1
|
Aucouturier A, Chain F, Langella P, Bidnenko E. Characterization of a Prophage-Free Derivative Strain of Lactococcus lactis ssp. lactis IL1403 Reveals the Importance of Prophages for Phenotypic Plasticity of the Host. Front Microbiol 2018; 9:2032. [PMID: 30233519 PMCID: PMC6127208 DOI: 10.3389/fmicb.2018.02032] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022] Open
Abstract
Lactococcus lactis is a lactic acid bacterium of major importance for the dairy industry and for human health. Recent sequencing surveys of this species have provided evidence that all lactococcal genomes contain prophages and prophage-like elements. The prophage-related sequences encompass up to 10% of the bacterial chromosomes and thus contribute significantly to the genetic diversity of lactococci. However, the impact of these resident prophages on the physiology of L. lactis is presently unknown. The genome of the first sequenced prototype strain, L. lactis ssp. lactis IL1403, contains six prophage-like elements which together represent 6.7% of the IL1403 chromosome. Diverse prophage genes other than those encoding phage repressors have been shown to be expressed in lysogenic conditions, suggesting that prophage genes are indeed able to modulate the physiology of their host. To elucidate the effect of resident prophages on the behavior of L. lactis in different growth conditions, we constructed and characterized, for the first time, a derivative strain of IL1403 that is prophage-free. This strain provides unique experimental opportunities for the study of different aspects of lactococcal physiology using the well-defined genetic background of IL1403. Here, we show that resident prophages modify the growth and survival of the host strain to a considerable extent in different conditions, including in the gastrointestinal environment. They also may affect cellular autolytic properties and the host cells' susceptibility to virulent bacteriophages and antimicrobial agents. It thus appears that prophages contribute significantly to lactococcal cell physiology and might play an important role in the adaptation of L. lactis to cultivation and environmental conditions.
Collapse
Affiliation(s)
- Anne Aucouturier
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Florian Chain
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Langella
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elena Bidnenko
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
2
|
Abstract
Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.
Collapse
|
3
|
Pedersen M, Hammer K. The role of MOR and the CI operator sites on the genetic switch of the temperate bacteriophage TP901-1. J Mol Biol 2008; 384:577-89. [PMID: 18930065 DOI: 10.1016/j.jmb.2008.09.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 09/22/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
Abstract
A genetic switch controls whether the temperate bacteriophage TP901-1 will enter a lytic or a lysogenic life cycle after infection of its host, Lactococcus lactis. We studied this bistable switch encoded in a small DNA fragment of 979 bp by fusing it to a reporter gene on a low-copy-number plasmid. The cloned DNA fragment contained the two divergently oriented promoters, P(R) and P(L), transcribing the lysogenic and lytic gene clusters; the two promoter-proximal genes, cI and mor; and the three CI operator sites, O(R), O(L) and O(D). We show that mor encodes a protein and that this protein in concert with CI is required for the bistability. Furthermore, interaction of CI at O(R) represses transcription from the lysogenic promoter, P(R). Thus, CI regulates its own transcription. Interaction of CI at O(L) represses transcription from the lytic promoter, P(L). The presence of only O(L) (absence of O(R) and O(D)) is enough to maintain a bistable system. The distantly located operator site, O(D), functions as a helper site by increasing binding of CI at O(R) and O(L). In the immune state, O(D) increases repression of the lytic promoter, P(L). Our results strongly support the model that a hexameric form of CI binds cooperatively to the three operator sites in the immune state forming a CI-DNA loop structure. Finally, we show that in the anti-immune state, repression of the lysogenic promoter is independent of the known CI operator sites but requires the presence of both CI and MOR.
Collapse
Affiliation(s)
- Margit Pedersen
- Center for Systems Microbiology, DTU BIOSYS, Technical University of Denmark, DK-2800 Lyngby,
| | | |
Collapse
|
4
|
van der Ploeg JR. Characterization of Streptococcus gordonii prophage PH15: complete genome sequence and functional analysis of phage-encoded integrase and endolysin. Microbiology (Reading) 2008; 154:2970-2978. [DOI: 10.1099/mic.0.2008/018739-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jan R. van der Ploeg
- Institute of Oral Biology, University of Zürich, Plattenstrasse 11, 8032 Zürich, Switzerland
| |
Collapse
|
5
|
Identification of a novel prophage-like gene cluster actively expressed in both virulent and avirulent strains of Leptospira interrogans serovar Lai. Infect Immun 2008; 76:2411-9. [PMID: 18362131 DOI: 10.1128/iai.01730-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA microarray analysis was used to compare the differential gene expression profiles between Leptospira interrogans serovar Lai type strain 56601 and its corresponding attenuated strain IPAV. A 22-kb genomic island covering a cluster of 34 genes (i.e., genes LA0186 to LA0219) was actively expressed in both strains but concomitantly upregulated in strain 56601 in contrast to that of IPAV. Reverse transcription-PCR assays proved that the gene cluster comprised five transcripts. Gene annotation of this cluster revealed characteristics of a putative prophage-like remnant with at least 8 of 34 sequences encoding prophage-like proteins, of which the LA0195 protein is probably a putative prophage CI-like regulator. The transcription initiation activities of putative promoter-regulatory sequences of transcripts I, II, and III, all proximal to the LA0195 gene, were further analyzed in the Escherichia coli promoter probe vector pKK232-8 by assaying the reporter chloramphenicol acetyltransferase (CAT) activities. The strong promoter activities of both transcripts I and II indicated by the E. coli CAT assay were well correlated with the in vitro sequence-specific binding of the recombinant LA0195 protein to the corresponding promoter probes detected by the electrophoresis mobility shift assay. On the other hand, the promoter activity of transcript III was very low in E. coli and failed to show active binding to the LA0195 protein in vitro. These results suggested that the LA0195 protein is likely involved in the transcription of transcripts I and II. However, the identical complete DNA sequences of this prophage remnant from these two strains strongly suggests that possible regulatory factors or signal transduction systems residing outside of this region within the genome may be responsible for the differential expression profiling in these two strains.
Collapse
|
6
|
Coddeville M, Auvray F, Mikkonen M, Ritzenthaler P. Single independent operator sites are involved in the genetic switch of the Lactobacillus delbrueckii bacteriophage mv4. Virology 2007; 364:256-68. [PMID: 17412387 DOI: 10.1016/j.virol.2007.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 12/31/2006] [Accepted: 02/09/2007] [Indexed: 11/21/2022]
Abstract
The lysogeny region of the Lactobacillus delbrueckii bacteriophage mv4 contains two divergently oriented ORFs coding for the Rep (221 aa) and Tec (64 aa) proteins. The transcription of these two genes was analysed by primer extension and Northern blot experiments on lysogenic strains. The location of the transcription initiation sites of rep and tec in the intergenic region allowed the identification of the divergently oriented non overlapping promoters P(rep) and P(tec). Transcriptional fusions analysis showed that Rep negatively regulates the P(tec) promoter and activates its own transcription, and that Tec is a negative regulator of the two promoters. As demonstrated by gel mobility shift assays, the repressor Rep binds to a single specific 17 bp site located between the P(tec) -10 and -35 regions whereas Tec binds to a single specific 40 bp long complex operator site located between the two promoters. The presence of a single specific operator site for each repressor in the intergenic region is an unusual feature.
Collapse
Affiliation(s)
- Michèle Coddeville
- Laboratoire de Microbiologie et de Génétique Moléculaire du CNRS, Université Paul Sabatier, Bat IBCG, 118 route de Narbonne, Toulouse Cedex, France
| | | | | | | |
Collapse
|
7
|
Kenny JG, Leach S, de la Hoz AB, Venema G, Kok J, Fitzgerald GF, Nauta A, Alonso JC, van Sinderen D. Characterization of the lytic–lysogenic switch of the lactococcal bacteriophage Tuc2009. Virology 2006; 347:434-46. [PMID: 16410016 DOI: 10.1016/j.virol.2005.11.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 11/21/2005] [Accepted: 11/28/2005] [Indexed: 10/25/2022]
Abstract
Tuc2009 is a temperate bacteriophage of Lactococcus lactis subsp. cremoris UC509 which encodes a CI- and Cro-type lysogenic-lytic switch region. A helix-swap of the alpha3 helices of the closely related CI-type proteins from the lactococcal phages r1t and Tuc2009 revealed the crucial elements involved in DNA recognition while also pointing to conserved functional properties of phage CI proteins infecting different hosts. CI-type proteins have been shown to bind to specific sequences located in the intergenic switch region, but to date, no detailed binding studies have been performed on lactococcal Cro analogues. Experiments shown here demonstrate alternative binding sites for these two proteins of Tuc2009. CI2009 binds to three inverted repeats, two within the intergenic region and one within the cro2009 gene. This DNA-binding pattern appears to be conserved among repressors of lactococcal and streptococcal phages. The Cro2009 protein appears to bind to three direct repeats within the intergenic region causing distortion of the bound DNA.
Collapse
Affiliation(s)
- John G Kenny
- Department of Microbiology, National University of Ireland, Cork, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lunde M, Aastveit AH, Blatny JM, Nes IF. Effects of diverse environmental conditions on {phi}LC3 prophage stability in Lactococcus lactis. Appl Environ Microbiol 2005; 71:721-7. [PMID: 15691922 PMCID: PMC546743 DOI: 10.1128/aem.71.2.721-727.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of various growth conditions on spontaneous phiLC3 prophage induction in Lactococcus lactis subsp. cremoris IMN-C1814 was analyzed with a half fraction of a 4(4) factorial experimental design. The four factors included in the study were nutrient availability, acidity, osmolarity, and temperature, each applied at four levels. These environmental factors are related to the fermentation processes in the dairy industry, in which bacteriophage attacks on sensitive starter strains are a constant threat to successful fermentation processes. The frequency of spontaneous phiLC3 induction was determined by quantitative analyses of restored DNA attachment sites (attB) on the bacterial chromosomes in a population of lysogenic cells. Statistical analysis revealed that all four environmental factors tested affected phiLC3 prophage stability and that the environmental factors were involved in interactions (interactions exist when the effect of one factor depends on the level of another factor). The spontaneous phiLC3 induction frequency varied from 0.08 to 1.76%. In general, the induction frequency remained at the same rate or decreased when level 1 to 3 of the four environmental factors was applied. At level 4, which generally gave the least favorable growth conditions, the induction frequency was either unchanged, decreased, or increased, depending on the type of stress. It appeared that the spontaneous induction frequency was independent of the growth behavior of the host. It was the environmental growth conditions that were the decisive factor in induction frequency.
Collapse
Affiliation(s)
- Merete Lunde
- Department of Chemistry, Biotechnology and Food Science, Agricultural University of Norway, P. O. Box 5003, N-1432 Aas, Norway.
| | | | | | | |
Collapse
|
9
|
Seegers JFML, Mc Grath S, O'Connell-Motherway M, Arendt EK, van de Guchte M, Creaven M, Fitzgerald GF, van Sinderen D. Molecular and transcriptional analysis of the temperate lactococcal bacteriophage Tuc2009. Virology 2004; 329:40-52. [PMID: 15476873 DOI: 10.1016/j.virol.2004.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 06/11/2004] [Accepted: 07/02/2004] [Indexed: 10/26/2022]
Abstract
The genome of bacteriophage Tuc2009 consists of 38347 base pairs on which 57 open reading frames (ORFs) were identified, divided in two oppositely transcribed regions. The leftward-transcribed region harbors three ORFs, two of which are involved in the establishment of lysogeny. The rightward-transcribed region contains 54 ORFs, which are assumed to be required for the lytic life cycle. An exception to the above organization is ORF 10, of unknown function, located within the rightward-transcribed region that has an orientation opposite to the ORFs surrounding it. Transcriptional analysis of the Tuc2009 genome following infection of a sensitive host revealed that most ORFs are transcribed in a sequential manner. ORFs that are presumed to form (part of) the genetic switch along with the superinfection exclusion-encoding gene are transcribed immediately after infection, followed by transcription of the presumed replication region. Subsequent to this, several small transcripts could be identified followed by a single 24-kb transcript. This latter transcript was shown to specify most of the identified structural proteins as well as two proteins required for host lysis. Interestingly, the 24-kb mRNA was shown to undergo splicing through the activity of a type I intron whose removal from the mRNA resulted in the formation of an ORF specifying a major structural protein. Primer extension analysis was employed to identify the 5' ends of mRNA transcripts and the genome and transcriptional data are discussed in relation to other lactococcal bacteriophages.
Collapse
Affiliation(s)
- Jos F M L Seegers
- National Food Biotechnology Centre, University College Cork, Cork, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Blatny JM, Godager L, Lunde M, Nes IF. Complete genome sequence of the Lactococcus lactis temperate phage φLC3: comparative analysis of φLC3 and its relatives in lactococci and streptococci. Virology 2004; 318:231-44. [PMID: 14972551 DOI: 10.1016/j.virol.2003.09.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2002] [Revised: 09/17/2003] [Accepted: 09/21/2003] [Indexed: 10/26/2022]
Abstract
Complete genome sequencing of the P335 temperate Lactococcus lactis bacteriophage phiLC3 (32, 172 bp) revealed fifty-one open reading frames (ORFs). Four ORFs did not show any homology to other proteins in the database and twenty-one ORFs were assigned a putative biological function. phiLC3 contained a unique replication module and orf201 was identified as the putative replication initiator protein-encoding gene. phiLC3 was closely related to the L. lactis r1t phage (73% DNA identity). Similarity was also shared with other lactococcal P335 phages and the Streptococcus pyogenes prophages 370.3, 8232.4 and 315.5 over the non-structural genes and the genes involved in DNA packaging/phage morphogenesis, respectively. phiLC3 contained small homologous regions distributed among lactococcal phages suggesting that these regions might be involved in mediating genetic exchange. Two regions of 30 and 32 bp were conserved among the streptococcal and lactococcal r1t-like phages. These two regions, as well as other homologous regions, were located at mosaic borders and close to putative transcriptional terminators indicating that such regions together might attract recombination. The conserved regions found among lactococcal and streptococcal phages might be used for identification of phages/prophages/prophage remnants in their hosts.
Collapse
Affiliation(s)
- Janet Martha Blatny
- Laboratory of Microbial Gene Technology, Department of Chemistry and Biotechnology, Agricultural University of Norway, 1432 As, Norway.
| | | | | | | |
Collapse
|