1
|
Song X, Liu H, Shen S, Huang Z, Yu T, Liu Z, Yang Q, Wu T, Feng S, Zhang Y, Wang Z, Duan W. Chromosome-level pepino genome provides insights into genome evolution and anthocyanin biosynthesis in Solanaceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1128-1143. [PMID: 35293644 DOI: 10.1111/tpj.15728] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Pepino (Solanum muricatum, 2n = 2x = 24), a member of the Solanaceae family, is an important globally grown fruit. Herein, we report high-quality, chromosome-level pepino genomes. The 91.67% genome sequence is anchored to 12 chromosomes, with a total length of 1.20 Gb and scaffold N50 of 87.03 Mb. More than half the genome comprises repetitive sequences. In addition to the shared ancient whole-genome triplication (WGT) event in eudicots, an additional new WGT event was present in the pepino. Our findings suggest that pepinos experienced chromosome rearrangements, fusions, and gene loss after a WGT event. The large number of gene removals indicated the instability of Solanaceae genomes, providing opportunities for species divergence and natural selection. The paucity of disease-resistance genes (NBS) in pepino and eggplant has been explained by extensive loss and limited generation of genes after WGT events in Solanaceae. The outbreak of NBS genes was not synchronized in Solanaceae species, which occurred before the Solanaceae WGT event in pepino, tomato, and tobacco, whereas it was almost synchronized with WGT events in the other four Solanaceae species. Transcriptome and comparative genomic analyses revealed several key genes involved in anthocyanin biosynthesis. Although an extra WGT event occurred in Solanaceae, CHS genes related to anthocyanin biosynthesis in grapes were still significantly expanded compared with those in Solanaceae species. Proximal and tandem duplications contributed to the expansion of CHS genes. In conclusion, the pepino genome and annotation facilitate further research into important gene functions and comparative genomic analysis in Solanaceae.
Collapse
Affiliation(s)
- Xiaoming Song
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Haibin Liu
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Shaoqin Shen
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Zhinan Huang
- College of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Tong Yu
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Zhuo Liu
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Qihang Yang
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Tong Wu
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Shuyan Feng
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Yu Zhang
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Zhiyuan Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Weike Duan
- College of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| |
Collapse
|
2
|
A compendium of genome-wide sequence reads from NBS (nucleotide binding site) domains of resistance genes in the common potato. Sci Rep 2020; 10:11392. [PMID: 32647195 PMCID: PMC7347568 DOI: 10.1038/s41598-020-67848-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/09/2020] [Indexed: 12/02/2022] Open
Abstract
SolariX is a compendium of DNA sequence tags from the nucleotide binding site (NBS) domain of disease resistance genes of the common potato, Solanum tuberosum Group Tuberosum. The sequences, which we call NBS tags, for nearly all NBS domains from 91 genomes—representing a wide range of historical and contemporary potato cultivars, 24 breeding programs and 200 years—were generated using just 16 amplification primers and high-throughput sequencing. The NBS tags were mapped to 587 NBS domains on the draft potato genome DM, where we detected an average, over all the samples, of 26 nucleotide polymorphisms on each locus. The total number of NBS domains observed, differed between potato cultivars. However, both modern and old cultivars possessed comparable levels of variability, and neither the individual breeder or country nor the generation or time appeared to correlate with the NBS domain frequencies. Our attempts to detect haplotypes (i.e., sets of linked nucleotide polymorphisms) frequently yielded more than the possible 4 alleles per domain indicating potential locus intermixing during the mapping of NBS tags to the DM reference genome. Mapping inaccuracies were likely a consequence of the differences of each cultivar to the reference genome used, coupled with high levels of NBS domain sequence similarity. We illustrate that the SolariX database is useful to search for polymorphism linked with NBS-LRR R gene alleles conferring specific disease resistance and to develop molecular markers for selection.
Collapse
|
3
|
Herraiz FJ, Blanca J, Ziarsolo P, Gramazio P, Plazas M, Anderson GJ, Prohens J, Vilanova S. The first de novo transcriptome of pepino (Solanum muricatum): assembly, comprehensive analysis and comparison with the closely related species S. caripense, potato and tomato. BMC Genomics 2016; 17:321. [PMID: 27142449 PMCID: PMC4855764 DOI: 10.1186/s12864-016-2656-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/25/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Solanum sect. Basarthrum is phylogenetically very close to potatoes (Solanum sect. Petota) and tomatoes (Solanum sect. Lycopersicon), two groups with great economic importance, and for which Solanum sect. Basarthrum represents a tertiary gene pool for breeding. This section includes the important regional cultigen, the pepino (Solanum muricatum), and several wild species. Among the wild species, S. caripense is prominent due to its major involvement in the origin of pepino and its wide geographical distribution. Despite the value of the pepino as an emerging crop, and the potential for gene transfer from both the pepino and S. caripense to potatoes and tomatoes, there has been virtually no genomic study of these species. RESULTS Using Illumina HiSeq 2000, RNA-Seq was performed with a pool of three tissues (young leaf, flowers in pre-anthesis and mature fruits) from S. muricatum and S. caripense, generating almost 111,000,000 reads among the two species. A high quality de novo transcriptome was assembled from S. muricatum clean reads resulting in 75,832 unigenes with an average length of 704 bp. These unigenes were functionally annotated based on similarity of public databases. We used Blast2GO, to conduct an exhaustive study of the gene ontology, including GO terms, EC numbers and KEGG pathways. Pepino unigenes were compared to both potato and tomato genomes in order to determine their estimated relative position, and to infer gene prediction models. Candidate genes related to traits of interest in other Solanaceae were evaluated by presence or absence and compared with S. caripense transcripts. In addition, by studying five genes, the phylogeny of pepino and five other members of the family, Solanaceae, were studied. The comparison of S. caripense reads against S. muricatum assembled transcripts resulted in thousands of intra- and interspecific nucleotide-level variants. In addition, more than 1000 SSRs were identified in the pepino transcriptome. CONCLUSIONS This study represents the first genomic resource for the pepino. We suggest that the data will be useful not only for improvement of the pepino, but also for potato and tomato breeding and gene transfer. The high quality of the transcriptome presented here also facilitates comparative studies in the genus Solanum. The accurate transcript annotation will enable us to figure out the gene function of particular traits of interest. The high number of markers (SSR and nucleotide-level variants) obtained will be useful for breeding programs, as well as studies of synteny, diversity evolution, and phylogeny.
Collapse
Affiliation(s)
- Francisco J. Herraiz
- />Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia Spain
| | - José Blanca
- />Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia Spain
| | - Pello Ziarsolo
- />Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia Spain
| | - Pietro Gramazio
- />Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia Spain
| | - Mariola Plazas
- />Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia Spain
| | - Gregory J. Anderson
- />Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06268-3043 USA
| | - Jaime Prohens
- />Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia Spain
| | - Santiago Vilanova
- />Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia Spain
| |
Collapse
|
4
|
Rodewald J, Trognitz B. Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. MOLECULAR PLANT PATHOLOGY 2013; 14:740-57. [PMID: 23710878 PMCID: PMC6638693 DOI: 10.1111/mpp.12036] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Resistance genes against Phytophthora infestans (Rpi genes), the most important potato pathogen, are still highly valued in the breeding of Solanum spp. for enhanced resistance. The Rpi genes hitherto explored are localized most often in clusters, which are similar between the diverse Solanum genomes. Their distribution is not independent of late maturity traits. This review provides a summary of the most recent important revelations on the genomic position and cloning of Rpi genes, and the structure, associations, mode of action and activity spectrum of Rpi and corresponding avirulence (Avr) proteins. Practical implications for research into and application of Rpi genes are deduced and combined with an outlook on approaches to address remaining issues and interesting questions. It is evident that the potential of Rpi genes has not been exploited fully.
Collapse
Affiliation(s)
- Jan Rodewald
- Department of Health and Environment, Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria.
| | | |
Collapse
|
5
|
Rana B, Sreenivasulu Y. Protein changes during ethanol induced seed germination in Aconitum heterophyllum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013. [PMID: 23199684 DOI: 10.1016/j.plantsci.2012.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Aconitum heterophyllum is a high altitude medicinal plant that has become endangered due to overexploitation for their aconitins. The most effective, conventional propagation method for any plant species is by seed. However, in Aconitum seed germination is erratic, and seedling survival is low. In the present study results have been discussed on the possible implication of ethanol treatment on removal of barriers on radical emergence in terms of protein changes. Eighty seven percent of seed germination was achieved in Aconitum with ethanol treatment. Comparative 2-DE analysis of ethanol treated and untreated seed protein profiles in Phase II of germination revealed 40 differentially expressed proteins. Twenty-seven out of 40 proteins were induced, 5 were increased and 8 were repressed. Mass spectrometry and subsequent identification confirmed that these proteins were involved in metabolism, DNA regulation, stress tolerance and plasmamembrane/cell wall biosynthesis/extension processes. These protein changes might be responsible for physiological and physical changes, respectively, resulted in increase in germination percentage. Further, characterization of these proteins will be of great help in understanding the molecular mechanism lying behind enhanced germination in response to ethanol treatment.
Collapse
Affiliation(s)
- Bindu Rana
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061 (H.P.), India
| | | |
Collapse
|
6
|
Quirin EA, Mann H, Meyer RS, Traini A, Chiusano ML, Litt A, Bradeen JM. Evolutionary meta-analysis of solanaceous resistance gene and solanum resistance gene analog sequences and a practical framework for cross-species comparisons. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:603-612. [PMID: 22352721 DOI: 10.1094/mpmi-12-11-0318-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cross-species comparative genomics approaches have been employed to map and clone many important disease resistance (R) genes from Solanum species-especially wild relatives of potato and tomato. These efforts will increase with the recent release of potato genome sequence and the impending release of tomato genome sequence. Most R genes belong to the prominent nucleotide binding site-leucine rich repeat (NBS-LRR) class and conserved NBS-LRR protein motifs enable survey of the R gene space of a plant genome by generation of resistance gene analogs (RGA), polymerase chain reaction fragments derived from R genes. We generated a collection of 97 RGA from the disease-resistant wild potato S. bulbocastanum, complementing smaller collections from other Solanum species. To further comparative genomics approaches, we combined all known Solanum RGA and cloned solanaceous NBS-LRR gene sequences, nearly 800 sequences in total, into a single meta-analysis. We defined R gene diversity bins that reflect both evolutionary relationships and DNA cross-hybridization results. The resulting framework is amendable and expandable, providing the research community with a common vocabulary for present and future study of R gene lineages. Through a series of sequence and hybridization experiments, we demonstrate that all tested R gene lineages are of ancient origin, are shared between Solanum species, and can be successfully accessed via comparative genomics approaches.
Collapse
Affiliation(s)
- Edmund A Quirin
- University of Minnesota, Department of Plant Pathology, 495 Borlaug Hall/1991 Upper Buford Circle, St. Paul, MN 55108,USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Pel MA, Foster SJ, Park TH, Rietman H, van Arkel G, Jones JDG, Van Eck HJ, Jacobsen E, Visser RGF, Van der Vossen EAG. Mapping and cloning of late blight resistance genes from Solanum venturii using an interspecific candidate gene approach. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:601-15. [PMID: 19348577 DOI: 10.1094/mpmi-22-5-0601] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Late blight, caused by the oomycete Phytophthora infestans, is one of the most devastating diseases of potato. Resistance (R) genes from the wild species Solanum demissum have been used by breeders to generate late-blight-resistant cultivars but resistance was soon overcome by the pathogen. A more recent screening of a large number of wild species has led to the identification of novel sources of resistance, many of which are currently being characterized further. Here, we report on the cloning of dominant Rpi genes from S. venturii. Rpi-vnt1.1 and Rpi-vnt1.3 were mapped to chromosome 9 using nucleotide binding site (NBS) profiling. Subsequently, a Tm-2(2)-based allele mining strategy was used to clone both genes. Rpi-vnt1.1 and Rpi-vnt1.3 belong to the coiled-coil NBS leucine-rich repeat (LRR) class of plant R genes and encode predicted peptides of 891 and 905 amino acids (aa), respectively, which share 75% amino acid identity with the Tomato mosaic virus resistance protein Tm-2(2) from tomato. Compared with Rpi-vnt1.1, Rpi-vnt1.3 harbors a 14-aa insertion in the N-terminal region of the protein and two different amino acids in the LRR domain. Despite these differences, Rpi-vnt1.1 and Rpi-vnt1.3 genes have the same resistance spectrum.
Collapse
Affiliation(s)
- Mathieu A Pel
- Wageningen UR Plant Breeding, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nakitandwe J, Trognitz F, Trognitz B. Reliable allele detection using SNP-based PCR primers containing Locked Nucleic Acid: application in genetic mapping. PLANT METHODS 2007; 3:2. [PMID: 17286854 PMCID: PMC1802836 DOI: 10.1186/1746-4811-3-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 02/07/2007] [Indexed: 05/13/2023]
Abstract
BACKGROUND The diploid, Solanum caripense, a wild relative of potato and tomato, possesses valuable resistance to potato late blight and we are interested in the genetic base of this resistance. Due to extremely low levels of genetic variation within the S. caripense genome it proved impossible to generate a dense genetic map and to assign individual Solanum chromosomes through the use of conventional chromosome-specific SSR, RFLP, AFLP, as well as gene- or locus-specific markers. The ease of detection of DNA polymorphisms depends on both frequency and form of sequence variation. The narrow genetic background of close relatives and inbreds complicates the detection of persisting, reduced polymorphism and is a challenge to the development of reliable molecular markers. Nonetheless, monomorphic DNA fragments representing not directly usable conventional markers can contain considerable variation at the level of single nucleotide polymorphisms (SNPs). This can be used for the design of allele-specific molecular markers. The reproducible detection of allele-specific markers based on SNPs has been a technical challenge. RESULTS We present a fast and cost-effective protocol for the detection of allele-specific SNPs by applying Sequence Polymorphism-Derived (SPD) markers. These markers proved highly efficient for fingerprinting of individuals possessing a homogeneous genetic background. SPD markers are obtained from within non-informative, conventional molecular marker fragments that are screened for SNPs to design allele-specific PCR primers. The method makes use of primers containing a single, 3'-terminal Locked Nucleic Acid (LNA) base. We demonstrate the applicability of the technique by successful genetic mapping of allele-specific SNP markers derived from monomorphic Conserved Ortholog Set II (COSII) markers mapped to Solanum chromosomes, in S. caripense. By using SPD markers it was possible for the first time to map the S. caripense alleles of 16 chromosome-specific COSII markers and to assign eight of the twelve linkage groups to consensus Solanum chromosomes. CONCLUSION The method based on individual allelic variants allows for a level-of-magnitude higher resolution of genetic variation than conventional marker techniques. We show that the majority of monomorphic molecular marker fragments from organisms with reduced heterozygosity levels still contain SNPs that are sufficient to trace individual alleles.
Collapse
Affiliation(s)
- Joy Nakitandwe
- Bioresources Department, Austrian Research Centers GmbH – ARC, A-2444, Seibersdorf, Austria
| | - Friederike Trognitz
- Bioresources Department, Austrian Research Centers GmbH – ARC, A-2444, Seibersdorf, Austria
| | - Bodo Trognitz
- Bioresources Department, Austrian Research Centers GmbH – ARC, A-2444, Seibersdorf, Austria
| |
Collapse
|
9
|
Ueda H, Yamaguchi Y, Sano H. Direct interaction between the tobacco mosaic virus helicase domain and the ATP-bound resistance protein, N factor during the hypersensitive response in tobacco plants. PLANT MOLECULAR BIOLOGY 2006; 61:31-45. [PMID: 16786290 DOI: 10.1007/s11103-005-5817-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 12/12/2005] [Indexed: 05/10/2023]
Abstract
Plants cope with pathogens with distinct mechanisms. One example is a gene-for-gene system, in which plants recognize the pathogen molecule by specified protein(s), this being called the R factor. However, mechanisms of interaction between proteins from the host and the pathogen are not completely understood. Here, we analyzed the mode of interaction between the N factor, a tobacco R factor, and the helicase domain (p50) of tobacco mosaic virus (TMV). To this end, domain dissected proteins were prepared and subjected to Agroinfiltration into intact leaves, followed by yeast two hybrid and pull-down assays. The results pointed to three novel features. First, the N factor was found to directly bind to the p50 of TMV, second, ATP was pre-requisite for this interaction, with formation of an ATP/N factor complex, and third, the N factor was shown to possess ATPase activity, which is enhanced by the p50. Moreover, we found that intra- and/or inter-molecular interactions take place in the N factor molecule. This interaction required ATP, and was disrupted by the p50. Based on these results, we propose a following model for the TMV recognition mechanism in tobacco plants. The N factor forms a complex with ATP, to which the helicase domain interacts, and enhances ATP hydrolysis. The resulting ADP/N factor complex then changes its conformation, thereby facilitating further interaction with the down-stream signaling factor(s). This model is consistent with the idea of 'protein machine'.
Collapse
Affiliation(s)
- Hirokazu Ueda
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Japan
| | | | | |
Collapse
|