1
|
Medeiros EG, Valente MR, Honorato L, Ferreira MDS, Mendoza SR, Gonçalves DDS, Martins Alcântara L, Gomes KX, Pinto MR, Nakayasu ES, Clair G, da Rocha IFM, dos Reis FCG, Rodrigues ML, Alves LR, Nimrichter L, Casadevall A, Guimarães AJ. Comprehensive characterization of extracellular vesicles produced by environmental (Neff) and clinical (T4) strains of Acanthamoeba castellanii. mSystems 2024; 9:e0122623. [PMID: 38717186 PMCID: PMC11237502 DOI: 10.1128/msystems.01226-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/01/2024] [Indexed: 06/19/2024] Open
Abstract
We conducted a comprehensive comparative analysis of extracellular vesicles (EVs) from two Acanthamoeba castellanii strains, Neff (environmental) and T4 (clinical). Morphological analysis via transmission electron microscopy revealed slightly larger Neff EVs (average = 194.5 nm) compared to more polydisperse T4 EVs (average = 168.4 nm). Nanoparticle tracking analysis (NTA) and dynamic light scattering validated these differences. Proteomic analysis of the EVs identified 1,352 proteins, with 1,107 common, 161 exclusive in Neff, and 84 exclusively in T4 EVs. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping revealed distinct molecular functions and biological processes and notably, the T4 EVs enrichment in serine proteases, aligned with its pathogenicity. Lipidomic analysis revealed a prevalence of unsaturated lipid species in Neff EVs, particularly triacylglycerols, phosphatidylethanolamines (PEs), and phosphatidylserine, while T4 EVs were enriched in diacylglycerols and diacylglyceryl trimethylhomoserine, phosphatidylcholine and less unsaturated PEs, suggesting differences in lipid metabolism and membrane permeability. Metabolomic analysis indicated Neff EVs enrichment in glycerolipid metabolism, glycolysis, and nucleotide synthesis, while T4 EVs, methionine metabolism. Furthermore, RNA-seq of EVs revealed differential transcript between the strains, with Neff EVs enriched in transcripts related to gluconeogenesis and translation, suggesting gene regulation and metabolic shift, while in the T4 EVs transcripts were associated with signal transduction and protein kinase activity, indicating rapid responses to environmental changes. In this novel study, data integration highlighted the differences in enzyme profiles, metabolic processes, and potential origins of EVs in the two strains shedding light on the diversity and complexity of A. castellanii EVs and having implications for understanding host-pathogen interactions and developing targeted interventions for Acanthamoeba-related diseases.IMPORTANCEA comprehensive and fully comparative analysis of extracellular vesicles (EVs) from two Acanthamoeba castellanii strains of distinct virulence, a Neff (environmental) and T4 (clinical), revealed striking differences in their morphology and protein, lipid, metabolites, and transcripts levels. Data integration highlighted the differences in enzyme profiles, metabolic processes, and potential distinct origin of EVs from both strains, shedding light on the diversity and complexity of A. castellanii EVs, with direct implications for understanding host-pathogen interactions, disease mechanisms, and developing new therapies for the clinical intervention of Acanthamoeba-related diseases.
Collapse
Affiliation(s)
- Elisa Gonçalves Medeiros
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Michele Ramos Valente
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Leandro Honorato
- Departamento de Microbiologia Geral, Laboratório de Glicobiologia de Eucariotos, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marina da Silva Ferreira
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Susana Ruiz Mendoza
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diego de Souza Gonçalves
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Lucas Martins Alcântara
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Kamilla Xavier Gomes
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Departamento de Microbiologia Geral, Laboratório de Glicobiologia de Eucariotos, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcia Ribeiro Pinto
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Ernesto S. Nakayasu
- Biological Science Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Geremy Clair
- Biological Science Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | - Flavia C. G. dos Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Fiocruz, Curitiba, Paraná, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fiocruz, Rio de Janeiro, Brazil
| | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Fiocruz, Curitiba, Paraná, Brazil
- Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| | - Lysangela R. Alves
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Fiocruz, Curitiba, Paraná, Brazil
| | - Leonardo Nimrichter
- Departamento de Microbiologia Geral, Laboratório de Glicobiologia de Eucariotos, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Rede Micologia RJ–Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Allan Jefferson Guimarães
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Rede Micologia RJ–Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Loufouma-Mbouaka A, Martín-Pérez T, Köhsler M, Danisman Z, Schwarz M, Mazumdar R, Samba-Louaka A, Walochnik J. Characterization of novel extracellular proteases produced by Acanthamoeba castellanii after contact with human corneal epithelial cells and their relevance to pathogenesis. Parasit Vectors 2024; 17:242. [PMID: 38812022 PMCID: PMC11137893 DOI: 10.1186/s13071-024-06304-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/24/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Proteases produced by Acanthamoeba spp. play an important role in their virulence and may be the key to understanding Acanthamoeba pathogenesis; thus, increasing attention has been directed towards these proteins. The present study aimed to investigate the lytic factors produced by Acanthamoeba castellanii during the first hours of in vitro co-culture with human corneal epithelial cells (HCECs). METHODS We used one old and one recent Acanthamoeba isolate, both from patients with severe keratitis, and subsets of these strains with enhanced pathogenic potential induced by sequential passaging over HCEC monolayers. The proteolytic profiles of all strains and substrains were examined using 1D in-gel zymography. RESULTS We observed the activity of additional proteases (ranging from 33 to 50 kDa) during the early interaction phase between amoebae and HCECs, which were only expressed for a short time. Based on their susceptibilities to protease inhibitors, these proteases were characterized as serine proteases. Protease activities showed a sharp decline after 4 h of co-incubation. Interestingly, the expression of Acanthamoeba mannose-binding protein did not differ between amoebae in monoculture and those in co-culture. Moreover, we observed the activation of matrix metalloproteinases in HCECs after contact with Acanthamoeba. CONCLUSIONS This study revealed the involvement of two novel serine proteases in Acanthamoeba pathogenesis and suggests a pivotal role of serine proteases during Acanthamoeba-host cell interaction, contributing to cell adhesion and lysis.
Collapse
Affiliation(s)
- Alvie Loufouma-Mbouaka
- Center for Pathophysiology, Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Tania Martín-Pérez
- Center for Pathophysiology, Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Martina Köhsler
- Center for Pathophysiology, Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Zeynep Danisman
- Center for Pathophysiology, Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Maya Schwarz
- Center for Pathophysiology, Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Rounik Mazumdar
- Max Perutz Labs Vienna, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
- GenomeByte Ltd, London, UK
| | - Ascel Samba-Louaka
- Laboratoire Ecologie Et Biologie Des Interactions, Université de Poitiers, UMR CNRS, 7267, Poitiers, France
| | - Julia Walochnik
- Center for Pathophysiology, Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Mahdavi Poor B, Rashedi J, Asgharzadeh V, Mirmazhary A, Gheitarani N. Proteases of Acanthamoeba. Parasitol Res 2023; 123:19. [PMID: 38063887 DOI: 10.1007/s00436-023-08059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023]
Abstract
The members of genus Acanthamoeba are the etiological agent of uncommon but severe or even fatal opportunistic infections in human beings. The presence of different classes of intracellular and extracellular proteases including serine proteases, cysteine proteases, and metalloproteases has been well documented in environmental and clinical isolates of Acanthamoeba spp. However, the role of the proteolytic enzymes in physiological, biological, and pathological mechanisms of the amoeba remains partially investigated. Some attempts have been conducted using various methods to determine the profile of proteases (number, class, optimal conditions, and activity of the enzymes), and possible pathogenicity mechanism of the proteolytic enzymes (various protein substrate degradation, cytopathic effect on different cell lines). In some cases, it was attempted to correlate intracellular and extracellular protease profile with pathogenicity potential of strains. This review revealed that the protease profile of different strains of Acanthamoeba was extremely complex, therefore, further comprehensive studies with application of a combination of various methods may help to elucidate the role of the enzymes.
Collapse
Affiliation(s)
- Behroz Mahdavi Poor
- Department of Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Golgasht Ave, Azadi St, Tabriz, Iran.
| | - Jalil Rashedi
- Department of Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Golgasht Ave, Azadi St, Tabriz, Iran
| | - Vahid Asgharzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirali Mirmazhary
- Department of Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Golgasht Ave, Azadi St, Tabriz, Iran
| | | |
Collapse
|
4
|
Matos de Oliveira YL, Lima ETS, Rott MB, Fernandes RPM, Jain S, de Aragão Batista MV, Santana Dolabella S. Occurrence, molecular diversity and pathogenicity of Acanthamoeba spp. isolated from aquatic environments of Northeastern Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1686-1696. [PMID: 36041225 DOI: 10.1080/09603123.2022.2117280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Acanthamoeba is a free-living amoeba (FLA) that is ubiquitous in nature and can cause serious pathologies in humans. This protozoan has been detected in several environmental sources, such as soil, water, and swimming pools. The aim of this study was to evaluate the occurrence and molecular diversity of Acanthamoeba spp. in aquatic environments of the state of Sergipe, northeastern Brazil, and to determine the pathogenic potential of the isolated samples. A total of 138 samples were collected from 69 aquatic environments and, after cell culture, 74% of the samples were positive for FLA, 47% belonging to the genus Acanthamoeba. Genotypic analysis was performed using the primers JDP1 and JDP2, confirming distinct Acanthamoeba genotypes: 18 (75%) isolates belonging to genotype T4, two (8%) to T3, and one isolate (4%) to genotype T5. Tests carried out to analyze the pathogenic potential showed that 11 isolates could grow at 0.5 M mannitol concentration and seven isolates supported hyperosmolarity. In the thermotolerance test, two isolates grew at 37°C. These results confirm the presence and the pathogenic potential of FLA of the genus Acanthamoeba in aquatic environments of the municipalities of Sergipe.
Collapse
Affiliation(s)
- Yrna Lorena Matos de Oliveira
- Laboratory of Entomology and Tropical Parasitology, Department of Morphology, University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Erica Tirzah Santos Lima
- Laboratory of Entomology and Tropical Parasitology, Department of Morphology, University of Sergipe, São Cristóvão, Sergipe, Brazil
- Postgraduate Program in Industrial Biotechnology, Universidade Tiradentes, Aracaju, Sergipe, Brazil
| | - Marilise Brittes Rott
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Sona Jain
- Postgraduate Program in Industrial Biotechnology, Universidade Tiradentes, Aracaju, Sergipe, Brazil
| | - Marcus Vinicius de Aragão Batista
- Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Silvio Santana Dolabella
- Laboratory of Entomology and Tropical Parasitology, Department of Morphology, University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
7
|
Łanocha-Arendarczyk N, Baranowska-Bosiacka I, Gutowska I, Kot K, Metryka E, Kosik-Bogacka DI. Relationship between antioxidant defense in Acanthamoeba spp. infected lungs and host immunological status. Exp Parasitol 2018; 193:58-65. [PMID: 30201450 DOI: 10.1016/j.exppara.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/02/2018] [Accepted: 09/04/2018] [Indexed: 01/26/2023]
Abstract
The role of oxidative stress in the pathogenicity of acanthamoebiasis is an important aspect of the intricate and complex host-parasite relationship. The aim of this experimental study was to determine oxidative stress through the assessment of lipid peroxidation product (LPO) levels and antioxidant defense mechanism in Acanthamoeba spp. lung infections in immunocompetent and immunosuppressed hosts. In Acanthamoeba spp. infected immunocompetent mice we noted a significant increase in lung lipid peroxidation products (LPO) at 8 days and 16 days post infection (dpi). There was a significant upregulation in lung LPO in immunocompetent and immunosuppressed mice infected by Acanthamoeba spp. at 16 dpi. The superoxide dismutase activity decreased significantly in lungs in immunosuppressed mice at 8 dpi. The catalase activity was significantly upregulated in lungs in immunocompetent vs. immunosuppressed group and in immunocompetent vs. control mice at 16 dpi. The glutathione reductase activity was significantly lower in immunosuppressed group vs. immunosuppressed control at 24 dpi. We found significant glutathione peroxidase downregulation in immunocompetent and immunosuppressed groups vs. controls at 8 dpi, and in immunosuppressed vs. immunosuppressed control at 16 dpi. The consequence of the inflammatory response in immunocompetent and immunosuppressed hosts in the course of experimental Acanthamoeba spp. infection was the reduction of the antioxidant capacity of the lungs resulting from changes in the activity of antioxidant enzymes. Therefore, the imbalance between oxidant and antioxidant processes may play a major role in pathology associated with Acanthamoeba pneumonia.
Collapse
Affiliation(s)
- N Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Poland
| | - I Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Poland
| | - I Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Poland
| | - K Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Poland
| | - E Metryka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Poland
| | - D I Kosik-Bogacka
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Poland.
| |
Collapse
|