1
|
Souza Tada da Cunha P, Rodriguez Gini AL, Man Chin C, dos Santos JL, Benito Scarim C. Recent Progress in Thiazole, Thiosemicarbazone, and Semicarbazone Derivatives as Antiparasitic Agents Against Trypanosomatids and Plasmodium spp. Molecules 2025; 30:1788. [PMID: 40333793 PMCID: PMC12029465 DOI: 10.3390/molecules30081788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 05/09/2025] Open
Abstract
Neglected tropical diseases (NTDs), including Chagas disease, human African trypanosomiasis (HAT), leishmaniasis, and malaria, remain a major global health challenge, disproportionately affecting low-income populations. Current therapies for these diseases suffer from significant limitations, such as reduced efficacy, high toxicity, and emerging parasite resistance, highlighting the urgent need for new therapeutic strategies. In response, substantial efforts have been directed toward the synthesis of new molecules with improved potency, selectivity, and pharmacokinetic profiles. However, despite many of these compounds exhibiting favorable ADMET (absorption, distribution, metabolism, excretion, and toxicity) profiles and strong in vitro activity, their translation into in vivo models remains limited. Key challenges include the lack of investment, the absence of fully representative experimental models, and difficulties in extrapolating cell-based assay results to more complex biological systems. In this review, we analyzed the latest advancements (2019-2024) in the development of these compound classes, correlating predictive parameters with their observed biological activity. Among these parameters, we highlighted the partition coefficient (LogP), which measures a compound's lipophilicity and influences its ability to cross biological membranes, and Caco-2 cell permeability, an in vitro model widely used to predict intestinal drug absorption. Additionally, we prioritized the most promising molecules and structural classes for pharmaceutical development, discussing structure-activity relationships (SARs) and the remaining challenges that must be overcome to enable the clinical application of these compounds in the treatment of NTDs.
Collapse
Affiliation(s)
| | | | | | | | - Cauê Benito Scarim
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (P.S.T.d.C.); (A.L.R.G.); (C.M.C.); (J.L.d.S.)
| |
Collapse
|
2
|
Haddad H, da Franca Rodrigues KA, Othman H, Veras LMC, Rodrigues RRL, Ouahchi I, Ouni B, Zaϊri A. In vitro Antileishmanial Activity and In silico Molecular Modeling Studies of Novel Analogs of Dermaseptins S4 and B2. Curr Pharm Biotechnol 2025; 26:276-288. [PMID: 39257149 DOI: 10.2174/0113892010296038240427050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Leishmaniasis is responsible for approximately 65,000 annual deaths. Various Leishmania species are the predominant cause of visceral, cutaneous, or mucocutaneous leishmaniasis, affecting millions worldwide. The lack of a vaccine, emergence of resistance, and undesirable side effects caused by antileishmanial medications have prompted researchers to look for novel therapeutic approaches to treat this disease. Antimicrobial peptides (AMPs) offer an alternative for promoting the discovery of new drugs. METHODS In this study, we detail the synthesis process and investigate the antileishmanial activity against Leishmania (Viannia) braziliensis for peptides belonging to the dermaseptin (DS) family and their synthetic analogs. The MTT assay was performed to investigate the cytotoxicity of these peptides on the murine macrophage cell line RAW 264.7. Subsequently, we performed molecular modeling analysis to explore the structure-function correlation of the derivatives interacting with the parasitic membrane. RESULTS All examined derivatives displayed concentration-dependent antileishmanial effect at low concentrations. Their effectiveness varied according to the peptide's proprieties. Notably, peptides with higher levels of charge demonstrated the most pronounced activities. Cytotoxicity assays showed that all the tested peptides were not cytotoxic compared to the tested conventional drug. The structure-function relationships demonstrated that the charged N-terminus could be responsible for the antileishmanial effect observed on promastigotes. CONCLUSION Collectively, these results propose that dermaseptins (DS) might offer potential as promising candidates for the development of effective antileishmanial therapies.
Collapse
Affiliation(s)
- Houda Haddad
- BIOLIVAL Laboratory, Higher Institute of Biotechnology of Monastir ISBM, University of Monastir, 5000 Monastir, Tunisia
- Biochemistry Department, Faculty of Medicine, University of Sousse, 4002 Sousse, Tunisia
| | | | - Houcemeddine Othman
- Laboratory of Cytogenetics and Reproductive Biology, CHU Farhat Hached, 4000 Sousse, Tunisia
| | - Leiz Maria Costa Veras
- Biodiversity and Biotechnology Research Center, BIOTEC, Federal University of Piauí, Parnaíba, PI, Brazil
| | - Raiza Raianne Luz Rodrigues
- Laboratory of Infectious Diseases, Ladic, Campus Ministro Reis Velloso, Federal University of Delta do Parnaíba, 64202-020, Brazil
| | - Ines Ouahchi
- Biodiversity Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached University Hospital, 4000 Sousse, Tunisia
| | - Bouraoui Ouni
- Pharmacology department, Faculty of Medicine, University of Sousse, 4002 Sousse, Tunisia
| | - Amira Zaϊri
- Biochemistry Department, Faculty of Medicine, University of Sousse, 4002 Sousse, Tunisia
| |
Collapse
|
3
|
Abusharkh KAN, Comert Onder F, Çınar V, Onder A, Sıkık M, Hamurcu Z, Ozpolat B, Ay M. Novel benzothiazole/benzothiazole thiazolidine-2,4-dione derivatives as potential FOXM1 inhibitors: In silico, synthesis, and in vitro studies. Arch Pharm (Weinheim) 2024:e2400504. [PMID: 39318080 DOI: 10.1002/ardp.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024]
Abstract
The oncogenic transcription factor FOXM1 overexpressed in breast and other solid cancers, is a key driver of tumor growth and progression through complex interactions, making it an attractive molecular target for the development of targeted therapies. Despite the availability of small-molecule inhibitors, their limited specificity, potency, and efficacy hinder clinical translation. To identify effective FOXM1 inhibitors, we synthesized novel benzothiazole derivatives (KC10-KC13) and benzothiazole hybrids with thiazolidine-2,4-dione (KC21-KC36). These compounds were evaluated for FOXM1 inhibition. Molecular docking and molecular dynamics simulation analysis revealed their binding patterns and affinities for the FOXM1-DNA binding domain. The interactions with key amino acids such as Asn283, His287, and Arg286, crucial for FOXM1 inhibition, have been determined with the synthesized compounds. Additionally, the molecular modeling study indicated that KC12, KC21, and KC30 aligned structurally and interacted similarly to the reference compound FDI-6. In vitro studies with the MDA-MB-231 breast cancer cell line demonstrated that KC12, KC21, and KC30 significantly inhibited FOXM1, showing greater potency than FDI-6, with IC50 values of 6.13, 10.77, and 12.86 µM, respectively, versus 20.79 µM for FDI-6. Our findings suggest that KC12, KC21, and KC30 exhibit strong activity as FOXM1 inhibitors and may be suitable for in vivo animal studies.
Collapse
Affiliation(s)
- Khaled A N Abusharkh
- Department of Chemistry, School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
- Department of Chemistry, Natural Products and Drug Research Laboratory, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
- Department of Chemistry and Chemical Technology, Faculty of Science and Technology, Al-Quds University, East Jerusalem, Palestine
| | - Ferah Comert Onder
- Department of Medical Biology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Venhar Çınar
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Alper Onder
- Department of Chemistry, Natural Products and Drug Research Laboratory, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Merve Sıkık
- Department of Medical System Biology, School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Zuhal Hamurcu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
| | - Mehmet Ay
- Department of Chemistry, Natural Products and Drug Research Laboratory, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
4
|
Tuszewska H, Szczepański J, Mandziuk S, Trotsko N. Thiazolidin-4-one-based derivatives - Efficient tools for designing antiprotozoal agents. A review of the last decade. Bioorg Chem 2023; 133:106398. [PMID: 36739686 DOI: 10.1016/j.bioorg.2023.106398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/25/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Thiazolidin-4-one derivatives have a wide range of therapeutic implementations and clinical significance for medicinal chemistry. This heterocyclic ring has been reported to possess a variety of biological activities, including antiprotozoal activities that have inspired scientists to integrate this scaffold with different pharmacophoric fragments to design novel and effective antiprotozoal compounds. There are reviews describing thiazolidin-4-ones small molecules as good candidates with a single type of antiprotozoal activity, but none of these show collected news associated with the antiprotozoal activity of thiazolidin-4-ones and their SAR analysis from the last decade. In this review we are focusing on the antitoxoplasmic, anti-trypanosomal, antimalarial, antileishmanial, and antiamoebic activity of these derivatives, we attempt to summarize and analyze the recent developments with regard to the antiprotozoal potential of 4-TZD covering the structure-activity relationship and main molecular targets. The importance of various structural modifications at C2, N3, and C5 of the thiazolidine-4-one core has also been discussed in this review. We hope that all information concluded in this review can be useful for other researchers in constructing new effective antiprotozoal agents.
Collapse
Affiliation(s)
- Helena Tuszewska
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a, Chodzki Str., 20-093 Lublin, Poland
| | - Jacek Szczepański
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a, Chodzki Str., 20-093 Lublin, Poland
| | - Sławomir Mandziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8, Jaczewski Str., 20-090 Lublin, Poland
| | - Nazar Trotsko
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a, Chodzki Str., 20-093 Lublin, Poland.
| |
Collapse
|
5
|
Henriquez-Figuereo A, Morán-Serradilla C, Angulo-Elizari E, Sanmartín C, Plano D. Small molecules containing chalcogen elements (S, Se, Te) as new warhead to fight neglected tropical diseases. Eur J Med Chem 2023; 246:115002. [PMID: 36493616 DOI: 10.1016/j.ejmech.2022.115002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Neglected tropical diseases (NTDs) encompass a group of infectious diseases with a protozoan etiology, high incidence, and prevalence in developing countries. As a result, economic factors constitute one of the main obstacles to their management. Endemic countries have high levels of poverty, deprivation and marginalization which affect patients and limit their access to proper medical care. As a matter of fact, statistics remain uncollected in some affected areas due to non-reporting cases. World Health Organization and other organizations proposed a plan for the eradication and control of the vector, although many of these plans were halted by the COVID-19 pandemic. Despite of the available drugs to treat these pathologies, it exists a lack of effectiveness against several parasite strains. Treatment protocols for diseases such as American trypanosomiasis (Chagas disease), leishmaniasis, and human African trypanosomiasis (HAT) have not achieved the desired results. Unfortunately, these drugs present limitations such as side effects, toxicity, teratogenicity, renal, and hepatic impairment, as well as high costs that have hindered the control and eradication of these diseases. This review focuses on the analysis of a collection of scientific shreds of evidence with the aim of identifying novel chalcogen-derived molecules with biological activity against Chagas disease, leishmaniasis and HAT. Compounds illustrated in each figure share the distinction of containing at least one chalcogen element. Sulfur (S), selenium (Se), and tellurium (Te) have been grouped and analyzed in accordance with their design strategy, chemical synthesis process and biological activity. After an exhaustive revision of the related literature on S, Se, and Te compounds, 183 compounds presenting excellent biological performance were gathered against the different causative agents of CD, leishmaniasis and HAT.
Collapse
Affiliation(s)
- Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain
| | - Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| |
Collapse
|
6
|
Cardona HRA, Froes TQ, Souza BCD, Leite FHA, Brandão HN, Buaruang J, Kijjoa A, Alves CQ. Thermal shift assays of marine-derived fungal metabolites from Aspergillus fischeri MMERU 23 against Leishmania major pteridine reductase 1 and molecular dynamics studies. J Biomol Struct Dyn 2022; 40:11968-11976. [PMID: 34415221 DOI: 10.1080/07391102.2021.1966510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Marine-derived fungi are a promising source of bioactive molecules, especially species from extreme habitats. Although several secondary metabolites such as meroterpenoids and alkaloids have been isolated from cultures of Aspergillus fischeri, obtained from terrestrial habitats, there is no report on compounds isolated from marine-derived strains. Many metabolites isolated from marine-derived fungi exhibited a myriad of biological activities. Marine natural products have shown to be an important source of bioactive compounds and can assist in the discovery of molecules with affinity against validated targets from exclusive strains of parasites of medical importance such as pteridine reductase 1 (PTR1), from Leishmania major, which is essential for cell growth. Leishmaniasis is responsible for approximately 65,000 annual deaths. Despite the mortality data, drugs available for the treatment of patients are insufficient and have moderate therapeutic efficacy in addition to serious adverse effects, which make the development of new drugs urgent. The previously described aszonalenin (ASL), aszonapyrone A (ASP), acetylaszonalenin (ACZ), and helvolic acid (HAC) were isolated from the ethyl acetate extract of the culture of a marine sponge-associated A. fischeri MMERU 23 and their affinities against PTR1 were determined by ThermoFluor®. Among the tested compounds, only ACZ showed dose-dependent affinity against PTR1. Moreover, complementary molecular dynamics studies (t = 100 000 ps) have showed that this molecule performs hydrogen bonds with key residues at the active site for more than 60% of the productive trajectory time. The results indicate that ACZ could be a promising PTR1 inhibitor and a potential candidate for development of antileishmanial drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Thamires Q Froes
- Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Brazil
| | - Bruno C De Souza
- Departamento de Saúde, Universidade Estadual Feira de Santana, Bahia, Brazil
| | - Franco H A Leite
- Departamento de Saúde, Universidade Estadual Feira de Santana, Bahia, Brazil
| | - Hugo Neves Brandão
- Departamento de Saúde, Universidade Estadual Feira de Santana, Bahia, Brazil
| | - Jamrearn Buaruang
- Marine Microbe Environment Research Unit, Division of Environmental Science, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Universidade do Porto, Porto, Portugal
| | - Clayton Q Alves
- Departamento de Ciências Exatas, Universidade Estadual de Feira de Santana, Bahia, Brazil
| |
Collapse
|
7
|
Gouveia ALA, Santos FAB, Alves LC, Cruz-Filho IJ, Silva PR, Jacob ITT, Soares JCS, Santos DKDN, Souza TRCL, Oliveira JF, Lima MDCA. Thiazolidine derivatives: In vitro toxicity assessment against promastigote and amastigote forms of Leishmania infantum and ultrastructural study. Exp Parasitol 2022; 236-237:108253. [PMID: 35381223 DOI: 10.1016/j.exppara.2022.108253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/08/2022] [Accepted: 03/30/2022] [Indexed: 11/04/2022]
Abstract
Neglected diseases, such as Leishmaniasis, constitute a group of communicable diseases that occur mainly in tropical countries. Considered a public health problem with limited treatment. Therefore, there is a need for new therapies. In this sense, our proposal was to evaluate in vitro two series of thiazolidine compounds (7a-7e and 8a-8e) against Leishmania infantum. We performed in vitro evaluations through macrophage cytotoxicity assays (J774) and nitric oxide production, activity against promastigotes and amastigotes, as well as ultrastructural analyzes in promastigotes. In the evaluation of cytotoxicity, the thiazolidine compounds presented CC50 values between 8.52 and 126.83 μM. Regarding the evaluation against the promastigote forms, the IC50 values ranged between 0.42 and 142.43 μM. Compound 7a was the most promising, as it had the lowest IC50. The parasites treated with compound 7a showed several changes, such as cell body shrinkage, shortening and loss of the flagellum, intense mitochondrial edema and cytoplasmic vacuolization, leading the parasite to cell inviability. In assays against the amastigote forms, the compound showed a low IC50 (0.65 μM). These results indicate that compound 7a was efficient for both evolutionary forms of the parasite. In silico studies suggest that the compound has good oral bioavailability. These results show that compound 7a is a potential drug candidate for the treatment of Leishmaniasis.
Collapse
Affiliation(s)
- Allana L A Gouveia
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil
| | - Fábio A B Santos
- Aggeu Magalhães Institut. Oswaldo Cruz Foundation (IAM-FIOCRUZ), 50670-420, Recife, PE, Brazil
| | - Luiz C Alves
- Aggeu Magalhães Institut. Oswaldo Cruz Foundation (IAM-FIOCRUZ), 50670-420, Recife, PE, Brazil
| | - Iranildo José Cruz-Filho
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil
| | - Paula R Silva
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil
| | - Iris T T Jacob
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil
| | - José Cleberson S Soares
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil
| | - Dayane K D N Santos
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil
| | - Tulio Ricardo C L Souza
- Rural University of Pernambuco, Academic Unit of Belo Jardim, 55156-580, Belo Jardim, PE, Brazil
| | - Jamerson F Oliveira
- University for the International Integration of Afro-Brazilian Lusophony (UNILAB), 62790-970, Redenção, CE, Brazil
| | - Maria do Carmo A Lima
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil.
| |
Collapse
|
8
|
Leishmanicidal activity of Morita-Baylis-Hillman adducts. Parasitol Res 2022; 121:751-762. [PMID: 34988671 DOI: 10.1007/s00436-021-07421-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
Leishmaniasis is a neglected disease that affects millions of people, mostly in developing countries. Although this disease has a high impact on public health, there are few drug options to treat the different leishmaniasis forms. Additionally, these current therapies have various adverse effects, including gastrointestinal disturbances, headache, pancreatitis, and hepatotoxicity. Thus, it is essential to develop new drug prototypes to treat leishmaniasis. Accordingly, the present study aimed to evaluate the leishmanicidal activity of Morita-Baylis-Hillman adducts and their O-acetylates, carboxylic acid derivatives, and acid and ester derivatives of 2-methyl-phenylpropanoids against Leishmania chagasi. Initially, we evaluated the cytotoxicity of 16 derivatives (1-16G) against J774A.1 macrophages. Eight derivatives (2G, 4G, 5G, 7G, 9G, 10G, 13G, and 15G) showed no cytotoxicity at up to the maximum concentration tested (100 μM). When evaluated for antileishmanial effect against promastigote forms, 1G, 6G, 8G, 10G, 11G, 13G, 14G, 15G, and 16G displayed significant toxicity compared to the control (0.1% DMSO). Additionally, the compounds 1G, 5G, 7G, 9G, 11G, 13G, 14G, and 16G reduced macrophage infection by amastigotes. Thus, we conclude that these derivatives have antileishmanial effects, particularly 1G, which showed activity against promastigotes and amastigotes, and low toxicity against macrophages.
Collapse
|
9
|
Froes TQ, Chaves BT, Mendes MS, Ximenes RM, da Silva IM, da Silva PBG, de Albuquerque JFC, Castilho MS. Synthesis and biological evaluation of thiazolidinedione derivatives with high ligand efficiency to P. aeruginosa PhzS. J Enzyme Inhib Med Chem 2021; 36:1217-1229. [PMID: 34080514 PMCID: PMC8186431 DOI: 10.1080/14756366.2021.1931165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 01/07/2023] Open
Abstract
The thiazolidinone ring is found in compounds that have widespan biology activity and there is mechanism-based evidence that compounds bearing this moiety inhibit P. aeruginosa PhzS (PaPzhS), a key enzyme in the biosynthesis of the virulence factor named pyocyanin. Ten novel thiazolidinone derivatives were synthesised and screened against PaPhzS, using two orthogonal assays. The biological results provided by these and 28 other compounds, whose synthesis had been described, suggest that the dihydroquinazoline ring, found in the previous hit (A- Kd = 18 µM and LE = 0.20), is not required for PaPzhS inhibition, but unsubstituted nitrogen at the thiazolidinone ring is. The molecular simplification approach, pursued in this work, afforded an optimised lead compound (13- 5-(2,4-dimethoxyphenyl)thiazolidine-2,4-dione) with 10-fold improvement in affinity (Kd= 1.68 µM) and more than 100% increase in LE (0.45), which follows the same inhibition mode as the original hit compound (competitive to NADH).Executive summaryPhzS is a key enzyme in the pyocyanin biosynthesis pathway in P. aeruginosa.Orthogonal assays (TSA and FITC) show that fragment-like thiazolidinedione derivatives bind to PaPhzS with one-digit micromolar affinity.Fragment-like thiazolidinedione derivatives bind to the cofactor (NADH) binding site in PaPhzS.The molecular simplification optimised the ligand efficiency and affinity of the lead compound.
Collapse
Affiliation(s)
- Thamires Quadros Froes
- Programa de Pós-graduação em biotecnologia da, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | | | - Marina Sena Mendes
- Faculdade de Farmácia da, Universidade Federal da Bahia, Salvador, Brazil
| | - Rafael Matos Ximenes
- Departamento de Antibióticos da, Universidade Federal de Pernambuco. Av. Prof. Moraes Rego, Recife-Pe, Brazil
| | - Ivanildo Mangueira da Silva
- Departamento de Antibióticos da, Universidade Federal de Pernambuco. Av. Prof. Moraes Rego, Recife-Pe, Brazil
| | | | | | - Marcelo Santos Castilho
- Programa de Pós-graduação em biotecnologia da, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
- Faculdade de Farmácia da, Universidade Federal da Bahia, Salvador, Brazil
- Programa de Pós-Graduação em Farmácia da, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
10
|
Mech D, Kurowska A, Trotsko N. The Bioactivity of Thiazolidin-4-Ones: A Short Review of the Most Recent Studies. Int J Mol Sci 2021; 22:11533. [PMID: 34768964 PMCID: PMC8584074 DOI: 10.3390/ijms222111533] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 01/28/2023] Open
Abstract
Thiazolidin-4-ones is an important heterocyclic ring system of a pharmacophore and a privileged scaffold in medicinal chemistry. This review is focused on the latest scientific reports regarding biological activities of thiazolidin-4-ones published in 2020 and 2021. The review covers recent information about antioxidant, anticancer, anti-inflammatory, analgesic, anticonvulsant, antidiabetic, antiparasitic, antimicrobial, antitubercular and antiviral properties of thiazolidin-4-ones. Additionally, the influence of different substituents in molecules on their biological activity was discussed in this paper. Thus, this study may help to optimize the structure of thiazolidin-4-one derivatives as more efficient drug agents. Presented information may be used as a practical hint for rational design of new small molecules with biological activity, especially among thiazolidin-4-ones.
Collapse
Affiliation(s)
| | | | - Nazar Trotsko
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (D.M.); (A.K.)
| |
Collapse
|
11
|
Banfi FF, Krombauer GC, da Fonseca AL, Nunes RR, Andrade SN, de Rezende MA, Chaves MH, Monção EDS, Taranto AG, Rodrigues DDJ, Vieira GM, de Castro WV, Varotti FDP, Sanchez BAM. Dehydrobufotenin extracted from the Amazonian toad Rhinella marina (Anura: Bufonidae) as a prototype molecule for the development of antiplasmodial drugs. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200073. [PMID: 33519927 PMCID: PMC7812938 DOI: 10.1590/1678-9199-jvatitd-2020-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/28/2020] [Indexed: 11/22/2022] Open
Abstract
Background: The resistance against antimalarial drugs represents a global challenge in the fight and control of malaria. The Brazilian biodiversity can be an important tool for research and development of new medicinal products. In this context, toxinology is a multidisciplinary approach on the development of new drugs, including the isolation, purification, and evaluation of the pharmacological activities of natural toxins. The present study aimed to evaluate the cytotoxicity, as well as the antimalarial activity in silico and in vitro of four compounds isolated from Rhinella marina venom as potential oral drug prototypes. Methods: Four compounds were challenged against 35 target proteins from P. falciparum and screened to evaluate their physicochemical properties using docking assay in Brazilian Malaria Molecular Targets (BraMMT) software and in silico assay in OCTOPUS® software. The in vitro antimalarial activity of the compounds against the 3D7 Plasmodium falciparum clones were assessed using the SYBR Green I based assay (IC50). For the cytotoxic tests, the LD50 was determined in human pulmonary fibroblast cell line using the [3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay. Results: All compounds presented a ligand-receptor interaction with ten Plasmodium falciparum-related protein targets, as well as antimalarial activity against chloroquine resistant strain (IC50 = 3.44 μM to 19.11 μM). Three of them (dehydrobufotenine, marinobufagin, and bufalin) showed adequate conditions for oral drug prototypes, with satisfactory prediction of absorption, permeability, and absence of toxicity. In the cell viability assay, only dehydrobufotenin was selective for the parasite. Conclusions: Dehydrobufotenin revealed to be a potential oral drug prototype presenting adequate antimalarial activity and absence of cytotoxicity, therefore should be subjected to further studies.
Collapse
Affiliation(s)
- Felipe Finger Banfi
- Laboratory of Immunopathology and Tropical Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, Sinop, MT, Brazil
| | - Gabriela Camila Krombauer
- Laboratory of Immunopathology and Tropical Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, Sinop, MT, Brazil
| | - Amanda Luisa da Fonseca
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis, MG, Brazil
| | - Renata Rachide Nunes
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis, MG, Brazil
| | - Silmara Nunes Andrade
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis, MG, Brazil
| | - Millena Alves de Rezende
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis, MG, Brazil
| | | | | | - Alex Guterres Taranto
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis, MG, Brazil
| | - Domingos de Jesus Rodrigues
- Center for Biodiversity Studies in the Amazon Region of Mato Grosso (NEBAM), Federal University of Mato Grosso, MT, Brazil
| | | | | | - Fernando de Pilla Varotti
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis, MG, Brazil
| | - Bruno Antonio Marinho Sanchez
- Laboratory of Immunopathology and Tropical Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, Sinop, MT, Brazil
| |
Collapse
|
12
|
Lopes SP, Yepes LM, Pérez-Castillo Y, Robledo SM, de Sousa DP. Alkyl and Aryl Derivatives Based on p-Coumaric Acid Modification and Inhibitory Action against Leishmania braziliensis and Plasmodium falciparum. Molecules 2020; 25:molecules25143178. [PMID: 32664596 PMCID: PMC7397144 DOI: 10.3390/molecules25143178] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
In low-income populations, neglected diseases are the principal cause of mortality. Of these, leishmaniasis and malaria, being parasitic, protozoan infections, affect millions of people worldwide and are creating a public health problem. The present work evaluates the leishmanicidal and antiplasmodial action of a series of twelve p-coumaric acid derivatives. Of the tested derivatives, eight presented antiparasitic activities 1–3, 8–12. The hexyl p-coumarate derivative (9) (4.14 ± 0.55 μg/mL; selectivity index (SI) = 2.72) showed the highest leishmanicidal potency against the Leishmania braziliensis amastigote form. The results of the molecular docking study suggest that this compound inhibits aldehyde dehydrogenase (ALDH), mitogen-activated kinase protein (MPK4), and DNA topoisomerase 2 (TOP2), all of which are key enzymes in the development of Leishmania braziliensis. The data indicate that these enzymes interact via Van der Waals bonds, hydrophobic interactions, and hydrogen bonds with phenolic and aliphatic parts of this same compound. Of the other compounds analyzed, methyl p-coumarate (64.59 ± 2.89 μg/mL; IS = 0.1) demonstrated bioactivity against Plasmodium falciparum. The study reveals that esters presenting a p-coumarate substructure are promising for use in synthesis of derivatives with good antiparasitic profiles.
Collapse
Affiliation(s)
- Susiany P. Lopes
- PostGraduation Program in Technological Development and Innovation in Medicines, Federal University of Paraíba, João Pessoa CEP 58051-970, Brazil;
| | - Lina M. Yepes
- PECET-Facultad de Medicina, Universidad de Antioquia, Medellín Calle 70 # 52-21, Colombia; (L.M.Y.); (S.M.R.)
| | | | - Sara M. Robledo
- PECET-Facultad de Medicina, Universidad de Antioquia, Medellín Calle 70 # 52-21, Colombia; (L.M.Y.); (S.M.R.)
| | - Damião P. de Sousa
- PostGraduation Program in Technological Development and Innovation in Medicines, Federal University of Paraíba, João Pessoa CEP 58051-970, Brazil;
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa CEP 58051-970, Brazil
- Correspondence:
| |
Collapse
|