1
|
Haapanen S, Barker H, Carta F, Supuran CT, Parkkila S. Novel Drug Screening Assay for Acanthamoeba castellanii and the Anti-Amoebic Effect of Carbonic Anhydrase Inhibitors. J Med Chem 2024; 67:152-164. [PMID: 38150360 PMCID: PMC10788897 DOI: 10.1021/acs.jmedchem.3c01020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
Acanthamoeba castellanii is an amoeba that inhabits soil and water in every part of the world. Acanthamoeba infection of the eye causes keratitis and can lead to a loss of vision. Current treatment options are only moderately effective, have multiple harmful side effects, and are tedious. In our study, we developed a novel drug screening method to define the inhibitory properties of potential new drugs against A. castellanii in vitro. We found that the clinically used carbonic anhydrase inhibitors, acetazolamide, ethoxzolamide, and dorzolamide, have promising antiamoebic properties.
Collapse
Affiliation(s)
- Susanna Haapanen
- Faculty
of Medicine and Health Technology, Tampere
University, FI-33520 Tampere, Finland
| | - Harlan Barker
- Faculty
of Medicine and Health Technology, Tampere
University, FI-33520 Tampere, Finland
- Fimlab
Ltd, Tampere University Hospital, FI-33520 Tampere, Finland
| | - Fabrizio Carta
- Neurofarba
Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff 6, Sesto Fiorentino, I-50019 Firenze, Italy
| | - Claudiu T. Supuran
- Neurofarba
Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff 6, Sesto Fiorentino, I-50019 Firenze, Italy
| | - Seppo Parkkila
- Faculty
of Medicine and Health Technology, Tampere
University, FI-33520 Tampere, Finland
- Fimlab
Ltd, Tampere University Hospital, FI-33520 Tampere, Finland
| |
Collapse
|
2
|
Siddiqui R, Makhlouf Z, Akbar N, Khamis M, Ibrahim T, Khan AS, Khan NA. Antiamoebic properties of Methyltrioctylammonium chloride based deep eutectic solvents. Cont Lens Anterior Eye 2023; 46:101758. [PMID: 36243521 DOI: 10.1016/j.clae.2022.101758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE This aim of this study was to assess anti-parasitic properties of deep eutectic solvents against eye pathogen, Acanthamoeba, often associated with the use of contact lens. METHODS Assays were performed to investigate the effects of various Methyltrioctylammonium chloride-based deep eutectic solvents on Acanthamoeba castellanii, comprising amoebicidal assays, encystment assays, excystment assays, cytotoxicity assays by measuring lactate dehydrogenase release from human cells, and cytopathogenicity assays to determine parasite-mediated host cell death. RESULTS In a 2 h incubation period, DES-B, DES-C, DES-D, and DES-E exhibited up to 85 % amoebicidal activity at micromolar doses, which was enhanced further following 24 h incubation. When tested in encystment assays, selected deep eutectic solvents abolished cyst formation and were able to block excystment of A. castellanii. All solvents exhibited minimal human cell cytotoxicity except DES-D. Finally, all tested deep eutectic solvents inhibited amoeba-mediated cytopathogenicity, except DES-B. CONCLUSIONS Deep eutectic solvents show potent antiamoebic effects. These findings are promising and could lead to the development of novel contact lens disinfectants, as well as opening several avenues to explore the molecular mechanisms, various doses and incubation periods, and use of different bases against Acanthamoeba castellanii.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates; Istinye Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Zinb Makhlouf
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Noor Akbar
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Mustafa Khamis
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Taleb Ibrahim
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Amir Sada Khan
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates; Department of Chemistry, University of Science & Technology, Banuu 28100, Khyber Pakhtunkhwa, C
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University, City, Sharjah 27272, United Arab Emirates; Istinye Faculty of Medicine, Istinye University, Istanbul, Turkey..
| |
Collapse
|
3
|
Synthesis and Evaluation of Novel DNA Minor Groove Binders as Antiamoebic Agents. Antibiotics (Basel) 2022; 11:antibiotics11070935. [PMID: 35884189 PMCID: PMC9312114 DOI: 10.3390/antibiotics11070935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022] Open
Abstract
The free-living amoeba Acanthamoeba castellanii is responsible for the central nervous infection granulomatous amoebic encephalitis and sight-threatening infection Acanthamoeba keratitis. Moreover, no effective treatment is currently present, and a combination drug therapy is used. In this study, twelve DNA minor groove binders (MGBs) were synthesized and tested for their antiamoebic activity via amoebicidal, encystation, excystation, and cytopathogenicity assays. It was found that the compounds MGB3, MGB6, MGB22, MGB24, and MGB16 significantly reduce amoeba viability to 76.20%, 59.45%, 66.5%, 39.32%, and 43.21%, respectively, in amoebicidal assays. Moreover, the compounds MGB6, MGB20, MGB22, MGB28, MGB30, MGB32, and MGB16 significantly inhibit Acanthamoeba cysts, leading to the development of only 46.3%, 39%, 30.3%, 29.6%, 27.8%, 41.5%, and 45.6% cysts. Additionally, the compounds MGB3, MGB4, MGB6, MGB22, MGB24, MGB28, MGB32, and MGB16 significantly reduce the re-emergence of cysts to trophozoites, with viable trophozoites being only 64.3%, 47.3%, 41.4%, 52.9%, 55.4%, 40.6%, 62.1%, and 51.7%. Moreover, the compounds MGB3, MGB4, and MGB6 exhibited the greatest reduction in amoeba-mediated host-cell death, with cell death reduced to 41.5%, 49.4%, and 49.5%. With the following determined, future in vivo studies can be carried out to understand the effect of the compounds on animal models such as mice.
Collapse
|
4
|
Ahmed U, Ho KY, Simon SE, Saad SM, Ong SK, Anwar A, Tan KO, Sridewi N, Khan KM, Khan NA, Anwar A. Potential anti-acanthamoebic effects through inhibition of CYP51 by novel quinazolinones. Acta Trop 2022; 231:106440. [PMID: 35378058 DOI: 10.1016/j.actatropica.2022.106440] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022]
Abstract
Acanthamoeba spp. are free living amoebae which can give rise to Acanthamoeba keratitis and granulomatous amoebic encephalitis. The surface of Acanthamoeba contains ergosterol which is an important target for drug development against eukaryotic microorganisms. A library of ten functionally diverse quinazolinone derivatives (Q1-Q10) were synthesised to assess their activity against Acanthamoeba castellanii T4. The in-vitro effectiveness of these quinazolinones were investigated against Acanthamoeba castellanii by amoebicidal, excystation, host cell cytopathogenicity, and NADPH-cytochrome c reductase assays. Furthermore, wound healing capability was assessed at different time durations. Maximum inhibition at 50 μg/mL was recorded for compounds Q5, Q6 and Q8, while the compound Q3 did not exhibit amoebicidal effects at tested concentrations. Moreover, LDH assay was conducted to assess the cytotoxicity of quinazolinones against HaCaT cell line. The results of wound healing assay revealed that all compounds are not cytotoxic and are likely to promote wound healing at 10 μg/mL. The excystation assays revealed that these compounds significantly inhibit the morphological transformation of A. castellanii. Compound Q3, Q7 and Q8 elevated the level of NADPH-cytochrome c reductase up to five folds. Sterol 14alpha-demethylase (CYP51) a reference enzyme in ergosterol pathway was used as a potential target for anti-amoebic drugs. In this study using i-Tasser, the protein structure of Acanthamoeba castellanii (AcCYP51) was developed in comparison with Naegleria fowleri protein (NfCYP51) structure. The sequence alignment of both proteins has shown 42.72% identity. Compounds Q1-Q10 were then molecularly docked with the predicted AcCYP51. Out of ten quinazolinones, three compounds (Q3, Q7 and Q8) showed good binding activity within 3 Å of TYR 114. The in-silico study confirmed that these compounds are the inhibitor of CYP51 target site. This report presents several potential lead compounds belonging to quinazolinone derivatives for drug discovery against Acanthamoeba infections.
Collapse
Affiliation(s)
- Usman Ahmed
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Keat-Yie Ho
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Samson Eugin Simon
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | | | - Seng-Kai Ong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Areeba Anwar
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Kuan Onn Tan
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Nanthini Sridewi
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, University City, United Arab Emirates
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
5
|
Eldeek HE, Farrag HMM, Tolba MEM, El-Deek HE, Ali MO, Ibraheim ZZ, Bayoumi SA, Hassanin ESA, Alkhalil SS, Huseein EAEHM. Amoebicidal effect of Allium cepa against Allovahlkampfia spelaea: A keratitis model. Saudi Pharm J 2022; 30:1120-1136. [PMID: 36164578 PMCID: PMC9508644 DOI: 10.1016/j.jsps.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/10/2022] [Indexed: 11/27/2022] Open
Abstract
Allovahlkampfia spelaea (A. spelaea) is a free-living amoeba, proved to cause Acanthamoeba-like keratitis with quite difficult treatment. This study aimed to evaluate the amoebicidal effect of Allium cepa (A. cepa) on A. spelaea trophozoites and cysts both in vitro and in vivo using Chinchilla rabbits as an experimental model of this type of keratitis. Chemical constituents of the aqueous extract of A. cepa were identified using Liquid Chromatography-mass Spectrometry (LC-MS). In vitro, A. cepa showed a significant inhibitory effect on trophozoites and cysts compared to the reference drug, chlorhexidine (CHX) as well as the non-treated control (P < 0.05) with statistically different effectiveness in terms of treatment durations and concentrations. No cytotoxic effect of A. cepa on corneal cell line was found even at high concentrations (32 mg/ml) using agar diffusion method. The in vivo results confirmed the efficacy of A. cepa where the extract enhanced keratitis healing with complete resolution of corneal ulcers in 80% of the infected animals by day 14 (post infection)pi compared to 70% recovery with CHX after 20 treatment days. The therapeutic effect was also approved at histological, immune-histochemical, and parasitological levels. Our findings support the potential use of A. cepa as an effective agent against A. spelaea keratitis.
Collapse
|
6
|
Ahmed U, Anwar A, Ong SK, Anwar A, Khan NA. Applications of medicinal chemistry for drug discovery against Acanthamoeba infections. Med Res Rev 2021; 42:462-512. [PMID: 34472107 DOI: 10.1002/med.21851] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 07/13/2021] [Accepted: 08/17/2021] [Indexed: 01/16/2023]
Abstract
Acanthamoeba is a genus of free-living amoebae, pervasively found in the environment. Most of its pathogenic species are the causative agent of sight-threatening Acanthamoeba keratitis and fatal granulomatous amoebic encephalitis. Despite the advancements in the field of chemotherapy, treating Acanthamoeba infections is still challenging due to incomplete knowledge of the complicated pathophysiology. In case of infection, the treatment regimen for the patients is often ineffective due to delayed diagnosis, poor specificity, and side-effects. Besides the resistance of Acanthamoeba cysts to most of the drugs, the recurrence of infection further complicates the recovery. Thus, it is necessary to develop an effective treatment which can eradicate these rare, but serious infections. Based on various computational and in vitro studies, it has been established that the synthetic scaffolds such as heterocyclic compounds may act as potential drug leads for the development of antiamoebic drugs. In this review, we report different classes of synthetic compounds especially heterocyclic compounds which have shown promising results against Acanthamoeba. Moreover, the antiamoebic activities of synthetic compounds with their possible mode of actions against Acanthamoeba, have been summarized and discussed in this review.
Collapse
Affiliation(s)
- Usman Ahmed
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Seng-Kai Ong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Areeba Anwar
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Kuala Lampur, Malaysia
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE
| |
Collapse
|
7
|
|