasianidae) in Pakistan. Front Vet Sci 2025; 12:1519092. [PMID: 40098890 PMCID: PMC11911484 DOI: 10.3389/fvets.2025.1519092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Species of Heterakis (Ascaridida: Heterakoidea) are commonest nematode parasites occurring in the alimentary canal of wild and domestic birds, which are of major socio-economic importance, due to some Heterakis species causing Heterakidosis in wild birds and poultry. In the present study, a new species of Heterakis, H. pucrasia sp. n., was described using integrated methods based on specimens collected from the koklass pheasant Pucrasia macrolopha (Lesson) (Galliformes: Phasianidae) in Pakistan. The complete mitochondrial genome of H. pucrasia sp. n. was sequenced and annotated for the first time to enrich the mitogenomic data, and reveal the pattern of mitogenomic evolution of the family Heterakidae. Moreover, phylogenetic analyses of the orders Ascaridida, Spirurida, Oxyurida and Rhigonematida based on the amino acid sequences of 12 protein coding genes (PCGs) of mitochondrial genomes, revealed that the order Ascaridida is not monophyletic, and the superfamily Heterakoidea has a closer affinity with Rhigonematida + Oxyurida + Spirurida, than the superfamily Ascaridoidea in Ascaridida. The present findings enriched the global species composition of heterakid nematodes and their mitogenomic data, and also provided novel insight on the phylogenetic relationships between Heterakoidea and its related groups.
Collapse
Affiliation(s)
- Muhammad Amjad Yousaf
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
- Hebei Research Center of the Basic Discipline Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, Hebei, China
| | - Yi-Nuo Sun
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Hui-Xia Chen
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Asmat Ullah Khan
- Department of Zoology, Shaheed Benazir Bhutto University, Sheringal, Upper Dir, Khyber Pakhtunkhwa, Pakistan
| | - Liang Li
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
- Hebei Research Center of the Basic Discipline Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Huo C, Bao F, Long H, Qin T, Zhang S. The complete mitochondrial genome of Wellcomia compar (Spirurina: Oxyuridae) and its genome characterization and phylogenetic analysis. Sci Rep 2023; 13:14426. [PMID: 37660220 PMCID: PMC10475117 DOI: 10.1038/s41598-023-41638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023] Open
Abstract
Wellcomia compar (Spirurina: Oxyuridae) is a pinworm that infects wild and captive porcupines. Despite clear records of its morphological structure, its genetics, systematics, and biology are poorly understood. This study aimed to determine the complete mitochondrial (mt) genome of W. compar and reconstruct its phylogenetic relationship with other nematodes. We sequenced the complete mt genome of W. comparand conducted phylogenetic analyses using concatenated coding sequences of 12 protein-coding genes (PCGs) by maximum likelihood and Bayesian inference. The complete mt genome is 14,373 bp in size and comprises 36 genes, including 12 protein-coding, two rRNA and 22 tRNA genes. Apart from 28 intergenic regions, one non-coding region and one overlapping region also occur. A comparison of the gene arrangements of Oxyuridomorpha revealed relatively similar features in W. compar and Wellcomia siamensis. Phylogenetic analysis also showed that W. compar and W. siamensis formed a sister group. In Oxyuridomorpha the genetic distance between W. compar and W. siamensis was 0.0805. This study reports, for the first time, the complete W. compar mt genome sequence obtained from Chinese porcupines. It provides genetic markers for investigating the taxonomy, population genetics, and phylogenetics of pinworms from different hosts and has implications for the diagnosis, prevention, and control of parasitic diseases in porcupines and other animals.
Collapse
Affiliation(s)
- Chunmao Huo
- Laboratory Animal Center, Zunyi Medical University, Zunyi, 563006, China
| | - Fengyun Bao
- Laboratory Animal Center, Zunyi Medical University, Zunyi, 563006, China
| | - Hong Long
- Laboratory Animal Center, Zunyi Medical University, Zunyi, 563006, China
| | - Tingyang Qin
- Laboratory Animal Center, Zunyi Medical University, Zunyi, 563006, China
| | - Shibin Zhang
- Laboratory Animal Center, Zunyi Medical University, Zunyi, 563006, China.
| |
Collapse
|
4
|
Liu GH, Sun MM, Elsheikha HM, Fu YT, Sugiyama H, Ando K, Sohn WM, Zhu XQ, Yao C. Human gnathostomiasis: a neglected food-borne zoonosis. Parasit Vectors 2020; 13:616. [PMID: 33298141 PMCID: PMC7724840 DOI: 10.1186/s13071-020-04494-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/19/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Human gnathostomiasis is a food-borne zoonosis. Its etiological agents are the third-stage larvae of Gnathostoma spp. Human gnathostomiasis is often reported in developing countries, but it is also an emerging disease in developed countries in non-endemic areas. The recent surge in cases of human gnathostomiasis is mainly due to the increasing consumption of raw freshwater fish, amphibians, and reptiles. METHODS This article reviews the literature on Gnathostoma spp. and the disease that these parasites cause in humans. We review the literature on the life cycle and pathogenesis of these parasites, the clinical features, epidemiology, diagnosis, treatment, control, and new molecular findings on human gnathostomiasis, and social-ecological factors related to the transmission of this disease. CONCLUSIONS The information presented provides an impetus for studying the parasite biology and host immunity. It is urgently needed to develop a quick and sensitive diagnosis and to develop an effective regimen for the management and control of human gnathostomiasis.
Collapse
Affiliation(s)
- Guo-Hua Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan People’s Republic of China
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu People’s Republic of China
| | - Miao-Miao Sun
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu People’s Republic of China
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Yi-Tian Fu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan People’s Republic of China
| | - Hiromu Sugiyama
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, 162-8640 Japan
| | - Katsuhiko Ando
- Department of Medical Zoology, Mie University School of Medicine, Mie, 514-8507 Japan
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727 Korea
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801 People’s Republic of China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St Kitts and Nevis
| |
Collapse
|
5
|
Prevalence, Morphological and Molecular Phylogenetic Analyses of the Rabbit Pinworm, Passalurus ambiguus Rudolphi 1819, in the Domestic Rabbits Oryctolagus cuniculus. Acta Parasitol 2019; 64:316-330. [PMID: 30941669 DOI: 10.2478/s11686-019-00047-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/12/2019] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Passalurus ambiguus, a pinworm nematode parasite, infects domestic and wild rabbits, hares, and rodents worldwide. MATERIALS AND METHODS The current parasitological study was performed during January-December 2016, to investigate helminth parasites infecting the domestic rabbit species Oryctolagus cuniculus at the Department of Animal Production, Faculty of Agriculture, Cairo University, Cairo, Egypt. RESULTS Of the twenty rabbit specimens examined for gastrointestinal nematodes, 75% were infected with adult oxyurid species, which were morphologically characterized using light and scanning electron microscopy studies. The oxyurid species had a triangular mouth opening surrounded by simple lips with four cephalic papillae and a pair of lateral amphidial pores with three teeth-like structures, an esophagus divided into a cylindrical corpus and globular bulb supported internally with tri-radiate valvular apparatus, and four caudal papillae distributed on the posterior end of males with a single short protruding spicule and ovijector apparatus opening ventrally by the vulva, surrounded by protruded lips in female worms. The species were compared morphometrically with other Passalurus species described previously; light differences were found in different body part sizes. Molecular characterization based on 18 small subunit (SSU) rDNA sequences showed ~ 85% similarity with other Chromadorea species. A preliminary genetic comparison between the 18S rDNA sequences of the isolated parasite and those of other oxyurid species suggested that it belonged to Passalurus ambiguus. The 18S rDNA sequence of the parasite was deposited in GenBank (accession no., MG310151.1). CONCLUSION The 18S rDNA gene of P. ambiguus was shown to yield a unique genetic sequence that confirms its taxonomic position within the Oxyuridae family.
Collapse
|
6
|
Yang X, Wang L, Chen H, Feng H, Shen B, Hu M, Fang R. The complete mitochondrial genome of Gastrothylax crumenifer (Gastrothylacidae, Trematoda) and comparative analyses with selected trematodes. Parasitol Res 2016; 115:2489-97. [PMID: 27021180 DOI: 10.1007/s00436-016-5019-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/16/2016] [Indexed: 11/29/2022]
Abstract
In the present study, we sequenced and analyzed the mitochondrial (mt) genome of Gastrothylax crumenifer and compared it with other selected trematodes. The full mt genome of G. crumenifer was amplified, sequenced, assembled, analyzed and then subjected to phylogenetic analysis. The complete mt genome of G. crumenifer is 14,801 bp in length and contains two rRNA genes, two non-coding regions (LNR and SNR), 12 protein-coding genes, and 22 transfer RNA genes. The gene organization of the G. crumenifer mt genome is the same as that of other trematodes, except for Schistosoma haematobium and Schistosoma spindale. All the genes are transcribed in the same direction and rich in "A + T", which is in accordance with other trematodes, such as Fasciola hepatica, Paramphistomum cervi, and Fischoederius elongatus. Phylogenetic analysis using concatenated amino acid sequences of the 12 protein-coding genes showed that G. crumenifer is closely related to F. elongatus. The availability of mt genome sequence of G. crumenifer can provide useful DNA markers for studying the molecular epidemiology and population genetics of this parasite and other paramphistomes.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Lixia Wang
- Hubei Provincial Center for Diseases Control and Prevention, Wuhan, 430079, Hubei, People's Republic of China
| | - Hongmei Chen
- Wuchang University of Technology, Wuhan, 430223, Hubei, People's Republic of China
| | - Hanli Feng
- Hubei Entry-exit Inspection and Quarantine Bureau, Wuhan, 430022, Hubei, People's Republic of China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
7
|
Comparative analyses of the complete mitochondrial genomes of the two murine pinworms Aspiculuris tetraptera and Syphacia obvelata. Gene 2016; 585:71-75. [PMID: 27016298 DOI: 10.1016/j.gene.2016.03.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/13/2016] [Accepted: 03/20/2016] [Indexed: 01/17/2023]
Abstract
Pinworms Aspiculuris tetraptera and Syphacia obvelata are important parasitic nematodes of laboratory mice, rat and other rodents. However, the mitochondrial (mt) genome of these parasites have not been known yet. In the present study, the complete mt genomes of A. tetraptera and S. obvelata were sequenced, which were 13,669 bp and 14,235 bp in size, respectively. Both genomes included 12 protein-coding genes, two rRNA genes, 22 tRNA genes and one non-coding region. The mt genomes of A. tetraptera and S. obvelata preferred bases A and T, with the highest for T and the lowest for C. The mt gene arrangements of the two pinworms were the same as that of the GA8 type. Phylogenetic analysis using mtDNA data revealed that the Bayesian inference (BI) trees contained two big branches: species from Oxyuridomorpha, Rhabditomorpha and Ascaridomorpha formed one branch, and those from Spiruromorpha formed another branch with high statistical support. The two murine pinworms A. tetraptera and S. obvelata have closer relationship than to other pinworms. This study provides a foundation for studying the population genetics, systematics and molecular phylogeny of pinworms.
Collapse
|
8
|
The complete mitochondrial genome of Gasterophilus intestinalis, the first representative of the family Gasterophilidae. Parasitol Res 2016; 115:2573-9. [PMID: 26987644 DOI: 10.1007/s00436-016-5002-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/09/2016] [Indexed: 10/22/2022]
Abstract
Gasterophilus spp. (Diptera: Gasterophilidae) has a worldwide distribution; however, no complete mitochondrial (mt) genome data is available for Diptera which has greatly impeded population genetics, phylogenetics, and systematics studies in Gasterophilidae. Mt genome is known to provide genetic markers for investigations in these areas, but complete mt genomic datasets have been lacking for many Gasterophilidae species. Herein, we present the complete mt genome of the third-stage larvae (L3) of Gasterophilus intestinalis from the stomach wall of naturally infected horses in Heilongjiang province (HLJ) and Xinjiang Uygur Autonomous Region (XJ), China. The complete mt genome of G. intestinalis was 15,687 bp (HLJ) and 15,660 bp (XJ) in length and consists of 37 genes, including 13 genes for proteins, 22 genes for tRNA, and 2 genes for rRNA. The gene arrangement is the same as those of Oestroidae species. Phylogenetic analyses using concatenated amino acid sequences of 12 protein-coding genes by Bayesian inference (BI) and maximum likelihood (ML), suggested that the families Gasterophilidae and Oestroidae were more closely related than to Tachinidae. The mt genome of G. intestinalis represents the first mt genome of any member of the family Gasterophilidae. These data provide novel mtDNA markers for studying the molecular epidemiology and population genetics of the G. intestinalis and its congeners.
Collapse
|
9
|
Cheng T, Liu GH, Song HQ, Lin RQ, Zhu XQ. The complete mitochondrial genome of the dwarf tapeworm Hymenolepis nana--a neglected zoonotic helminth. Parasitol Res 2015; 115:1253-62. [PMID: 26666886 DOI: 10.1007/s00436-015-4862-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/30/2015] [Indexed: 01/18/2023]
Abstract
Hymenolepis nana, commonly known as the dwarf tapeworm, is one of the most common tapeworms of humans and rodents and can cause hymenolepiasis. Although this zoonotic tapeworm is of socio-economic significance in many countries of the world, its genetics, systematics, epidemiology, and biology are poorly understood. In the present study, we sequenced and characterized the complete mitochondrial (mt) genome of H. nana. The mt genome is 13,764 bp in size and encodes 36 genes, including 12 protein-coding genes, 2 ribosomal RNA, and 22 transfer RNA genes. All genes are transcribed in the same direction. The gene order and genome content are completely identical with their congener Hymenolepis diminuta. Phylogenetic analyses based on concatenated amino acid sequences of 12 protein-coding genes by Bayesian inference, Maximum likelihood, and Maximum parsimony showed the division of class Cestoda into two orders, supported the monophylies of both the orders Cyclophyllidea and Pseudophyllidea. Analyses of mt genome sequences also support the monophylies of the three families Taeniidae, Hymenolepididae, and Diphyllobothriidae. This novel mt genome provides a useful genetic marker for studying the molecular epidemiology, systematics, and population genetics of the dwarf tapeworm and should have implications for the diagnosis, prevention, and control of hymenolepiasis in humans.
Collapse
Affiliation(s)
- Tian Cheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Guo-Hua Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Hui-Qun Song
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Rui-Qing Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China. .,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, Guangdong Province, 510642, People's Republic of China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province, 225009, People's Republic of China.
| |
Collapse
|