1
|
Multiple Evolutionary Trajectories Have Led to the Emergence of Races in Fusarium oxysporum f. sp. lycopersici. Appl Environ Microbiol 2017; 83:AEM.02548-16. [PMID: 27913420 DOI: 10.1128/aem.02548-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/02/2016] [Indexed: 01/25/2023] Open
Abstract
Race 1 isolates of Fusarium oxysporum f. sp. lycopersici (FOL) are characterized by the presence of AVR1 in their genomes. The product of this gene, Avr1, triggers resistance in tomato cultivars carrying resistance gene I In FOL race 2 and race 3 isolates, AVR1 is absent, and hence they are virulent on tomato cultivars carrying I In this study, we analyzed an approximately 100-kb genomic fragment containing the AVR1 locus of FOL race 1 isolate 004 (FOL004) and compared it to the sequenced genome of FOL race 2 isolate 4287 (FOL4287). A genomic fragment of 31 kb containing AVR1 was found to be missing in FOL4287. Further analysis suggests that race 2 evolved from race 1 by deletion of this 31-kb fragment due to a recombination event between two transposable elements bordering the fragment. A worldwide collection of 71 FOL isolates representing races 1, 2, and 3, all known vegetative compatibility groups (VCGs), and five continents was subjected to PCR analysis of the AVR1 locus, including the two bordering transposable elements. Based on phylogenetic analysis using the EF1-α gene, five evolutionary lineages for FOL that correlate well with VCGs were identified. More importantly, we show that FOL races evolved in a stepwise manner within each VCG by the loss of function of avirulence genes in a number of alternative ways. IMPORTANCE Plant-pathogenic microorganisms frequently mutate to overcome disease resistance genes that have been introduced in crops. For the fungus Fusarium oxysporum f. sp. lycopersici, the causal agent of Fusarium wilt in tomato, we have identified the nature of the mutations that have led to the overcoming of the I and I-2 resistance genes in all five known clonal lineages, which include a newly discovered lineage. Five different deletion events, at least several of which are caused by recombination between transposable elements, have led to loss of AVR1 and overcoming of I Two new events affecting AVR2 that led to overcoming of I-2 have been identified. We propose a reconstruction of the evolution of races in FOL, in which the same mutations in AVR2 and AVR3 have occurred in different lineages and the FOL pathogenicity chromosome has been transferred to new lineages several times.
Collapse
|
2
|
Vlaardingerbroek I, Beerens B, Rose L, Fokkens L, Cornelissen BJC, Rep M. Exchange of core chromosomes and horizontal transfer of lineage-specific chromosomes in Fusarium oxysporum. Environ Microbiol 2016; 18:3702-3713. [PMID: 26941045 DOI: 10.1111/1462-2920.13281] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/22/2016] [Indexed: 01/09/2023]
Abstract
Horizontal transfer of supernumerary or lineage-specific (LS) chromosomes has been described in a number of plant pathogenic filamentous fungi. So far it was not known whether transfer is restricted to chromosomes of certain size or properties, or whether 'core' chromosomes can also undergo horizontal transfer. We combined a directed and a non-biased approach to determine whether such restrictions exist. Selection genes were integrated into the genome of a strain of Fusarium oxysporum pathogenic on tomato, either targeted to specific chromosomes by homologous recombination or integrated randomly into the genome. By testing these strains for transfer of the marker to another strain we could confirm transfer of a previously described mobile pathogenicity chromosome. Surprisingly, we also identified strains in which (parts of) core chromosomes were transferred. Whole genome sequencing revealed that this was accompanied by the loss of the homologous region from the recipient strain. Remarkably, transfer of the mobile pathogenicity chromosome always accompanied this exchange of core chromosomes.
Collapse
Affiliation(s)
| | - Bas Beerens
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura Rose
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Like Fokkens
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben J C Cornelissen
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijn Rep
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Schmidt SM, Houterman PM, Schreiver I, Ma L, Amyotte S, Chellappan B, Boeren S, Takken FLW, Rep M. MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum. BMC Genomics 2013; 14:119. [PMID: 23432788 PMCID: PMC3599309 DOI: 10.1186/1471-2164-14-119] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/11/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The plant-pathogenic fungus Fusarium oxysporum f.sp.lycopersici (Fol) has accessory, lineage-specific (LS) chromosomes that can be transferred horizontally between strains. A single LS chromosome in the Fol4287 reference strain harbors all known Fol effector genes. Transfer of this pathogenicity chromosome confers virulence to a previously non-pathogenic recipient strain. We hypothesize that expression and evolution of effector genes is influenced by their genomic context. RESULTS To gain a better understanding of the genomic context of the effector genes, we manually curated the annotated genes on the pathogenicity chromosome and identified and classified transposable elements. Both retro- and DNA transposons are present with no particular overrepresented class. Retrotransposons appear evenly distributed over the chromosome, while DNA transposons tend to concentrate in large chromosomal subregions. In general, genes on the pathogenicity chromosome are dispersed within the repeat landscape. Effector genes are present within subregions enriched for DNA transposons. A miniature Impala (mimp) is always present in their promoters. Although promoter deletion studies of two effector gene loci did not reveal a direct function of the mimp for gene expression, we were able to use proximity to a mimp as a criterion to identify new effector gene candidates. Through xylem sap proteomics we confirmed that several of these candidates encode proteins secreted during plant infection. CONCLUSIONS Effector genes in Fol reside in characteristic subregions on a pathogenicity chromosome. Their genomic context allowed us to develop a method for the successful identification of novel effector genes. Since our approach is not based on effector gene similarity, but on unique genomic features, it can easily be extended to identify effector genes in Fo strains with different host specificities.
Collapse
Affiliation(s)
- Sarah M Schmidt
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Petra M Houterman
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Ines Schreiver
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
- Current address: Fachgebiet Medizinische Biotechnologie, Institut für Biotechnologie, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin, Germany
| | - Lisong Ma
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Stefan Amyotte
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, 40546-0312, Lexington, KY, USA
| | - Biju Chellappan
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Sjef Boeren
- Laboratory for Biochemistry, Wageningen University, Dreijenlaan 3, 6703HA, Wageningen, the Netherlands
| | - Frank L W Takken
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Martijn Rep
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Foulongne-Oriol M. Genetic linkage mapping in fungi: current state, applications, and future trends. Appl Microbiol Biotechnol 2012; 95:891-904. [PMID: 22743715 DOI: 10.1007/s00253-012-4228-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
Abstract
Genetic mapping is a basic tool for eukaryotic genomic research. Linkage maps provide insights into genome organization and can be used for genetic studies of traits of interest. A genetic linkage map is a suitable support for the anchoring of whole genome sequences. It allows the localization of genes of interest or quantitative trait loci (QTL) and map-based cloning. While genetic mapping has been extensively used in plant or animal models, this discipline is more recent in fungi. The present article reviews the current status of genetic linkage map research in fungal species. The process of linkage mapping is detailed, from the development of mapping populations to the construction of the final linkage map, and illustrated based on practical examples. The range of specific applications in fungi is browsed, such as the mapping of virulence genes in pathogenic species or the mapping of agronomically relevant QTL in cultivated edible mushrooms. Future prospects are finally discussed in the context of the most recent advances in molecular techniques and the release of numerous fungal genome sequences.
Collapse
|
5
|
Abstract
Several species of filamentous fungi contain so-called dispensable or supernumerary chromosomes. These chromosomes are dispensable for the fungus to survive, but may carry genes required for specialized functions, such as infection of a host plant. It has been shown that at least some dispensable chromosomes are able to transfer horizontally (i.e., in the absence of a sexual cycle) from one fungal strain to another. In this paper, we describe a method by which this can be shown. Horizontal chromosome transfer (HCT) occurs during co-incubation of two strains. To document the actual occurrence of HCT, it is necessary to select for HCT progeny. This is accomplished by transforming two different drug-resistance genes into the two parent strains before their co-incubation. In one of the strains (the "donor"), a drug-resistance gene should be integrated in a chromosome of which the propensity for HCT is under investigation. In the "tester" or "recipient" strain, another drug-resistance gene should be integrated somewhere in the core genome. In this way, after co-incubation, HCT progeny can be selected on plates containing both drugs. HCT can be initiated with equal amounts of asexual spores of both strains, plated on regular growth medium for the particular fungus, followed by incubation until new asexual spores are formed. The new asexual spores are then harvested and plated on plates containing both drugs. Double drug-resistant colonies that appear should carry at least one chromosome from each parental strain. Finally, double drug-resistant strains need to be analysed to assess whether HCT has actually occurred. This can be done by various genome mapping methods, like CHEF-gels, AFLP, RFLP, PCR markers, optical maps, or even complete genome sequencing.
Collapse
Affiliation(s)
- H Charlotte van der Does
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
6
|
Liu JJ, Xiang Y. In silico mining and PCR-based approaches to transcription factor discovery in non-model plants: gene discovery of the WRKY transcription factors in conifers. Methods Mol Biol 2011; 754:21-43. [PMID: 21720945 DOI: 10.1007/978-1-61779-154-3_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
WRKY transcription factors are key regulators of numerous biological processes in plant growth and development, as well as plant responses to abiotic and biotic stresses. Research on biological functions of plant WRKY genes has focused in the past on model plant species or species with largely characterized transcriptomes. However, a variety of non-model plants, such as forest conifers, are essential as feed, biofuel, and wood or for sustainable ecosystems. Identification of WRKY genes in these non-model plants is equally important for understanding the evolutionary and function-adaptive processes of this transcription factor family. Because of limited genomic information, the rarity of regulatory gene mRNAs in transcriptomes, and the sequence divergence to model organism genes, identification of transcription factors in non-model plants using methods similar to those generally used for model plants is difficult. This chapter describes a gene family discovery strategy for identification of WRKY transcription factors in conifers by a combination of in silico-based prediction and PCR-based experimental approaches. Compared to traditional cDNA library screening or EST sequencing at transcriptome scales, this integrated gene discovery strategy provides fast, simple, reliable, and specific methods to unveil the WRKY gene family at both genome and transcriptome levels in non-model plants.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Natural Resources Canada, Canadian Forest Services, Pacific Forestry Centre, Victoria, BC, Canada.
| | | |
Collapse
|
7
|
Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B, Houterman PM, Kang S, Shim WB, Woloshuk C, Xie X, Xu JR, Antoniw J, Baker SE, Bluhm BH, Breakspear A, Brown DW, Butchko RAE, Chapman S, Coulson R, Coutinho PM, Danchin EGJ, Diener A, Gale LR, Gardiner DM, Goff S, Hammond-Kosack KE, Hilburn K, Hua-Van A, Jonkers W, Kazan K, Kodira CD, Koehrsen M, Kumar L, Lee YH, Li L, Manners JM, Miranda-Saavedra D, Mukherjee M, Park G, Park J, Park SY, Proctor RH, Regev A, Ruiz-Roldan MC, Sain D, Sakthikumar S, Sykes S, Schwartz DC, Turgeon BG, Wapinski I, Yoder O, Young S, Zeng Q, Zhou S, Galagan J, Cuomo CA, Kistler HC, Rep M. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 2010; 464:367-73. [PMID: 20237561 PMCID: PMC3048781 DOI: 10.1038/nature08850] [Citation(s) in RCA: 1070] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 01/20/2010] [Indexed: 11/09/2022]
Abstract
Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective.
Collapse
Affiliation(s)
- Li-Jun Ma
- The Broad Institute, Cambridge, Massachusetts 02141, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Jonkers W, Rep M. Mutation ofCRE1inFusarium oxysporumreverts the pathogenicity defects of theFRP1deletion mutant. Mol Microbiol 2009; 74:1100-13. [DOI: 10.1111/j.1365-2958.2009.06922.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Liu JJ, Ekramoddoullah AKM. Identification and characterization of the WRKY transcription factor family in Pinus monticola. Genome 2009; 52:77-88. [PMID: 19132074 DOI: 10.1139/g08-106] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The WRKY gene family represents an ancient and highly complex group of transcription factors involved in signal transduction pathways of numerous plant developmental processes and host defense response. Up to now, most WRKY proteins have been identified in a few angiosperm species. Identification of WRKY genes in a conifer species would facilitate a comprehensive understanding of the evolutionary and function-adaptive process of this superfamily in plants. We performed PCR on genomic DNA to clone WRKY sequences from western white pine (Pinus monticola), one of the most valuable conifer species endangered by white pine blister rust (Cronartium ribicola). In total, 83 P. monticola WRKY (PmWRKY) sequences were identified using degenerate primers targeted to the WRKY domain. A phylogenetic analysis revealed that PmWRKY members fell into four major groups (1, 2a+2b, 2c, and 2d+2e) described in Arabidopsis and rice. Because of high genetic diversity of the PmWRKY family, a modified AFLP method was used to detect DNA polymorphism of this gene family. Polymorphic fragments accounted for 17%-35% of total PCR products in the AFLP profiles. Among them, one WRKY AFLP marker was linked to the major resistance gene (Cr2) against C. ribicola. The results of this study provide basic genomic information for a conifer WRKY gene family, which will pave the way for elucidating gene evolutionary mechanisms in plants and unveiling the precise roles of PmWRKY in conifer development and defense response.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada.
| | | |
Collapse
|
10
|
Lievens B, Rep M, Thomma BPHJ. Recent developments in the molecular discrimination of formae speciales of Fusarium oxysporum. PEST MANAGEMENT SCIENCE 2008; 64:781-788. [PMID: 18335459 DOI: 10.1002/ps.1564] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Rapid and reliable detection and identification of potential plant pathogens is required for taking appropriate and timely disease management measures. For many microbial species of which all strains generally are plant pathogens on a known host range, this has become quite straightforward. However, for some fungal species this is quite a challenge. One of these is Fusarium oxysporum Schlechtend:Fr., which, as a species, has a very broad host range, while individual strains are usually highly host-specific. Moreover, many strains of this fungus are non-pathogenic soil inhabitants. Thus, with regard to effective disease management, identification below the species level is highly desirable. So far, the genetic basis of host specificity in F. oxysporum is poorly understood. Furthermore, strains that infect a particular plant species are not necessarily more closely related to each other than to strains that infect other hosts. Despite these difficulties, recently an increasing number of studies have reported the successful development of molecular markers to discriminate F. oxysporum strains below the species level.
Collapse
Affiliation(s)
- Bart Lievens
- Scientia Terrae Research Institute, Fortsesteenweg 30A, 2860 Sint-Katelijne-Waver, Belgium.
| | | | | |
Collapse
|
11
|
Manzo-Sánchez G, Zapater MF, Luna-Martínez F, Conde-Ferráez L, Carlier J, James-Kay A, Simpson J. Construction of a genetic linkage map of the fungal pathogen of banana Mycosphaerella fijiensis, causal agent of black leaf streak disease. Curr Genet 2008; 53:299-311. [PMID: 18365202 DOI: 10.1007/s00294-008-0186-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 02/29/2008] [Accepted: 03/04/2008] [Indexed: 12/15/2022]
Abstract
A genetic linkage map of the fungal plant pathogen Mycosphaerella fijiensis, causal agent of black leaf streak disease of banana was developed. A cross between the isolates CIRAD86 (from Cameroon) and CIRAD139A (from Colombia) was analyzed using molecular markers and the MAT locus. The genetic linkage map consists of 298 AFLP and 16 SSR markers with 23 linkage groups, containing five or more markers, covering 1,879 cM. Markers are separated on average by around 5.9 cM. The MAT locus was shown to segregate in a 1:1 ratio but could not be successfully mapped. An estimate of the relation between physical size and genetic distance was approximately 39.0 kb/cM. The estimated total haploid genome size was calculated using the genetic mapping data at 4,298.2 cM. This is the first genetic linkage map reported for this important foliar pathogen of banana. The great utility of the map will be for anchoring contigs in the genome sequence, evolutionary studies in comparison with other fungi, to identify quantitative trait loci (QTLs) associated with aggressiveness or oxidative stress resistance and with the recently available genome sequence, for positional cloning.
Collapse
Affiliation(s)
- Gilberto Manzo-Sánchez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130. Colonia Chuburná de Hidalgo, 97200 Mérida, Yucatán, Mexico
| | | | | | | | | | | | | |
Collapse
|
12
|
Pasquali M, Dematheis F, Gullino ML, Garibaldi A. Identification of Race 1 of Fusarium oxysporum f. sp. lactucae on Lettuce by Inter-Retrotransposon Sequence-Characterized Amplified Region Technique. PHYTOPATHOLOGY 2007; 97:987-996. [PMID: 18943639 DOI: 10.1094/phyto-97-8-0987] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Fusarium wilt of lettuce, caused worldwide by Fusarium oxysporum f. sp. lactucae, is an emerging seed-transmitted disease on Lactuca sativa. In order to develop a molecular diagnostic tool for identifying race 1 (VCG0300) of the pathogen on vegetable samples, an effective technique is presented. Inter-retrotransposon amplified polymorphism polymerase chain reaction (PCR), a technique based on the amplification of genomic regions between long terminal repeats, was applied. It was shown to be useful for grouping F. oxysporum f. sp. lactucae race 1 isolates. Inter-retrotransposon sequence-characterized amplified regions (IR-SCAR) was used to develop a specific set of PCR primers to be utilized for differentiating F. oxysporum f. sp. lactucae isolates from other F. oxysporum isolates. The specific primers were able to uniquely amplify fungal genomic DNA from race 1 isolates obtained in Italy, Portugal, the United States, Japan, and Taiwan. The primers also were specific to pathogen DNA obtained from artificially infected lettuce seed and naturally and artificially infected plants.
Collapse
|
13
|
Duyvesteijn RGE, van Wijk R, Boer Y, Rep M, Cornelissen BJC, Haring MA. Frp1 is a Fusarium oxysporum F-box protein required for pathogenicity on tomato. Mol Microbiol 2005; 57:1051-63. [PMID: 16091043 DOI: 10.1111/j.1365-2958.2005.04751.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fusarium oxysporum f. sp. lycopersici is the causal agent of tomato wilt disease. In order to identify genes involved in its pathogenicity, we performed insertional mutagenesis. Mutant N40 had lost its pathogenicity completely, when tested in bioassays with tomato seedlings. Molecular characterization of mutant N40 revealed that the plasmid insertion had occurred in a gene that codes for a 60.2 kDa protein containing an F-box motif. The gene was therefore designated as FRP1 (F-box protein required for pathogenicity). Targeted FRP1 disruptants had lost their pathogenicity completely, and became fully virulent again upon re-introduction of the FRP1 gene. This confirmed that the FRP1 gene is required for pathogenesis. In a yeast two-hybrid assay Frp1 interacts with Skp1, suggesting involvement of an SCF ubiquitin ligase complex in pathogenicity. FRP1 is constitutively expressed during infection and under different culture conditions. Although growth, spore formation and germination on artificial media were not impaired, confocal laser scanning microscopy of a GFP-marked mutant N40 and a GFP-marked targeted FRP1 disruptant revealed that they were unable to colonize the roots.
Collapse
Affiliation(s)
- Roselinde G E Duyvesteijn
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, 1091 SM Amsterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
14
|
Rep M, van der Does HC, Cornelissen BJC. Drifter, a novel, low copy hAT-like transposon in Fusarium oxysporum is activated during starvation. Fungal Genet Biol 2005; 42:546-53. [PMID: 15869889 DOI: 10.1016/j.fgb.2005.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 02/15/2005] [Accepted: 03/21/2005] [Indexed: 10/25/2022]
Abstract
The facultative pathogenic fungus Fusarium oxysporum is known to harbour many different transposable and/or repetitive elements. We have identified Drifter, a novel DNA transposon of the hAT family in F. oxysporum. It was found adjoining SIX1-H, a truncated homolog of the SIX1 avirulence gene in F. oxysporum f. sp. lycopersici. Absence of a target site duplication as well as the 5' part of SIX1-H suggests that transposition of Drifter into the ancestor of SIX1-H was followed by loss of a chromosomal segment through recombination between Drifters. F. oxysporum isolates belonging to various formae speciales harbour between 0 and 5 full-length copies of Drifter and/or one or more copies with an internal deletion. Transcription of Drifter is activated during starvation for carbon or nitrogen.
Collapse
Affiliation(s)
- Martijn Rep
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94062, 1090 GB Amsterdam, The Netherlands.
| | | | | |
Collapse
|
15
|
Rep M, van der Does HC, Meijer M, van Wijk R, Houterman PM, Dekker HL, de Koster CG, Cornelissen BJC. A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. Mol Microbiol 2005; 53:1373-83. [PMID: 15387816 DOI: 10.1111/j.1365-2958.2004.04177.x] [Citation(s) in RCA: 249] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A 12 kDa cysteine-rich protein is secreted by Fusarium oxysporum f. sp. lycopersici during colonization of tomato xylem vessels. Peptide sequences obtained with mass spectrometry allowed identification of the coding sequence. The gene encodes a 32 kDa protein, designated Six1 for secreted in xylem 1. The central part of Six1 corresponds to the 12 kDa protein found in xylem sap of infected plants. A mutant that had gained virulence on a tomato line with the I-3 resistance gene was found to have lost the SIX1 gene along with neighbouring sequences. Transformation of this mutant with SIX1 restored avirulence on the I-3 line. Conversely, deletion of the SIX1 gene in a wild-type strain results in breaking of I-3-mediated resistance. These results suggest that I-3-mediated resistance is based on recognition of Six1 secreted in xylem vessels.
Collapse
Affiliation(s)
- Martijn Rep
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 94062, 1090 GB Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Rep M, Meijer M, Houterman PM, van der Does HC, Cornelissen BJC. Fusarium oxysporum evades I-3-mediated resistance without altering the matching avirulence gene. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:15-23. [PMID: 15672814 DOI: 10.1094/mpmi-18-0015] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
I-3-Mediated resistance of tomato against Fusarium wilt disease caused by Fusarium oxysporum f. sp. lycopersici depends on Six1, a protein that is secreted by the fungus during colonization of the xylem. Among natural isolates of F. oxysporum f. sp. lycopersici are several that are virulent on a tomato line carrying only the I-3 resistance gene. However, evasion of I-3-mediated resistance by these isolates is not correlated with mutation of the SIX1 gene. Moreover, the SIX1 gene of an I-3-virulent isolate was shown to be fully functional in that i) the gene product is secreted in xylem sap, ii) deletion leads to a further increase in virulence on the I-3 line as well as reduced virulence on susceptible lines, and iii) the gene confers full avirulence on the I-3 line when transferred to another genetic background. Remarkably, all I-3-virulent isolates were of race 1, suggesting a link between the presence of AVR1 and evasion of I-3-mediated resistance.
Collapse
Affiliation(s)
- M Rep
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94062, 1090 GB Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
17
|
Takken FLW, Van Wijk R, Michielse CB, Houterman PM, Ram AFJ, Cornelissen BJC. A one-step method to convert vectors into binary vectors suited for Agrobacterium-mediated transformation. Curr Genet 2004; 45:242-8. [PMID: 14745506 DOI: 10.1007/s00294-003-0481-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Revised: 12/11/2003] [Accepted: 12/13/2003] [Indexed: 10/26/2022]
Abstract
Bacterial artificial chromosomes (BACs) are widely used for the construction of physical maps, positional-cloning and whole-genome sequencing strategies. Unfortunately, their use for functional genomics is limited, as currently there is no efficient method to use BACs directly for complementation. We describe a novel strategy for one-step conversion of any BAC into a binary BAC (BIBAC). Using Agrobacterium tumefaciens, these BIBACs can be efficiently transformed to virtually all organisms, including plants, fungi, yeasts and human cells. As the strategy is based on in vivo recombineering and does not depend on restriction sites, it is applicable to any vector. To show the feasibility of the method five BACs, containing 0-75 kb of fungal DNA, were converted into BIBACs. These were subsequently transformed to the plant pathogenic fungus Fusarium oxysporum f.sp. lycopersici and to Aspergillus awamori, a filamentous fungus often used for large-scale protein production. Molecular characterisation of the transformants showed that the BIBACs were efficiently transferred to the fungi and stably integrated into their genomes.
Collapse
Affiliation(s)
- Frank L W Takken
- Swammerdam Institute for Life Sciences, Plant Pathology, University of Amsterdam, Kruislaan 318, 1098 SM, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
18
|
Teunissen HAS, Boer Y, Verkooijen J, Cornelissen BJC, Haring MA. A Near-Isogenic Fusarium oxysporum f. sp. lycopersici Strain with a Novel Combination of Avirulence Characteristics. PHYTOPATHOLOGY 2003; 93:1360-1367. [PMID: 18944063 DOI: 10.1094/phyto.2003.93.11.1360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT A novel Fusarium oxysporum f. sp. lycopersici strain (F1-27) was obtained from protoplast fusions between race 1 Fol004 (putative avirulence genotype A1a2a3) and race 2 Fol007 (a1A2A3). Bioassays using different tomato cultivars revealed new virulence characteristics for F1-27 that were mitotically stable. The corresponding avirulence genotype for F1-27 was assigned a1A2a3. Despite their distinction in avirulence genotype, molecular analysis revealed that parent Fol007 and F1-27 were near-isogenic strains. The electrophoretic karyotype of F1-27 was identical to that observed for Fol007. Foxy-amplified fragment length polymorphism (AFLP) marker analysis showed that all Fol007-specific bands were present in F1-27. In addition, 11 new F1-27-specific Foxy insertions were identified. Segregation of both virulence and these new Foxy-AFLP markers was observed in a backcross between F1-27 and its parent Fol007. One marker was found to cosegregate with the a3 allele. The nature of the genetic change in this strain is discussed.
Collapse
|