1
|
Abstract
Topoisomerase I (Top1) resolves torsional stress that accumulates during transcription, replication and chromatin remodeling by introducing a transient single-strand break in DNA. The cleavage activity of Top1 has opposing roles, either promoting or destabilizing genome integrity depending on the context. Resolution of transcription-associated negative supercoils, for example, prevents pairing of the nascent RNA with the DNA template (R-loops) as well as DNA secondary structure formation. Reduced Top1 levels thus enhance CAG repeat contraction, somatic hypermutation, and class switch recombination. Actively transcribed ribosomal DNA is also destabilized in the absence of Top1, reflecting the importance of Top1 in ensuring efficient transcription. In terms of promoting genome instability, an aborted Top1 catalytic cycle stimulates deletions at short tandem repeats and the enzyme's transesterification activity supports illegitimate recombination. Finally, Top1 incision at ribonucleotides embedded in DNA generates deletions in tandem repeats, and induces gross chromosomal rearrangements and mitotic recombination.
Collapse
Affiliation(s)
- Jang-Eun Cho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, CARL 384, Durham, NC, 27710, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, CARL 384, Durham, NC, 27710, USA.
| |
Collapse
|
2
|
Abstract
Topoisomerases manage the torsional stress associated with the separation of DNA strands during transcription and DNA replication. Eukaryotic Topoisomerase I (Top1) is a Type IB enzyme that nicks and rejoins only one strand of duplex DNA, and it is especially important during transcription. By resolving transcription-associated torsional stress, Top1 reduces the accumulation of genome-destabilizing R-loops and non-B DNA structures. The DNA nicking activity of Top1, however, can also initiate genome instability in the form of illegitimate recombination, homologous recombination and mutagenesis. In this review, we focus on the diverse, and often opposing, roles of Top1 in regulating eukaryotic genome stability.
Collapse
|
3
|
Krawczyk C, Dion V, Schär P, Fritsch O. Reversible Top1 cleavage complexes are stabilized strand-specifically at the ribosomal replication fork barrier and contribute to ribosomal DNA stability. Nucleic Acids Res 2014; 42:4985-95. [PMID: 24574527 PMCID: PMC4005688 DOI: 10.1093/nar/gku148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Various topological constraints at the ribosomal DNA (rDNA) locus impose an extra challenge for transcription and DNA replication, generating constant torsional DNA stress. The topoisomerase Top1 is known to release such torsion by single-strand nicking and re-ligation in a process involving transient covalent Top1 cleavage complexes (Top1cc) with the nicked DNA. Here we show that Top1ccs, despite their usually transient nature, are specifically targeted to and stabilized at the ribosomal replication fork barrier (rRFB) of budding yeast, establishing a link with previously reported Top1 controlled nicks. Using ectopically engineered rRFBs, we establish that the rRFB sequence itself is sufficient for induction of DNA strand-specific and replication-independent Top1ccs. These Top1ccs accumulate only in the presence of Fob1 and Tof2, they are reversible as they are not subject to repair by Tdp1- or Mus81-dependent processes, and their presence correlates with Top1 provided rDNA stability. Notably, the targeted formation of these Top1ccs accounts for the previously reported broken replication forks at the rRFB. These findings implicate a novel and physiologically regulated mode of Top1 action, suggesting a mechanism by which Top1 is recruited to the rRFB and stabilized in a reversible Top1cc configuration to preserve the integrity of the rDNA.
Collapse
Affiliation(s)
- Claudia Krawczyk
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland and Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | | | | |
Collapse
|
4
|
Mécanismes moléculaires et déterminants de la réponse aux inhibiteurs de topo-isomérases I. Bull Cancer 2011; 98:1287-98. [DOI: 10.1684/bdc.2011.1474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Scharbaai-Vázquez R, González-Caraballo AL, Torres-Bauzá LJ. Four different integrative recombination events involved in the mobilization of the gonococcal 5.2 kb beta-lactamase plasmid pSJ5.2 in Escherichia coli. Plasmid 2008; 60:200-11. [PMID: 18778732 PMCID: PMC2615557 DOI: 10.1016/j.plasmid.2008.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 07/16/2008] [Accepted: 07/17/2008] [Indexed: 10/21/2022]
Abstract
We identified and characterized four different recombination mechanisms involved in the cointegrative transfer of the Neisseria gonorrhoeae beta-lactamase plasmid pSJ5.2 by the gonococcal 41 kb tet(M) and the Gram negative self-transmissible plasmids N3 and R64 drd-33 using an Escherichia colirecA-background. Mobilization of pSJ5.2 by the tet(M) plasmid occurred by cointegration through a replicative transposition of two IS1 elements inserted upstream from the beta-lactamase gene of pSJ5.2 and creating a IS1::beta-lactamase hybrid promoter. Two types of recombinational events occurred within the 1.8 kb BamH1-HindIII fragment of pSJ5.2 with the N3 and R64 plasmids. A non-homologous recombination was found at coordinates 1817 and 2849 of pSJ5.2 with sequences from R64. A non-homologous recombination combined with an IS26-mediated one-ended transposition was found at coordinates 1817 and 3010 of pSJ5.2 with N3. In both recombinational events, a deletion of over 1 kb of pSJ5.2 occurred. The fourth recombination event was detected in the 1.0 kb BamH1-HindIII fragment of pSJ5.2 by homologous recombination between DNA from the truncated Tn3 resolvase gene of pSJ5.2 and the resolvase sequences from R64 and N3.
Collapse
Affiliation(s)
- Ramón Scharbaai-Vázquez
- Department of Microbiology, San Juan Bautista School of Medicine, P.O. Box 4968, Caguas, PR 00726-4968, USA
| | | | | |
Collapse
|
6
|
Goswami A, Qiu S, Dexheimer TS, Ranganathan P, Burikhanov R, Pommier Y, Rangnekar VM. Par-4 binds to topoisomerase 1 and attenuates its DNA relaxation activity. Cancer Res 2008; 68:6190-8. [PMID: 18676842 PMCID: PMC2562756 DOI: 10.1158/0008-5472.can-08-0831] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The regulation of DNA relaxation by topoisomerase 1 (TOP1) is essential for DNA replication, transcription, and recombination events. TOP1 activity is elevated in cancer cells, yet the regulatory mechanism restraining its activity is not understood. We present evidence that the tumor suppressor protein prostate apoptosis response-4 (Par-4) directly binds to TOP1 and attenuates its DNA relaxation activity. Unlike camptothecin, which binds at the TOP1-DNA interface to form cleavage complexes, Par-4 interacts with TOP1 via its leucine zipper domain and sequesters TOP1 from the DNA. Par-4 knockdown by RNA interference enhances DNA relaxation and gene transcription activities and promotes cellular transformation in a TOP1-dependent manner. Conversely, attenuation of TOP1 activity either by RNA interference or Par-4 overexpression impedes DNA relaxation, cell cycle progression, and gene transcription activities and inhibits transformation. Collectively, our findings suggest that Par-4 serves as an intracellular repressor of TOP1 catalytic activity and regulates DNA topology to suppress cellular transformation.
Collapse
Affiliation(s)
- Anindya Goswami
- Department of Radiation Medicine, Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Hershkovitz E, Loewenthal N, Peretz A, Parvari R. Testicular Expressed Genes Are Missing in Familial X-Linked Kallmann Syndrome due to Two Large Different Deletions in Daughter’s X Chromosomes. HORMONE RESEARCH 2008; 69:276-83. [DOI: 10.1159/000114858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 06/23/2007] [Indexed: 11/19/2022]
|
8
|
Orta ML, Mateos S, Cantero G, Wolff LJ, Cortés F. Protection of halogenated DNA from strand breakage and sister-chromatid exchange induced by the topoisomerase I inhibitor camptothecin. Mutat Res 2007; 637:40-8. [PMID: 17706727 DOI: 10.1016/j.mrfmmm.2007.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 06/22/2007] [Accepted: 06/28/2007] [Indexed: 11/20/2022]
Abstract
The fundamental nuclear enzyme DNA topoisomerase I (topo I), cleaves the double-stranded DNA molecule at preferred sequences within its recognition/binding sites. We have recently reported that when cells incorporate halogenated nucleosides analogues of thymidine into DNA, it interferes with normal chromosome segregation, as shown by an extraordinarily high yield of endoreduplication, and results in a protection against DNA breakage induced by the topo II poison m-AMSA [F. Cortés, N. Pastor, S. Mateos, I. Domínguez, The nature of DNA plays a role in chromosome segregation: endoreduplication in halogen-substituted chromosomes, DNA Repair 2 (2003) 719-726; G. Cantero, S. Mateos, N. Pastor; F. Cortés, Halogen substitution of DNA protects from poisoning of topoisomerase II that results in DNA double-strand breaks (DSBs), DNA Repair 5 (2006) 667-674]. In the present investigation, we have assessed whether the presence of halogenated nucleosides in DNA diminishes the frequency of interaction of topo I with DNA and thus the frequency with which the stabilisation of cleavage complexes by the topo I poison camptothecin (CPT) takes place, in such a way that it protects from chromosome breakage and sister-chromatid exchange. This protective effect is shown to parallel a loss in halogen-substituted cells of the otherwise CPT-increased catalytic activity bound to DNA.
Collapse
Affiliation(s)
- Manuel Luís Orta
- Department of Cell Biology, Faculty of Biology, University of Seville, Seville, Spain
| | | | | | | | | |
Collapse
|
9
|
Hede MS, Petersen RL, Frøhlich RF, Krüger D, Andersen FF, Andersen AH, Knudsen BR. Resolution of Holliday junction substrates by human topoisomerase I. J Mol Biol 2006; 365:1076-92. [PMID: 17101150 DOI: 10.1016/j.jmb.2006.10.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 09/15/2006] [Accepted: 10/15/2006] [Indexed: 11/23/2022]
Abstract
Prompted by the close relationship between tyrosine recombinases and type IB topoisomerases we have investigated the ability of human topoisomerase I to resolve the typical intermediate of recombinase catalysis, the Holliday junction. We demonstrate that human topoisomerase I catalyzes unidirectional resolution of a synthetic Holliday junction substrate containing two preferred cleavage sites surrounded by DNA sequences supporting branch migration. Deleting part of the N-terminal domain (amino acid residues 1-202) did not affect topoisomerase I resolution activity, whereas a topoisomerase I variant lacking both the N-terminal domain and amino acid residues 660-688 of the linker domain was unable to resolve the Holliday junction substrate. The inability of the double deleted variant to mediate resolution correlated with the inability of this enzyme to introduce concomitant cleavage at the two preferred cleavage sites in a single Holliday junction substrate, which is a prerequisite for resolution. As determined by the gel electrophoretic mobility of native enzyme or enzyme crosslinked by disulfide bridging, the double deleted mutant existed almost entirely in a dimeric form. The impairment of this enzyme in performing double cleavages on the Holliday junction substrate may be explained by only one cleavage competent active site being formed at a time within the dimer. The assembly of only one active site within dimers is a well-known characteristic of the tyrosine recombinases. Hence, the obtained results may suggest a recombinase-like active site assembly of the double deleted topoisomerase I variant. Taken together the presented results consolidate the relationship between type IB topoisomerases and tyrosine recombinases.
Collapse
Affiliation(s)
- Marianne S Hede
- Department of Molecular Biology, University of Aarhus, C.F. Møllers Allé, Building 130, DK-8000, Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
10
|
Søe K, Hartung S, Grosse F. Human topoisomerase I forms double cleavage complexes on natural DNA. Biochem Biophys Res Commun 2006; 349:178-85. [PMID: 16930551 DOI: 10.1016/j.bbrc.2006.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 08/04/2006] [Indexed: 11/22/2022]
Abstract
DNA topoisomerase I releases torsional stress generated in chromatin during transcription and replication. Usually topoisomerase I is recognized to work as a monomer, but previously we have shown that two molecules can form a dimer-like protein-protein complex on a 'suicide' DNA substrate resulting in a topoisomerase I double cleavage complex. Here we show that during the normal relaxation reaction a considerable fraction of human topoisomerase I formed transient dimers on plasmid DNA too. Recombinant as well as topoisomerase I purified from human cells formed double cleavage complexes within a distance of 12 or 14 nucleotides. When topoisomerase I was isolated from camptothecin-treated HeLa cells, a considerable fraction migrated to the same position as topoisomerase I bearing a covalently bound 12-to-14-mer oligonucleotide. Taken together our data suggest that human topoisomerase I double cleavage complexes are part of the normal catalytic cycle of this enzyme that occur in vitro and possibly also in vivo.
Collapse
Affiliation(s)
- Kent Søe
- Leibniz Institute for Age Research, Fritz Lipmann Institute (FLI), Biochemical Group, Beutenbergstrasse 11, D-07745 Jena, Germany
| | | | | |
Collapse
|
11
|
Kegel A, Martinez P, Carter SD, Åström SU. Genome wide distribution of illegitimate recombination events in Kluyveromyces lactis. Nucleic Acids Res 2006; 34:1633-45. [PMID: 16549875 PMCID: PMC1405753 DOI: 10.1093/nar/gkl064] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 01/21/2006] [Accepted: 02/28/2006] [Indexed: 11/13/2022] Open
Abstract
Illegitimate recombination (IR) is the process by which two DNA molecules not sharing homology to each other are joined. In Kluyveromyces lactis, integration of heterologous DNA occurred very frequently therefore constituting an excellent model organism to study IR. IR was completely dependent on the nonhomologous end-joining (NHEJ) pathway for DNA double strand break (DSB) repair and we detected no other pathways capable of mediating IR. NHEJ was very versatile, capable of repairing both blunt and non-complementary ends efficiently. Mapping the locations of genomic IR-events revealed target site preferences, in which intergenic regions (IGRs) and ribosomal DNA were overrepresented six-fold compared to open reading frames (ORFs). The IGR-events occurred predominantly within transcriptional regulatory regions. In a rad52 mutant strain IR still preferentially occurred at IGRs, indicating that DSBs in ORFs were not primarily repaired by homologous recombination (HR). Introduction of ectopic DSBs resulted in the efficient targeting of IR to these sites, strongly suggesting that IR occurred at spontaneous mitotic DSBs. The targeting efficiency was equal when ectopic breaks were introduced in an ORF or an IGR. We propose that spontaneous DSBs arise more frequently in transcriptional regulatory regions and in rDNA and such DSBs can be mapped by analyzing IR target sites.
Collapse
Affiliation(s)
- Andreas Kegel
- Department of Developmental Biology, Wennergren Institute, Stockholm UniversitySE-106 91 Stockholm, Sweden
| | - Paula Martinez
- Department of Developmental Biology, Wennergren Institute, Stockholm UniversitySE-106 91 Stockholm, Sweden
| | - Sidney D. Carter
- Department of Developmental Biology, Wennergren Institute, Stockholm UniversitySE-106 91 Stockholm, Sweden
| | - Stefan U. Åström
- Department of Developmental Biology, Wennergren Institute, Stockholm UniversitySE-106 91 Stockholm, Sweden
| |
Collapse
|
12
|
Di Felice F, Cioci F, Camilloni G. FOB1 affects DNA topoisomerase I in vivo cleavages in the enhancer region of the Saccharomyces cerevisiae ribosomal DNA locus. Nucleic Acids Res 2005; 33:6327-37. [PMID: 16269824 PMCID: PMC1277812 DOI: 10.1093/nar/gki950] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In Saccharomyces cerevisiae the FOB1 gene affects replication fork blocking activity at the replication fork block (RFB) sequences and promotes recombination events within the rDNA cluster. Using in vivo footprinting assays we mapped two in vivo Fob1p-binding sites, RFB1 and RFB3, located in the rDNA enhancer region and coincident with those previously reported to be in vitro binding sites. We previously provided evidences that DNA topoisomerase I is able to cleave two sites within this region. The results reported in this paper, indicate that the DNA topoisomerase I cleavage specific activity at the enhancer region is affected by the presence of Fob1p and independent of replication and transcription activities. We thus hypothesize that the binding to DNA of Fob1p itself may be the cause of the DNA topoisomerase I activity in the rDNA enhancer.
Collapse
Affiliation(s)
- Francesca Di Felice
- Dipartimento di Genetica e Biologia Molecolare, Università di Roma ‘La Sapienza’Rome, Italy
| | - Francesco Cioci
- Dipartimento di Genetica e Biologia Molecolare, Università di Roma ‘La Sapienza’Rome, Italy
| | - Giorgio Camilloni
- Dipartimento di Genetica e Biologia Molecolare, Università di Roma ‘La Sapienza’Rome, Italy
- Istituto di Biologia e Patologia Molecolari, CNRRome, Italy
- To whom correspondence should be addressed. Tel: +390649912808; Fax: +390649912500;
| |
Collapse
|
13
|
Current awareness on yeast. Yeast 2004; 21:1133-40. [PMID: 15529464 DOI: 10.1002/yea.1095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|