1
|
Rubio A, García-Blanco N, Vázquez-Bolado A, Belén Suárez M, Moreno S. Nutritional cell cycle reprogramming reveals that inhibition of Cdk1 is required for proper MBF-dependent transcription. J Cell Sci 2018; 131:jcs.218743. [PMID: 30154212 DOI: 10.1242/jcs.218743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/20/2018] [Indexed: 01/22/2023] Open
Abstract
In nature, cells and in particular unicellular microorganisms are exposed to a variety of nutritional environments. Fission yeast cells cultured in nitrogen-rich media grow fast, divide with a large size and show a short G1 and a long G2. However, when cultured in nitrogen-poor media, they exhibit reduced growth rate and cell size and a long G1 and a short G2. In this study, we compared the phenotypes of cells lacking the highly conserved cyclin-dependent kinase (Cdk) inhibitor Rum1 and the anaphase-promoting complex/cyclosome (APC/C) activator Ste9 in nitrogen-rich and nitrogen-poor media. Rum1 and Ste9 are dispensable for cell division in nitrogen-rich medium. However, in nitrogen-poor medium they are essential for generating a proper wave of MluI cell-cycle box binding factor (MBF)-dependent transcription at the end of G1, which is crucial for promoting a successful S phase. Mutants lacking Rum1 and Ste9 showed premature entry into S phase and a reduced wave of MBF-dependent transcription, leading to replication stress, DNA damage and G2 cell cycle arrest. This work demonstrates how reprogramming the cell cycle by changing the nutritional environment may reveal new roles for cell cycle regulators.
Collapse
Affiliation(s)
- Angela Rubio
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain.,Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca. Spain
| | - Natalia García-Blanco
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain.,Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca. Spain
| | - Alicia Vázquez-Bolado
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain.,Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca. Spain
| | - María Belén Suárez
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain.,Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca. Spain
| | - Sergio Moreno
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
2
|
Guarino E, Salguero I, Kearsey SE. Cellular regulation of ribonucleotide reductase in eukaryotes. Semin Cell Dev Biol 2014; 30:97-103. [PMID: 24704278 DOI: 10.1016/j.semcdb.2014.03.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/26/2014] [Indexed: 12/22/2022]
Abstract
Synthesis of deoxynucleoside triphosphates (dNTPs) is essential for both DNA replication and repair and a key step in this process is catalyzed by ribonucleotide reductases (RNRs), which reduce ribonucleotides (rNDPs) to their deoxy forms. Tight regulation of RNR is crucial for maintaining the correct levels of all four dNTPs, which is important for minimizing the mutation rate and avoiding genome instability. Although allosteric control of RNR was the first discovered mechanism involved in regulation of the enzyme, other controls have emerged in recent years. These include regulation of expression of RNR genes, proteolysis of RNR subunits, control of the cellular localization of the small RNR subunit, and regulation of RNR activity by small protein inhibitors. This review will focus on these additional mechanisms of control responsible for providing a balanced supply of dNTPs.
Collapse
Affiliation(s)
- Estrella Guarino
- Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom.
| | - Israel Salguero
- Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom.
| | - Stephen E Kearsey
- Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom.
| |
Collapse
|
3
|
|
4
|
Agarwal M, Papadopoulou K, Mayeux A, Vajrala V, Quintana DM, Paoletti A, McInerny CJ. Mid1p-dependent regulation of the M–G1 transcription wave in fission yeast. J Cell Sci 2010; 123:4366-73. [DOI: 10.1242/jcs.073049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The control of gene expression at certain times during the mitotic cell division cycle is a common feature in eukaryotes. In fission yeast, at least five waves of gene expression have been described, with one transcribed at the M–G1 interval under the control of the PBF transcription factor complex. PBF consists of at least three transcription factors, two forkhead-like proteins Sep1p and Fkh2p, and a MADS box-like protein Mbx1p, and binds to PCB motifs found in the gene promoters. Mbx1p is under the direct control of the polo-like kinase Plo1p and the Cdc14p-like phosphatase Clp1p (Flp1p). Here, we show that M–G1 gene expression in fission yeast is also regulated by the anillin-like protein, Mid1p (Dmf1p). Mid1p binds in vivo to both Fkh2p and Sep1p, and to the promoter regions of M–G1 transcribed genes. Mid1p promoter binding is dependent on Fkh2p, Plo1p and Clp1p. The absence of mid1+ in cells results in partial loss of M–G1 specific gene expression, suggesting that it has a negative role in controlling gene expression. This phenotype is exacerbated by also removing clp1+, suggesting that Mid1p and Clp1p have overlapping functions in controlling transcription. As mid1+ is itself expressed at M–G1, these observations offer a new mechanism whereby Mid1p contributes to controlling cell cycle-specific gene expression as part of a feedback loop.
Collapse
Affiliation(s)
- Monica Agarwal
- Division of Molecular and Cellular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Kyriaki Papadopoulou
- Division of Molecular and Cellular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Adeline Mayeux
- Institut Curie, UMR144 CNRS, 26 rue d'Ulm, 75248 Paris CEDEX 05, France
| | - Vasanthi Vajrala
- Division of Molecular and Cellular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daniela M. Quintana
- Division of Molecular and Cellular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Anne Paoletti
- Institut Curie, UMR144 CNRS, 26 rue d'Ulm, 75248 Paris CEDEX 05, France
| | - Christopher J. McInerny
- Division of Molecular and Cellular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
5
|
Deconvolution of chromatin immunoprecipitation-microarray (ChIP-chip) analysis of MBF occupancies reveals the temporal recruitment of Rep2 at the MBF target genes. EUKARYOTIC CELL 2010; 10:130-41. [PMID: 21076007 DOI: 10.1128/ec.00218-10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
MBF (or DSC1) is known to regulate transcription of a set of G(1)/S-phase genes encoding proteins involved in regulation of DNA replication. Previous studies have shown that MBF binds not only the promoter of G(1)/S-phase genes, but also the constitutive genes; however, it was unclear if the MBF bindings at the G(1)/S-phase and constitutive genes were mechanistically distinguishable. Here, we report a chromatin immunoprecipitation-microarray (ChIP-chip) analysis of MBF binding in the Schizosaccharomyces pombe genome using high-resolution genome tiling microarrays. ChIP-chip analysis indicates that the majority of the MBF occupancies are located at the intragenic regions. Deconvolution analysis using Rpb1 ChIP-chip results distinguishes the Cdc10 bindings at the Rpb1-poor loci (promoters) from those at the Rpb1-rich loci (intragenic sequences). Importantly, Res1 binding at the Rpb1-poor loci, but not at the Rpb1-rich loci, is dependent on the Cdc10 function, suggesting a distinct binding mechanism. Most Cdc10 promoter bindings at the Rpb1-poor loci are associated with the G(1)/S-phase genes. While Res1 or Res2 is found at both the Cdc10 promoter and intragenic binding sites, Rep2 appears to be absent at the Cdc10 promoter binding sites but present at the intragenic sites. Time course ChIP-chip analysis demonstrates that Rep2 is temporally accumulated at the coding region of the MBF target genes, resembling the RNAP-II occupancies. Taken together, our results show that deconvolution analysis of Cdc10 occupancies refines the functional subset of genomic binding sites. We propose that the MBF activator Rep2 plays a role in mediating the cell cycle-specific transcription through the recruitment of RNAP-II to the MBF-bound G(1)/S-phase genes.
Collapse
|
6
|
Aligianni S, Lackner DH, Klier S, Rustici G, Wilhelm BT, Marguerat S, Codlin S, Brazma A, de Bruin RAM, Bähler J. The fission yeast homeodomain protein Yox1p binds to MBF and confines MBF-dependent cell-cycle transcription to G1-S via negative feedback. PLoS Genet 2009; 5:e1000626. [PMID: 19714215 PMCID: PMC2726434 DOI: 10.1371/journal.pgen.1000626] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 07/31/2009] [Indexed: 12/31/2022] Open
Abstract
The regulation of the G1- to S-phase transition is critical for cell-cycle progression. This transition is driven by a transient transcriptional wave regulated by transcription factor complexes termed MBF/SBF in yeast and E2F-DP in mammals. Here we apply genomic, genetic, and biochemical approaches to show that the Yox1p homeodomain protein of fission yeast plays a critical role in confining MBF-dependent transcription to the G1/S transition of the cell cycle. The yox1 gene is an MBF target, and Yox1p accumulates and preferentially binds to MBF-regulated promoters, via the MBF components Res2p and Nrm1p, when they are transcriptionally repressed during the cell cycle. Deletion of yox1 results in constitutively high transcription of MBF target genes and loss of their cell cycle–regulated expression, similar to deletion of nrm1. Genome-wide location analyses of Yox1p and the MBF component Cdc10p reveal dozens of genes whose promoters are bound by both factors, including their own genes and histone genes. In addition, Cdc10p shows promiscuous binding to other sites, most notably close to replication origins. This study establishes Yox1p as a new regulatory MBF component in fission yeast, which is transcriptionally induced by MBF and in turn inhibits MBF-dependent transcription. Yox1p may function together with Nrm1p to confine MBF-dependent transcription to the G1/S transition of the cell cycle via negative feedback. Compared to the orthologous budding yeast Yox1p, which indirectly functions in a negative feedback loop for cell-cycle transcription, similarities but also notable differences in the wiring of the regulatory circuits are evident. Cells proliferate by growth and division, which is supported by different gene groups that are periodically induced at specific times when they are required during the cell cycle. These genes not only need to be induced at the right time but also repressed when they are no longer required; mistakes in gene regulation can lead to problems in cell proliferation and diseases such as cancer. A well-known regulatory complex functions just before cells replicate their DNA to induce genes required for this important transition. We show that in fission yeast this regulatory complex (MBF) induces a gene whose encoded protein (Yox1p) in turn binds to MBF and represses MBF-regulated genes. In the absence of Yox1p, the MBF-regulated genes do not fluctuate during the cell cycle but remain constantly induced. Thus, MBF sets up not only the induction but also the timely repression of its target genes via Yox1p. We also provide a global analysis of all the genes regulated by Yox1p and MBF. Together, our data uncover a new negative control loop, further highlighting the sophistication of gene regulation during the cell cycle, and illustrating regulatory similarities and differences between organisms.
Collapse
Affiliation(s)
- Sofia Aligianni
- Department of Genetics, Evolution & Environment and UCL Cancer Institute, University College London, London, United Kingdom
| | - Daniel H. Lackner
- Department of Genetics, Evolution & Environment and UCL Cancer Institute, University College London, London, United Kingdom
| | - Steffi Klier
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Gabriella Rustici
- EMBL Outstation–Hinxton, European Bioinformatics Institute, Cambridge, United Kingdom
| | - Brian T. Wilhelm
- Department of Genetics, Evolution & Environment and UCL Cancer Institute, University College London, London, United Kingdom
| | - Samuel Marguerat
- Department of Genetics, Evolution & Environment and UCL Cancer Institute, University College London, London, United Kingdom
| | - Sandra Codlin
- Department of Genetics, Evolution & Environment and UCL Cancer Institute, University College London, London, United Kingdom
| | - Alvis Brazma
- EMBL Outstation–Hinxton, European Bioinformatics Institute, Cambridge, United Kingdom
| | - Robertus A. M. de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Jürg Bähler
- Department of Genetics, Evolution & Environment and UCL Cancer Institute, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Fujiwara T, Misumi O, Tashiro K, Yoshida Y, Nishida K, Yagisawa F, Imamura S, Yoshida M, Mori T, Tanaka K, Kuroiwa H, Kuroiwa T. Periodic gene expression patterns during the highly synchronized cell nucleus and organelle division cycles in the unicellular red alga Cyanidioschyzon merolae. DNA Res 2009; 16:59-72. [PMID: 19147531 PMCID: PMC2646357 DOI: 10.1093/dnares/dsn032] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous cell cycle studies have been based on cell-nuclear proliferation only. Eukaryotic cells, however, have double membranes-bound organelles, such as the cell nucleus, mitochondrion, plastids and single-membrane-bound organelles such as ER, the Golgi body, vacuoles (lysosomes) and microbodies. Organelle proliferations, which are very important for cell functions, are poorly understood. To clarify this, we performed a microarray analysis during the cell cycle of Cyanidioschyzon merolae. C. merolae cells contain a minimum set of organelles that divide synchronously. The nuclear, mitochondrial and plastid genomes were completely sequenced. The results showed that, of 158 genes induced during the S or G2-M phase, 93 were known and contained genes related to mitochondrial division, ftsZ1-1, ftsz1-2 and mda1, and plastid division, ftsZ2-1, ftsZ2-2 and cmdnm2. Moreover, three genes, involved in vesicle trafficking between the single-membrane organelles such as vps29 and the Rab family protein, were identified and might be related to partitioning of single-membrane-bound organelles. In other genes, 46 were hypothetical and 19 were hypothetical conserved. The possibility of finding novel organelle division genes from hypothetical and hypothetical conserved genes in the S and G2-M expression groups is discussed.
Collapse
Affiliation(s)
- Takayuki Fujiwara
- Research Information Center for Extremophile, Rikkyo University, 3-34-1 Nishiikebukuro, Toshima, Tokyo 171-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Jackson WT, Martin GS. Transcription of the Schizosaccharomyces pombe gene cdc18+: roles of MCB elements and the DSC1 complex. Gene 2006; 369:100-8. [PMID: 16460890 DOI: 10.1016/j.gene.2005.10.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 10/19/2005] [Accepted: 10/25/2005] [Indexed: 11/22/2022]
Abstract
In Schizosaccharomyces pombe, commitment to a round of DNA synthesis and entry into the cell cycle are dependent on the function of genes that are transcribed periodically during the cell cycle. Activation of these genes prior to S phase is primarily controlled through cis-acting elements known as MluI Cell-cycle Boxes, or MCBs, and by a family of transcription factors, including Cdc10, Res1, Res2 and Rep2. These transcription factors are also known to be present in a complex, DSC1, that binds to the promoters of pre-S genes. We have demonstrated that within the promoter of cdc18+, a representative pre-S gene, the orientation and spacing of MCBs are crucial for activation and cell-cycle dependence. To our surprise, electrophoretic mobility shift assays showed a highly active mutant form of the promoter, which alters the spacing of the MCB elements, does not bind DSC1 but does bind a higher mobility complex. The binding of this second complex is not dependent on Cdc10 or the Res/Rep proteins. We conclude that, DSC1 binding does not correlate with cell-cycle dependent transcriptional activation, and the higher mobility species may represent a novel transcriptional activation complex that is also likely to function in pre-S transcription.
Collapse
Affiliation(s)
- William T Jackson
- Department of Microbiology and Immunology, Stanford University Medical Center, Fairchild D315, 299 Campus Drive, Stanford, CA 94305, United States.
| | | |
Collapse
|
9
|
Abstract
Cell-cycle control of transcription seems to be a universal feature of proliferating cells, although relatively little is known about its biological significance and conservation between organisms. The two distantly related yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have provided valuable complementary insight into the regulation of periodic transcription as a function of the cell cycle. More recently, genome-wide studies of proliferating cells have identified hundreds of periodically expressed genes and underlying mechanisms of transcriptional control. This review discusses the regulation of three major transcriptional waves, which roughly coincide with three main cell-cycle transitions (initiation of DNA replication, entry into mitosis, and exit from mitosis). I also compare and contrast the transcriptional regulatory networks between the two yeasts and discuss the evolutionary conservation and possible roles for cell cycle-regulated transcription.
Collapse
Affiliation(s)
- Jürg Bähler
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom.
| |
Collapse
|
10
|
Peng X, Karuturi RKM, Miller LD, Lin K, Jia Y, Kondu P, Wang L, Wong LS, Liu ET, Balasubramanian MK, Liu J. Identification of cell cycle-regulated genes in fission yeast. Mol Biol Cell 2004; 16:1026-42. [PMID: 15616197 PMCID: PMC551471 DOI: 10.1091/mbc.e04-04-0299] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cell cycle progression is both regulated and accompanied by periodic changes in the expression levels of a large number of genes. To investigate cell cycle-regulated transcriptional programs in the fission yeast Schizosaccharomyces pombe, we developed a whole-genome oligonucleotide-based DNA microarray. Microarray analysis of both wild-type and cdc25 mutant cell cultures was performed to identify transcripts whose levels oscillated during the cell cycle. Using an unsupervised algorithm, we identified 747 genes that met the criteria for cell cycle-regulated expression. Peaks of gene expression were found to be distributed throughout the entire cell cycle. Furthermore, we found that four promoter motifs exhibited strong association with cell cycle phase-specific expression. Examination of the regulation of MCB motif-containing genes through the perturbation of DNA synthesis control/MCB-binding factor (DSC/MBF)-mediated transcription in arrested synchronous cdc10 mutant cell cultures revealed a subset of functional targets of the DSC/MBF transcription factor complex, as well as certain gene promoter requirements. Finally, we compared our data with those for the budding yeast Saccharomyces cerevisiae and found approximately 140 genes that are cell cycle regulated in both yeasts, suggesting that these genes may play an evolutionarily conserved role in regulation of cell cycle-specific processes. Our complete data sets are available at http://giscompute.gis.a-star.edu.sg/~gisljh/CDC.
Collapse
Affiliation(s)
- Xu Peng
- Genome Institute of Singapore, Singapore 138672, Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
A fundamental process in biology is the mechanism by which cells duplicate and divide to produce two identical daughter cells. The fission yeast, Schizosaccharomyces pombe, has proved to be an excellent model organism to study the role that gene expression plays in this process. The basic paradigm emerging is that a number of groups of genes are expressed in successive waves at different cell cycle times. Transcription of a particular group is controlled by a common DNA motif present in each gene's promoter, bound by a transcription factor complex. Each motif and transcription factor complex is specific to the time in the cell cycle when the group of genes is expressed. Examples of this are the MBF (MCB-binding factor)/MCB (MluI cell cycle box) system controlling gene expression at the start of S-phase, and PBF (PCB-binding factor)/PCB (Pombe cell cycle box) regulation of transcription at the end of mitosis. In some cases, these transcription control systems also operate during the alternative form of cell division, meiosis.
Collapse
|
12
|
Cunliffe L, White S, McInerny CJ. DSC1-MCB regulation of meiotic transcription in Schizosaccharomyces pombe. Mol Genet Genomics 2003; 271:60-71. [PMID: 14648198 DOI: 10.1007/s00438-003-0956-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 10/31/2003] [Indexed: 10/26/2022]
Abstract
Meiosis is initiated from the G1 phase of the mitotic cell cycle, and consists of pre-meiotic S-phase followed by two successive nuclear divisions. Here we show that control of gene expression during pre-meiotic S-phase in the fission yeast Schizosaccharomyces pombe is mediated by a DNA synthesis control-like transcription factor complex (DSC1), which acts upon M lu1 cell cycle box (MCB) promoter motifs. Several genes, including rec8+, rec11+, cdc18+, and cdc22+, which contain MCB motifs in their promoter regions, are found to be co-ordinately regulated during pre-meiotic S-phase. Both synthetic and native MCB motifs are shown to confer meiotic-specific transcription on a heterologous reporter gene. A DSC1-like transcription factor complex that binds to MCB motifs was also identified in meiotic cells. The effect of mutating and over-expressing individual components of DSC1 (cdc10+, res1+, res2+, rep1+ and rep2+) on the transcription of cdc22+, rec8+ and rec11+ during meiosis was examined. We found that cdc10+, res2+, rep1+ and rep2+ are required for correct meiotic transcription, while res1+ is not required for this process. This work demonstrates a role for MCB motifs and a DSC1-like transcription factor complex in controlling transcription during meiosis in fission yeast, and suggests a mechanism for how this specific expression occurs.
Collapse
Affiliation(s)
- L Cunliffe
- Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | |
Collapse
|