1
|
Hatanaka R, Tamagawa K, Haruta N, Sugimoto A. The impact of differential transposition activities of autonomous and nonautonomous hAT transposable elements on genome architecture and gene expression in Caenorhabditis inopinata. Genetics 2024; 227:iyae052. [PMID: 38577765 PMCID: PMC11492494 DOI: 10.1093/genetics/iyae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/08/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
Transposable elements are DNA sequences capable of moving within genomes and significantly influence genomic evolution. The nematode Caenorhabditis inopinata exhibits a much higher transposable element copy number than its sister species, Caenorhabditis elegans. In this study, we identified a novel autonomous transposable element belonging to the hAT superfamily from a spontaneous transposable element-insertion mutant in C. inopinata and named this transposon Ci-hAT1. Further bioinformatic analyses uncovered 3 additional autonomous hAT elements-Ci-hAT2, Ci-hAT3, and Ci-hAT4-along with over 1,000 copies of 2 nonautonomous miniature inverted-repeat transposable elements, mCi-hAT1 and mCi-hAT4, likely derived from Ci-hAT1 and Ci-hAT4 through internal deletion. We tracked at least 3 sequential transpositions of Ci-hAT1 over several years. However, the transposition rates of the other 3 autonomous hAT elements were lower, suggesting varying activity levels. Notably, the distribution patterns of the 2 miniature inverted-repeat transposable element families differed significantly: mCi-hAT1 was primarily located in the chromosome arms, a pattern observed in the transposable elements of other Caenorhabditis species, whereas mCi-hAT4 was more evenly distributed across chromosomes. Additionally, interspecific transcriptome analysis indicated that C. inopinata genes with upstream or intronic these miniature inverted-repeat transposable element insertions tend to be more highly expressed than their orthologous genes in C. elegans. These findings highlight the significant role of de-silenced transposable elements in driving the evolution of genomes and transcriptomes, leading to species-specific genetic diversity.
Collapse
Affiliation(s)
- Ryuhei Hatanaka
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Katsunori Tamagawa
- Laboratory of Evolutionary Genomics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Nami Haruta
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Asako Sugimoto
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
2
|
Zhang H, Zhang J, Xu P, Li M, Li Y. Insertion of a miniature inverted-repeat transposable element into the promoter of OsTCP4 results in more tillers and a lower grain size in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1421-1436. [PMID: 37988625 DOI: 10.1093/jxb/erad467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
A class I PCF type protein, TCP4, was identified as a transcription factor associated with both grain size and tillering through a DNA pull-down-MS assay combined with a genome-wide association study. This transcription factor was found to have a significant role in the variations among the 533 rice accessions, dividing them into two main subspecies. A Tourist-like miniature inverted-repeat transposable element (MITE) was discovered in the promoter of TCP4 in japonica/geng accessions (TCP4M+), which was found to suppress the expression of TCP4 at the transcriptional level. The MITE-deleted haplotype (TCP4M-) was mainly found in indica/xian accessions. ChIP-qPCR and EMSA demonstrated the binding of TCP4 to promoters of grain reservoir genes such as SSIIa and Amy3D in vivo and in vitro, respectively. The introduction of the genomic sequence of TCP4M+ into different TCP4M- cultivars was found to affect the expression of TCP4 in the transgenic rice, resulting in decreased expression of its downstream target gene SSIIa, increased tiller number, and decreased seed length. This study revealed that a Tourist-like MITE contributes to subspecies divergence by regulating the expression of TCP4 in response to environmental pressure, thus influencing source-sink balance by regulating starch biosynthesis in rice.
Collapse
Affiliation(s)
- Hui Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Juncheng Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Pengkun Xu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Ming Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430026, China
| | - Yibo Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| |
Collapse
|
3
|
Gao D, Fox-Fogle E. Identification of transcriptionally active transposons in Barley. BMC Genom Data 2023; 24:64. [PMID: 37925398 PMCID: PMC10625261 DOI: 10.1186/s12863-023-01170-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND The genomes of many major crops including barley (Hordeum vulgare) consist of numerous transposons. Despite their important roles in crop genome evolution and morphological variations, most of these elements are silent or truncated and unable to be mobile in host genomes. Thus far, only a very limited number of active transposons were identified in plants. RESULTS We analyzed the barley full-length cDNA (FLcDNA) sequences and detected 71 unique FLcDNAs exhibiting significant sequence similarity to the extant transposase proteins. These FLcDNAs were then used to search against the genome of a malting barley cultivar 'Morex', seven new intact transposons were identified. Sequence alignments indicated that six intact transposons contained the entire FLcDNAs whereas another one served as 3' untranslated region (3' UTR) of a barley gene. Our reverse transcription-PCR (RT-PCR) experiment further confirmed the expression of these six transposons and revealed their differential expression. We conducted genome-wide transposon comparisons and detected polymorphisms of three transposon families between the genomes of 'Morex' and other three genotypes including the wild barley (Hordeum spontaneum, B1K-04-12) and two cultivated barley varieties, 'Golden Promise' and 'Lasa Goumang'. Lastly, we screened the transcripts of all annotated barley genes and found that some transposons may serve as the coding regions (CDSs) or UTRs of barley genes. CONCLUSION We identified six newly expressed transposons in the barley genome and revealed the recent mobility of three transposon families. Our efforts provide a valuable resource for understanding the effects of transposons on barley genome evolution and for developing novel molecular tools for barley genetic improvement and other research.
Collapse
Affiliation(s)
- Dongying Gao
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, 83210, USA.
| | - Emma Fox-Fogle
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, 83210, USA
- National Agricultural Statistical Service, USDA, Olympia, WA, 98501, USA
| |
Collapse
|
4
|
Fujino K, Kawahara Y, Shirasawa K. Artificial selection in the expansion of rice cultivation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:291-299. [PMID: 34731272 DOI: 10.1007/s00122-021-03966-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Gene distributions and population genomics suggest artificial selection of ghd7 osprr37, for extremely early heading date of rice, in the Tohoku region of Japan. The ranges of cultivated crops expanded into various environmental conditions around the world after their domestication. Hokkaido, Japan, lies at the northern limit of cultivation of rice, which originated in the tropics. Novel genotypes for extremely early heading date in Hokkaido are controlled by loss-of-function of both Grain number, plant height and heading date 7 (Ghd7) and Oryza sativa Pseudo-Response Regulator 37 (OsPRR37). We traced genotypes for extremely early heading date and analyzed the phylogeny of rice varieties grown historically in Japan. The mutations in Ghd7 and OsPRR37 had distinct local distributions. Population genomics revealed that varieties collected from the Tohoku region of northern Japan formed three clusters. Mutant alleles of Ghd7 and OsPRR37 appear to have allowed rice cultivation to spread into Hokkaido. Our results show that the mutations of two genes might be occurred in the process of artificial selection during early rice cultivation in the Tohoku region.
Collapse
Affiliation(s)
- Kenji Fujino
- Hokkaido Agricultural Research Center, National Agricultural Research Organization (NARO), Sapporo, 062-8555, Japan.
- Institute of Crop Science, National Agricultural Research Organization, Tsukuba, 305-8518, Japan.
| | - Yoshihiro Kawahara
- Institute of Crop Science, NARO, Tsukuba, 305-8518, Japan
- Advanced Analysis Center, NARO, Tsukuba, 305-8602, Japan
| | | |
Collapse
|
5
|
Zhou X, Shafique K, Sajid M, Ali Q, Khalili E, Javed MA, Haider MS, Zhou G, Zhu G. Era-like GTP protein gene expression in rice. BRAZ J BIOL 2021; 82:e250700. [PMID: 34259718 DOI: 10.1590/1519-6984.250700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/19/2021] [Indexed: 11/22/2022] Open
Abstract
The mutations are genetic changes in the genome sequences and have a significant role in biotechnology, genetics, and molecular biology even to find out the genome sequences of a cell DNA along with the viral RNA sequencing. The mutations are the alterations in DNA that may be natural or spontaneous and induced due to biochemical reactions or radiations which damage cell DNA. There is another cause of mutations which is known as transposons or jumping genes which can change their position in the genome during meiosis or DNA replication. The transposable elements can induce by self in the genome due to cellular and molecular mechanisms including hypermutation which caused the localization of transposable elements to move within the genome. The use of induced mutations for studying the mutagenesis in crop plants is very common as well as a promising method for screening crop plants with new and enhanced traits for the improvement of yield and production. The utilization of insertional mutations through transposons or jumping genes usually generates stable mutant alleles which are mostly tagged for the presence or absence of jumping genes or transposable elements. The transposable elements may be used for the identification of mutated genes in crop plants and even for the stable insertion of transposable elements in mutated crop plants. The guanine nucleotide-binding (GTP) proteins have an important role in inducing tolerance in rice plants to combat abiotic stress conditions.
Collapse
Affiliation(s)
- X Zhou
- Linyi University, College of Life Science, Linyi, Shandong, China
| | - K Shafique
- Government Sadiq College Women University, Department of Botany, Bahawalpur, Pakistan
| | - M Sajid
- University of Okara, Faculty of Life Sciences, Department of Biotechnology, Okara, Pakistan
| | - Q Ali
- University of Lahore, Institute of Molecular Biology and Biotechnology, Lahore, Pakistan
| | - E Khalili
- Tarbiat Modarres University, Faculty of Science, Department of Plant Science, Tehran, Iran
| | - M A Javed
- University of the Punjab Lahore, Department of Plant Breeding and Genetics, Lahore, Pakistan
| | - M S Haider
- University of the Punjab Lahore, Department of Plant Pathology, Lahore, Pakistan
| | - G Zhou
- Yangzhou University, The Ministry of Education of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
| | - G Zhu
- Yangzhou University, The Ministry of Education of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
| |
Collapse
|
6
|
Fambrini M, Usai G, Vangelisti A, Mascagni F, Pugliesi C. The plastic genome: The impact of transposable elements on gene functionality and genomic structural variations. Genesis 2020; 58:e23399. [DOI: 10.1002/dvg.23399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| |
Collapse
|
7
|
Macko-Podgórni A, Stelmach K, Kwolek K, Grzebelus D. Stowaway miniature inverted repeat transposable elements are important agents driving recent genomic diversity in wild and cultivated carrot. Mob DNA 2019; 10:47. [PMID: 31798695 PMCID: PMC6881990 DOI: 10.1186/s13100-019-0190-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/21/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Miniature inverted repeat transposable elements (MITEs) are small non-autonomous DNA transposons that are ubiquitous in plant genomes, and are mobilised by their autonomous relatives. Stowaway MITEs are derived from and mobilised by elements from the mariner superfamily. Those elements constitute a significant portion of the carrot genome; however the variation caused by Daucus carota Stowaway MITEs (DcStos), their association with genes and their putative impact on genome evolution has not been comprehensively analysed. RESULTS Fourteen families of Stowaway elements DcStos occupy about 0.5% of the carrot genome. We systematically analysed 31 genomes of wild and cultivated Daucus carota, yielding 18.5 thousand copies of these elements, showing remarkable insertion site polymorphism. DcSto element demography differed based on the origin of the host populations, and corresponded with the four major groups of D. carota, wild European, wild Asian, eastern cultivated and western cultivated. The DcStos elements were associated with genes, and most frequently occurred in 5' and 3' untranslated regions (UTRs). Individual families differed in their propensity to reside in particular segments of genes. Most importantly, DcSto copies in the 2 kb regions up- and downstream of genes were more frequently associated with open reading frames encoding transcription factors, suggesting their possible functional impact. More than 1.5% of all DcSto insertion sites in different host genomes contained different copies in exactly the same position, indicating the existence of insertional hotspots. The DcSto7b family was much more polymorphic than the other families in cultivated carrot. A line of evidence pointed at its activity in the course of carrot domestication, and identified Dcmar1 as an active carrot mariner element and a possible source of the transposition machinery for DcSto7b. CONCLUSION Stowaway MITEs have made a substantial contribution to the structural and functional variability of the carrot genome.
Collapse
Affiliation(s)
- Alicja Macko-Podgórni
- Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31425 Krakow, Poland
| | - Katarzyna Stelmach
- Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31425 Krakow, Poland
| | - Kornelia Kwolek
- Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31425 Krakow, Poland
| | - Dariusz Grzebelus
- Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31425 Krakow, Poland
| |
Collapse
|
8
|
Fujino K, Hirayama Y, Obara M, Ikegaya T. Introgression of the chromosomal region with the Pi-cd locus from Oryza meridionalis into O. sativa L. during rice domestication. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1981-1990. [PMID: 30911779 DOI: 10.1007/s00122-019-03332-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/19/2019] [Indexed: 05/04/2023]
Abstract
The genotype of the Pi-cd locus found in blast-resistant rice variety Kitakurin, which is a cultivated rice from Japan belonging to Oryza sativa japonica, is identical to that of its wild relative O. meridionalis. Crop domestication from wild relatives to cultivated species has encompassed significant phenotypic changes. However, little is known about the genetic changes involved in domestication. Here, we surveyed the origin of the Pi-cd locus across Oryza species with AA genomes by comparison with the genome sequences of Hoshinoyume (HS), which does not carry the Pi-cd blast resistance gene, and Kitakurin (KK), which carries the Pi-cd blast resistance gene. We found that variety-specific transposons were enriched at the Pi-cd locus. The genotype of the Pi-cd locus characterized by transposons in HS and KK was specific to each Oryza species with the AA genome. The Kitaake (KT) genotype at the Pi-cd locus found in KK was identical only to that of O. meridionalis and distributed only in subgroups of japonica in the World Rice Collection and tropical japonica in the Japanese Rice Collection, whereas it was not present in O. rufipogon accessions. The distinct distributions of genotypes of the Pi-cd locus clearly demonstrated that the Pi-cd locus was introgressed from O. meridionalis into O. sativa, specific to tropical japonica.
Collapse
Affiliation(s)
- Kenji Fujino
- Hokkaido Agricultural Research Center, National Agricultural Research Organization, Sapporo, 062-8555, Japan.
| | - Yuji Hirayama
- Rice Breeding Group, Kamikawa Agricultural Experiment Station, Local Independent Administrative Agency Hokkaido Research Organization, Pippu, 078-0397, Japan
| | - Mari Obara
- Hokkaido Agricultural Research Center, National Agricultural Research Organization, Sapporo, 062-8555, Japan
| | - Tomohito Ikegaya
- Hokkaido Agricultural Research Center, National Agricultural Research Organization, Sapporo, 062-8555, Japan
| |
Collapse
|
9
|
Tang Y, Ma X, Zhao S, Xue W, Zheng X, Sun H, Gu P, Zhu Z, Sun C, Liu F, Tan L. Identification of an active miniature inverted-repeat transposable element mJing in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:639-653. [PMID: 30689248 PMCID: PMC6850418 DOI: 10.1111/tpj.14260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/01/2019] [Accepted: 01/18/2019] [Indexed: 05/27/2023]
Abstract
Miniature inverted-repeat transposable elements (MITEs) are structurally homogeneous non-autonomous DNA transposons with high copy numbers that play important roles in genome evolution and diversification. Here, we analyzed the rice high-tillering dwarf (htd) mutant in an advanced backcross population between cultivated and wild rice, and identified an active MITE named miniature Jing (mJing). The mJing element belongs to the PIF/Harbinger superfamily. japonica rice var. Nipponbare and indica var. 93-11 harbor 72 and 79 mJing family members, respectively, have undergone multiple rounds of amplification bursts during the evolution of Asian cultivated rice (Oryza sativa L.). A heterologous transposition experiment in Arabidopsis thaliana indicated that the autonomous element Jing is likely to have provides the transposase needed for mJing mobilization. We identified 297 mJing insertion sites and their presence/absence polymorphism among 71 rice samples through targeted high-throughput sequencing. The results showed that the copy number of mJing varies dramatically among Asian cultivated rice (O. sativa), its wild ancestor (O. rufipogon), and African cultivated rice (O. glaberrima) and that some mJing insertions are subject to directional selection. These findings suggest that the amplification and removal of mJing elements have played an important role in rice genome evolution and species diversification.
Collapse
Affiliation(s)
- Yanyan Tang
- State Key Laboratory of Plant Physiology and BiochemistryChina Agricultural UniversityBeijing100193China
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Xin Ma
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Shuangshuang Zhao
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Wei Xue
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Xu Zheng
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Hongying Sun
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Ping Gu
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Zuofeng Zhu
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Chuanqing Sun
- State Key Laboratory of Plant Physiology and BiochemistryChina Agricultural UniversityBeijing100193China
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Fengxia Liu
- State Key Laboratory of Plant Physiology and BiochemistryChina Agricultural UniversityBeijing100193China
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Lubin Tan
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| |
Collapse
|
10
|
Fujino K, Obara M, Ikegaya T. Establishment of adaptability to the northern-limit of rice production. Mol Genet Genomics 2019; 294:729-737. [PMID: 30874890 DOI: 10.1007/s00438-019-01542-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/23/2019] [Indexed: 10/27/2022]
Abstract
The domestication of cultivated crops from their wild relatives narrowed down their genetic diversity in a bottleneck effect. Subsequently, the cultivation areas of crops have expanded all over the world into various environmental conditions from the original area along with human migration after domestication. Here, we demonstrated the genetic changes in the adaptation of rice to Hokkaido (41°2-45°3N latitude), Japan, from the tropics of their origin in Asian cultivated rice, Oryza sativa L. Although cultivated rice originated from the tropics, Hokkaido is one of the northern-limits of rice cultivation worldwide. Population genomics focusing on the local populations showed the varieties had genetically distinct classes with limited genetic diversity. In addition, some varieties in the class carried unique genotypes for flowering time, exhibiting extremely early flowering time. Certain mutations in unique genotypes can split off the varieties that are able to grow in Hokkaido. Furthermore, the changes in the genotype for flowering time during rice cultivation in Hokkaido demonstrated novel combinations of genes for flowering time owing to the intensive artificial selection on natural variation and rice breeding programs to achieve stable rice production in Hokkaido.
Collapse
Affiliation(s)
- Kenji Fujino
- Hokkaido Agricultural Research Center, National Agricultural Research Organization, Sapporo, 062-8555, Japan.
| | - Mari Obara
- Hokkaido Agricultural Research Center, National Agricultural Research Organization, Sapporo, 062-8555, Japan
| | - Tomohito Ikegaya
- Hokkaido Agricultural Research Center, National Agricultural Research Organization, Sapporo, 062-8555, Japan
| |
Collapse
|
11
|
Fujino K, Obara M, Shimizu T, Koyanagi KO, Ikegaya T. Genome-wide association mapping focusing on a rice population derived from rice breeding programs in a region. BREEDING SCIENCE 2015; 65:403-10. [PMID: 26719743 PMCID: PMC4671701 DOI: 10.1270/jsbbs.65.403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/07/2015] [Indexed: 05/20/2023]
Abstract
Plant breeding programs in local regions may generate genetic variations that are desirable to local populations and shape adaptability during the establishment of local populations. To elucidate genetic bases for this process, we proposed a new approach for identifying the genetic bases for the traits improved during rice breeding programs; association mapping focusing on a local population. In the present study, we performed association mapping focusing on a local rice population, consisting of 63 varieties, in Hokkaido, the northernmost region of Japan and one of the northern limits of rice cultivation worldwide. Six and seventeen QTLs were identified for heading date and low temperature germinability, respectively. Of these, 13 were novel QTLs in this population and 10 corresponded to the QTLs previously reported based on QTL mapping. The identification of QTLs for traits in local populations including elite varieties may lead to a better understanding of the genetic bases of elite traits. This is of direct relevance for plant breeding programs in local regions.
Collapse
Affiliation(s)
- Kenji Fujino
- NARO Hokkaido Agricultural Research Center, National Agricultural Research Organization,
Sapporo, Hokkaido 062-8555,
Japan
- Corresponding author (e-mail: )
| | - Mari Obara
- NARO Hokkaido Agricultural Research Center, National Agricultural Research Organization,
Sapporo, Hokkaido 062-8555,
Japan
| | - Toshiaki Shimizu
- Laboratory of Genome Sciences, Graduate School of Information Science and Technology, Hokkaido University,
Sapporo, Hokkaido 060-0814,
Japan
| | - Kanako O. Koyanagi
- Laboratory of Genome Sciences, Graduate School of Information Science and Technology, Hokkaido University,
Sapporo, Hokkaido 060-0814,
Japan
| | - Tomohito Ikegaya
- NARO Hokkaido Agricultural Research Center, National Agricultural Research Organization,
Sapporo, Hokkaido 062-8555,
Japan
| |
Collapse
|
12
|
Fujino K, Obara M, Ikegaya T, Tamura K. Genetic shift in local rice populations during rice breeding programs in the northern limit of rice cultivation in the world. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1739-1746. [PMID: 26021294 DOI: 10.1007/s00122-015-2543-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
The rapid accumulation of pre-existing mutations may play major roles in the establishment and shaping of adaptability for local regions in current rice breeding programs. The cultivated rice, Oryza sativa L., which originated from tropical regions, is now grown worldwide due to the concerted efforts of breeding programs. However, the process of establishing local populations and their origins remain unclear. In the present study, we characterized DNA polymorphisms in the rice variety KITAAKE from Hokkaido, one of the northern limits of rice cultivation in the world. Indel polymorphisms were attributed to transposable element-like insertions, tandem duplications, and non-TE deletions as the original mutation events in the NIPPONBARE and KITAAKE genomes. The allele frequencies of the KITAAKE alleles markedly shifted to the current variety types among the local population from Hokkaido in the last two decades. The KITAAKE alleles widely distributed throughout wild rice and cultivated rice over the world. These have accumulated in the local population from Hokkaido via Japanese landraces as the ancestral population of Hokkaido. These results strongly suggested that combinations of pre-existing mutations played a role in the establishment of adaptability. This approach using the re-sequencing of local varieties in unique environmental conditions will be useful as a genetic resource in plant breeding programs in local regions.
Collapse
Affiliation(s)
- Kenji Fujino
- NARO Hokkaido Agricultural Research Center, National Agricultural Research Organization, Sapporo, Hokkaido, 062-8555, Japan,
| | | | | | | |
Collapse
|
13
|
Roffler S, Wicker T. Genome-wide comparison of Asian and African rice reveals high recent activity of DNA transposons. Mob DNA 2015; 6:8. [PMID: 25954322 PMCID: PMC4423477 DOI: 10.1186/s13100-015-0040-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/16/2015] [Indexed: 12/18/2022] Open
Abstract
Background DNA (Class II) transposons are ubiquitous in plant genomes. However, unlike for (Class I) retrotransposons, only little is known about their proliferation mechanisms, activity, and impact on genomes. Asian and African rice (Oryza sativa and O. glaberrima) diverged approximately 600,000 years ago. Their fully sequenced genomes therefore provide an excellent opportunity to study polymorphisms introduced from recent transposon activity. Results We manually analyzed 1,821 transposon related polymorphisms among which we identified 487 loci which clearly resulted from DNA transposon insertions and excisions. In total, we estimate about 4,000 (3.5% of all DNA transposons) to be polymorphic between the two species, indicating a high level of transposable element (TE) activity. The vast majority of the recently active elements are non-autonomous. Nevertheless, we identified multiple potentially functional autonomous elements. Furthermore, we quantified the impacts of insertions and excisions on the adjacent sequences. Transposon insertions were found to be generally precise, creating simple target site duplications. In contrast, excisions almost always go along with the deletion of flanking sequences and/or the insertion of foreign ‘filler’ segments. Some of the excision-triggered deletions ranged from hundreds to thousands of bp flanking the excision site. Furthermore, we found in some superfamilies unexpectedly low numbers of excisions. This suggests that some excisions might cause such large-scale rearrangements so that they cannot be detected anymore. Conclusions We conclude that the activity of DNA transposons (particularly the excision process) is a major evolutionary force driving the generation of genetic diversity. Electronic supplementary material The online version of this article (doi:10.1186/s13100-015-0040-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan Roffler
- Institute for Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Thomas Wicker
- Institute for Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| |
Collapse
|
14
|
Yoshitake Y, Yokoo T, Saito H, Tsukiyama T, Quan X, Zikihara K, Katsura H, Tokutomi S, Aboshi T, Mori N, Inoue H, Nishida H, Kohchi T, Teraishi M, Okumoto Y, Tanisaka T. The effects of phytochrome-mediated light signals on the developmental acquisition of photoperiod sensitivity in rice. Sci Rep 2015; 5:7709. [PMID: 25573482 PMCID: PMC4287723 DOI: 10.1038/srep07709] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 12/08/2014] [Indexed: 11/30/2022] Open
Abstract
Plants commonly rely on photoperiodism to control flowering time. Rice development before floral initiation is divided into two successive phases: the basic vegetative growth phase (BVP, photoperiod-insensitive phase) and the photoperiod-sensitive phase (PSP). The mechanism responsible for the transition of rice plants into their photoperiod-sensitive state remains elusive. Here, we show that se13, a mutation detected in the extremely early flowering mutant X61 is a nonsense mutant gene of OsHY2, which encodes phytochromobilin (PΦB) synthase, as evidenced by spectrometric and photomorphogenic analyses. We demonstrated that some flowering time and circadian clock genes harbor different expression profiles in BVP as opposed to PSP, and that this phenomenon is chiefly caused by different phytochrome-mediated light signal requirements: in BVP, phytochrome-mediated light signals directly suppress Ehd2, while in PSP, phytochrome-mediated light signals activate Hd1 and Ghd7 expression through the circadian clock genes' expression. These findings indicate that light receptivity through the phytochromes is different between two distinct developmental phases corresponding to the BVP and PSP in the rice flowering process. Our results suggest that these differences might be involved in the acquisition of photoperiod sensitivity in rice.
Collapse
Affiliation(s)
- Yoshihiro Yoshitake
- Division of Agronomy and Horticulture Science, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Takayuki Yokoo
- Division of Agronomy and Horticulture Science, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroki Saito
- Division of Agronomy and Horticulture Science, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Takuji Tsukiyama
- Division of Agronomy and Horticulture Science, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Xu Quan
- Division of Agronomy and Horticulture Science, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kazunori Zikihara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Hitomi Katsura
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Satoru Tokutomi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Takako Aboshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Naoki Mori
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiromo Inoue
- Division of Agronomy and Horticulture Science, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hidetaka Nishida
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Masayoshi Teraishi
- Division of Agronomy and Horticulture Science, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yutaka Okumoto
- Division of Agronomy and Horticulture Science, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Takatoshi Tanisaka
- 1] Division of Agronomy and Horticulture Science, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan [2] Department of Agricultural Regional Vitalization, Kibi International University, Minamiawaji, Hyogo, 656-0484, Japan
| |
Collapse
|
15
|
Menzel G, Heitkam T, Seibt KM, Nouroz F, Müller-Stoermer M, Heslop-Harrison JS, Schmidt T. The diversification and activity of hAT transposons in Musa genomes. Chromosome Res 2014; 22:559-71. [DOI: 10.1007/s10577-014-9445-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/10/2014] [Accepted: 10/20/2014] [Indexed: 11/29/2022]
|
16
|
Schnell J, Steele M, Bean J, Neuspiel M, Girard C, Dormann N, Pearson C, Savoie A, Bourbonnière L, Macdonald P. A comparative analysis of insertional effects in genetically engineered plants: considerations for pre-market assessments. Transgenic Res 2014; 24:1-17. [PMID: 25344849 PMCID: PMC4274372 DOI: 10.1007/s11248-014-9843-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/16/2014] [Indexed: 01/20/2023]
Abstract
During genetic engineering, DNA is inserted into a plant’s genome, and such insertions are often accompanied by the insertion of additional DNA, deletions and/or rearrangements. These genetic changes are collectively known as insertional effects, and they have the potential to give rise to unintended traits in plants. In addition, there are many other genetic changes that occur in plants both spontaneously and as a result of conventional breeding practices. Genetic changes similar to insertional effects occur in plants, namely as a result of the movement of transposable elements, the repair of double-strand breaks by non-homologous end-joining, and the intracellular transfer of organelle DNA. Based on this similarity, insertional effects should present a similar level of risk as these other genetic changes in plants, and it is within the context of these genetic changes that insertional effects must be considered. Increased familiarity with genetic engineering techniques and advances in molecular analysis techniques have provided us with a greater understanding of the nature and impact of genetic changes in plants, and this can be used to refine pre-market assessments of genetically engineered plants and food and feeds derived from genetically engineered plants.
Collapse
Affiliation(s)
- Jaimie Schnell
- Plant and Biotechnology Risk Assessment Unit, Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, ON, K1A 0Y9, Canada,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fujino K, Obara M, Sato K. Diversification of the plant-specific hybrid glycine-rich protein (HyGRP) genes in cereals. FRONTIERS IN PLANT SCIENCE 2014; 5:489. [PMID: 25309566 PMCID: PMC4174136 DOI: 10.3389/fpls.2014.00489] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/03/2014] [Indexed: 05/20/2023]
Abstract
Plant-specific hybrid proline- or glycine-rich proteins (HyP/GRPs) are involved in diverse gene functions including plant development and responses to biotic and abiotic stresses. The quantitative trait locus, qLTG3-1, enhances seed germination in rice under low-temperature conditions and encodes a member with a glycine-rich motif of the HyP/GRP family. The function of this gene may be related to the weakening of tissue covering the embryo during seed germination. In the present study, the diversification of the HyP/GRP gene family was elucidated in rice based on phylogenetic relationships and gene expression levels. At least 21 members of the HyP/GRP family have been identified in the rice genome and clustered in five regions on four chromosomes by tandem and chromosomal duplications. Of these, OsHyPRP05 (qLTG3-1) and its paralogous gene, OsHyPRP21, had a glycine-rich motif. Furthermore, orthologous genes with a glycine-rich motif and the HyP/GRP gene family were detected in four genome-sequenced monocots: 12 in barley, 10 in Brachypodium, 20 in maize, and 28 in sorghum, using a BLAST search of qLTG3-1 as the query. All members of the HyP/GRP family in these five species were classified into seven main groups, which were clustered together in these species. These results suggested that the HyP/GRP gene family was formed in the ancestral genome before the divergence of these species. The collinearity of chromosomal regions around qLTG3-1 and its orthologous genes were conserved among rice, Brachypodium, sorghum, and maize, indicating that qLTG3-1 and orthologous genes conserve gene function during seed germination.
Collapse
Affiliation(s)
- Kenji Fujino
- *Correspondence: Kenji Fujino, NARO Hokkaido Agricultural Research Center, National Agricultural Research Organization, Hitsujigaoka 1, Sapporo 062-8555, Japan e-mail:
| | | | | |
Collapse
|
18
|
Tsukiyama T, Teramoto S, Yasuda K, Horibata A, Mori N, Okumoto Y, Teraishi M, Saito H, Onishi A, Tamura K, Tanisaka T. Loss-of-function of a ubiquitin-related modifier promotes the mobilization of the active MITE mPing. MOLECULAR PLANT 2013; 6:790-801. [PMID: 23446031 DOI: 10.1093/mp/sst042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Miniature inverted-repeat transposable elements (MITEs) are widespread in both prokaryotic and eukaryotic genomes, where their copy numbers can attain several thousands. Little is known, however, about the genetic factor(s) affecting their transpositions. Here, we show that disruption of a gene encoding ubiquitin-like protein markedly enhances the transposition activity of a MITE mPing in intact rice plants without any exogenous stresses. We found that the transposition activity of mPing is far higher in the lines harboring a non-functional allele at the Rurm1 (Rice ubiquitin-related modifier-1) locus than in the wild-type line. Although the alteration of cytosine methylation pattern triggers the activation of transposable elements under exogenous stress conditions, the methylation degrees in the whole genome, the mPing-body region, and the mPing-flanking regions of the non-functional Rurm1 line were unchanged. This study provides experimental evidence for one of the models of genome shock theory that genetic accidents within cells enhance the transposition activities of transposable elements.
Collapse
Affiliation(s)
- Takuji Tsukiyama
- Division of Agronomy and Horticulture Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu R, Koyanagi KO, Chen S, Kishima Y. Evolutionary force of AT-rich repeats to trap genomic and episomal DNAs into the rice genome: lessons from endogenous pararetrovirus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:817-28. [PMID: 22900922 DOI: 10.1111/tpj.12002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In plant genomes, the incorporation of DNA segments is not a common method of artificial gene transfer. Nevertheless, various segments of pararetroviruses have been found in plant genomes in recent decades. The rice genome contains a number of segments of endogenous rice tungro bacilliform virus-like sequences (ERTBVs), many of which are present between AT dinucleotide repeats (ATrs). Comparison of genomic sequences between two closely related rice subspecies, japonica and indica, allowed us to verify the preferential insertion of ERTBVs into ATrs. In addition to ERTBVs, the comparative analyses showed that ATrs occasionally incorporate repeat sequences including transposable elements, and a wide range of other sequences. Besides the known genomic sequences, the insertion sequences also represented DNAs of unclear origins together with ERTBVs, suggesting that ATrs have integrated episomal DNAs that would have been suspended in the nucleus. Such insertion DNAs might be trapped by ATrs in the genome in a host-dependent manner. Conversely, other simple mono- and dinucleotide sequence repeats (SSR) were less frequently involved in insertion events relative to ATrs. Therefore, ATrs could be regarded as hot spots of double-strand breaks that induce non-homologous end joining. The insertions within ATrs occasionally generated new gene-related sequences or involved structural modifications of existing genes. Likewise, in a comparison between Arabidopsis thaliana and Arabidopsis lyrata, the insertions preferred ATrs to other SSRs. Therefore ATrs in plant genomes could be considered as genomic dumping sites that have trapped various DNA molecules and may have exerted a powerful evolutionary force.
Collapse
Affiliation(s)
- Ruifang Liu
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | |
Collapse
|
20
|
Eun CH, Takagi K, Park KI, Maekawa M, Iida S, Tsugane K. Activation and epigenetic regulation of DNA transposon nDart1 in rice. PLANT & CELL PHYSIOLOGY 2012; 53:857-868. [PMID: 22514089 DOI: 10.1093/pcp/pcs060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A large part of the rice genome is composed of transposons. Since active excision/reintegration of these mobile elements may result in harmful genetic changes, many transposons are maintained in a genetically or epigenetically inactivated state. However, some non-autonomous DNA transposons of the nDart1-3 subgroup, including nDart1-0, actively transpose in specific rice lines, such as pyl-v which carries an active autonomous element, aDart1-27, on chromosome 6. Although nDart1-3 subgroup elements show considerable sequence identity, they display different excision frequencies. The most active element, nDart1-0, had a low cytosine methylation status. The aDart1-27 sequence showed conservation between pyl-stb (pyl-v derivative line) and Nipponbare, which both lack autonomous activity for transposition of nDart1-3 subgroup elements. In pyl-v plants, the promoter region of the aDart1-27 transposase gene was more hypomethylated than in other rice lines. Treatment with the methylation inhibitor 5-azacytidine (5-azaC) induced transposition of nDart1-3 subgroup elements in both pyl-stb and Nipponbare plants; the new insertion sites were frequently located in genic regions. 5-AzaC treatment principally induced expression of Dart1-34 transposase rather than the other 38 aDart1-related elements in both pyl-stb and Nipponbare treatment groups. Our observations show that transposition of nDart1-3 subgroup elements in the nDart1/aDart1 tagging system is correlated with the level of DNA methylation. Our system does not cause somaclonal variation due to an absence of transformed plants, offers the possibility of large-scale screening in the field and can identify dominant mutants. We therefore propose that this tagging system provides a valuable addition to the tools available for rice functional genomics.
Collapse
Affiliation(s)
- Chang-Ho Eun
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Menzel G, Krebs C, Diez M, Holtgräwe D, Weisshaar B, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T. Survey of sugar beet (Beta vulgaris L.) hAT transposons and MITE-like hATpin derivatives. PLANT MOLECULAR BIOLOGY 2012; 78:393-405. [PMID: 22246381 DOI: 10.1007/s11103-011-9872-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/20/2011] [Indexed: 05/03/2023]
Abstract
Genome-wide analyses of repetitive DNA suggest a significant impact particularly of transposable elements on genome size and evolution of virtually all eukaryotic organisms. In this study, we analyzed the abundance and diversity of the hAT transposon superfamily of the sugar beet (B. vulgaris) genome, using molecular, bioinformatic and cytogenetic approaches. We identified 81 transposase-coding sequences, three of which are part of structurally intact but nonfunctional hAT transposons (BvhAT), in a B. vulgaris BAC library as well as in whole genome sequencing-derived data sets. Additionally, 116 complete and 497 truncated non-autonomous BvhAT derivatives lacking the transposase gene were in silico-detected. The 116 complete derivatives were subdivided into four BvhATpin groups each characterized by a distinct terminal inverted repeat motif. Both BvhAT and BvhATpin transposons are specific for species of the genus Beta and closely related species, showing a localization on B. vulgaris chromosomes predominantely in euchromatic regions. The lack of any BvhAT transposase function together with the high degree of degeneration observed for the BvhAT and the BvhATpin genomic fraction contrasts with the abundance and activity of autonomous and non-autonomous hAT transposons revealed in other plant species. This indicates a possible genus-specific structural and functional repression of the hAT transposon superfamily during Beta diversification and evolution.
Collapse
Affiliation(s)
- Gerhard Menzel
- Institute of Botany, Dresden University of Technology, 01062 Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fujino K, Iwata N. Selection for low-temperature germinability on the short arm of chromosome 3 in rice cultivars adapted to Hokkaido, Japan. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:1089-97. [PMID: 21744228 DOI: 10.1007/s00122-011-1650-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 06/28/2011] [Indexed: 05/25/2023]
Abstract
In plant breeding with intensive selection, the haplotype patterns in the targeted chromosomal regions may become monogenic among local populations with the most desirable combination of loci. This study demonstrated that the chromosomal region surrounding qLTG3-1 was under selection during rice breeding programs in a local region of Japan, Hokkaido. qLTG3-1 is a major quantitative trait loci controlling tolerance to low-temperature at the seed germination stage in rice, termed low-temperature germinability. A clear association between qLTG3-1 alleles and low-temperature germinability was detected among 64 rice cultivars from Hokkaido. The allele with a loss-of-function mutation seemed to be selected during rice breeding programs. Comparison of haplotype patterns along with the short arm of chromosome 3 revealed that the selection of qLTG3-1 alleles was focused on a distinct chromosomal region of at most 130 kb. In the short arm of chromosome 3, two major traits associated with the adaptability to local conditions have been identified; eating quality and heading date. This study demonstrated that recombinant haplotype patterns for these traits might shape the adaptability to local environmental conditions and market demands during rice breeding programs in addition to the selection of qLTG3-1 alleles. The present results provide new opportunities for the design of hybridization combinations based on the haplotype patterns of chromosomal regions under selection during rice breeding programs in local regions.
Collapse
Affiliation(s)
- Kenji Fujino
- Agricultural Research Institute, Hokuren Federation of Agricultural Cooperatives, Naganuma, Hokkaido, 069-1317, Japan.
| | | |
Collapse
|
23
|
Fujino K, Sekiguchi H. Transposition behavior of nonautonomous a hAT superfamily transposon nDart in rice (Oryza sativa L.). Mol Genet Genomics 2011; 286:135-42. [PMID: 21710178 DOI: 10.1007/s00438-011-0633-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/11/2011] [Indexed: 01/22/2023]
Abstract
Transposable elements (TEs) have a significant impact on the evolution of gene function and genome structures. An endogenous nonautonomous transposable element nDart was discovered in an albino mutant that had an insertion in the Mg-protoporphyrin IX methyltransferase gene in rice. In this study, we elucidated the transposition behavior of nDart, the frequency of nDart transposition and characterized the footprint of nDart. Novel independent nDart insertions in backcrossed progenies were detected by DNA blotting analysis. In addition, germinal excision of nDart occurred at very low frequency compared with that of somatic excision, 0-13.3%, in the nDart1-4(3-2) and nDart1-A loci by a locus-specific PCR strategy. A total of 253 clones from somatic excision at five nDart loci in 10 varieties were determined. nDart rarely caused deletions beyond target site duplication (TSD). The footprint of nDart contained few transversions of nucleotides flanking to both sides of the TSD. The predominant footprint of nDart was an 8-bp addition. Precise excision of nDart was detected at a rate of only 2.2%, which occurred at two loci among the five loci examined. Furthermore, the results in this study revealed that a highly conserved mechanism of transposition is involved between maize Ac/Ds and rice Dart/nDart, which are two-component transposon systems of the hAT superfamily transposons in plant species.
Collapse
Affiliation(s)
- Kenji Fujino
- Agricultural Research Institute, HOKUREN Federation of Agricultural Cooperatives, Naganuma, Hokkaido 067-1317, Japan.
| | | |
Collapse
|
24
|
Gao D, He B, Zhou Y, Sun L. Genetic and molecular analysis of a purple sheath somaclonal mutant in japonica rice. PLANT CELL REPORTS 2011; 30:901-11. [PMID: 21249365 DOI: 10.1007/s00299-011-1004-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/21/2010] [Accepted: 01/05/2011] [Indexed: 05/24/2023]
Abstract
Natural and artificially induced mutants have provided valuable resources for plant genetic studies and crop improvement. In this study, we investigated the genetic and molecular basis of the purple sheath trait in a somaclonal mutant Z418, which was regenerated from a green sheath rice variety C418 through tissue culture. The purple sheath trait in Z418 was heritable and stable based on our 10 years of evaluation. Genetic analysis revealed that the purple sheath trait of the mutant was controlled by a single dominant gene. To map the gene, we scored 89 polymorphic SSRs markers in a F(2) population of 232 plants derived from a cross between Z418 and HX-3, an indica variety with green sheath trait. The gene was initially mapped to the short arm of chromosome 6 between two SSR markers, RPM5 and RM402, with a genetic distance of 1.1 and 10.3 cM, respectively. Thirty-one SSR and indel markers located within the target region were further used to fine-map the gene to a 153-kb interval between two SSR markers (RPM8 and RPM11). The OsC1 gene, which locates within the region and encodes a MYB family transcription factor, was chosen as the candidate gene controlling the purple sheath trait in Z418. Sequencing analysis revealed that OsC1 gene and its transcript in Z418 was 34 bp longer than that in C418. The possible mechanisms for the gene mutation, the developmental and tissue-specific expression of purple anthocyanin pigmentation in Z418, were finally discussed.
Collapse
Affiliation(s)
- Dongying Gao
- Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.
| | | | | | | |
Collapse
|
25
|
Fujino K, Sekiguchi H. Origins of functional nucleotide polymorphisms in a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. PLANT MOLECULAR BIOLOGY 2011; 75:1-10. [PMID: 20960223 DOI: 10.1007/s11103-010-9697-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 09/19/2010] [Indexed: 05/05/2023]
Abstract
qLTG3-1 is a major quantitative trait locus (QTL) controlling tolerance to low-temperature at the seed germination stage (termed low-temperature germinability) in rice using a population derived from the cross between Italica Livorno from Italy and Hayamasari from Japan. Map-based cloning identified that qLTG3-1 encodes a protein of unknown function. The molecular identification of this major QTL could make it possible to identify allelic variation and favorable alleles for rice breeding programs. The present study examined the identification of qLTG3-1 alleles and their distribution among 62 landraces of Asian cultivated rice (Oryza sativa L.) collected from 19 different countries, termed the rice core collection. In the coding region, a single non-synonymous substitution and 3 in-frame insertion/deletion polymorphisms (indels) were detected. The almost completely conserved protein alignment of qLTG3-1 was also identified among 5 Oryza species, suggesting that the function of qLTG3-1 is critical for seed germination or for rice growth by pleiotropic effects of the gene. The functional nucleotide polymorphisms (FNPs), a 71-bp deletion found in Hayamasari and an amino acid substitution found in Nipponbare, was identified in varieties from Japan. These alleles with FNPs might be adapted to rice cultivation in specific local conditions. The present results may contribute to the utilization of favorable alleles of qLTG3-1 for the improvement of low-temperature germinability in rice breeding programs.
Collapse
Affiliation(s)
- Kenji Fujino
- Agricultural Research Institute, HOKUREN Federation of Agricultural Cooperatives, Naganuma, 0691317, Hokkaido, Japan.
| | | |
Collapse
|
26
|
Fujino K, Hashida SN, Ogawa T, Natsume T, Uchiyama T, Mikami T, Kishima Y. Temperature controls nuclear import of Tam3 transposase in Antirrhinum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:146-155. [PMID: 21175897 DOI: 10.1111/j.1365-313x.2010.04405.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
It has been proposed that environmental stimuli can activate transposable elements (TEs), whereas few substantial mechanisms have been shown so far. The class-II element Tam3 from Antirrhinum majus exhibits a unique property of low-temperature-dependent transposition (LTDT). LTDT has proved invaluable in developing the gene isolation technologies that have underpinned much of modern plant developmental biology. Here, we reveal that LTDT involves differential subcellular localization of the Tam3 transposase (TPase) in cells grown at low (15°C) and high (25°C) temperatures. The mechanism is associated with the nuclear import of Tam3 TPase in Antirrhinum cells. At high temperature, the nuclear import of Tam3 TPase is severely restricted in Antirrhinum cells, whereas at low temperature, the nuclear localization of Tam3 TPase is observed in about 20% of the cells. However, in tobacco BY-2 and Allium cepa (onion) cells, Tam3 TPase is transported into most nuclei. In addition to three nuclear localization signals (NLSs), the Tam3 TPase is equipped with a nuclear localization inhibitory domain (NLID), which functions to abolish nuclear import of the TPase at high temperature in Antirrhinum. NLID in Tam3 TPase is considered to interact with Antirrhinum-specific factor(s). The host-specific regulation of the nuclear localization of transposase represents a new repertoire controlling class-II TEs.
Collapse
Affiliation(s)
- Kaien Fujino
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, JapanLaboratory of Genetic Engineering, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, JapanLaboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Shin-Nosuke Hashida
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, JapanLaboratory of Genetic Engineering, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, JapanLaboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Takashi Ogawa
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, JapanLaboratory of Genetic Engineering, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, JapanLaboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Tomoko Natsume
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, JapanLaboratory of Genetic Engineering, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, JapanLaboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Takako Uchiyama
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, JapanLaboratory of Genetic Engineering, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, JapanLaboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Tetsuo Mikami
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, JapanLaboratory of Genetic Engineering, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, JapanLaboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yuji Kishima
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, JapanLaboratory of Genetic Engineering, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, JapanLaboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
27
|
Transposition and target preferences of an active nonautonomous DNA transposon nDart1 and its relatives belonging to the hAT superfamily in rice. Mol Genet Genomics 2010; 284:343-55. [PMID: 20830488 DOI: 10.1007/s00438-010-0569-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 08/13/2010] [Indexed: 01/14/2023]
Abstract
The nonautonomous nDart1 element in the hAT superfamily is one of a few active DNA transposons in rice. Its transposition can be induced by crossing with a line containing an active autonomous element, aDart1, and stabilized by segregating aDart1. No somaclonal variation should occur in nDart1-promoted gene tagging because no tissue culture is involved in nDart1 activation. By transposon display analysis, we examined the activities of nDart1-related elements in the selfed progeny of a mutable virescent pyl-v plant containing aDart1. Although various nDart1-related elements are present in the rice genome, only nDart1-3 subgroup elements, nDart1-0 and nDart1-3 in particular, were found to be transposed frequently and integrated into various sites almost all over the genome, and a fraction of the transposed elements were found to be transmitted to the next generation. More than half of the newly integrated elements were identified as nDart1-0. Analysis of the newly inserted sites revealed that the nDart1-3 subgroup elements were predominantly integrated into single-copy regions. More than 60% of the transposed elements were inserted into the genic regions that comprise putative coding regions and their 0.5-kb flanking segments, and approximately two-thirds of them were within the 0.5-kb area in front of the putative initiation codons, i.e., promoter-proximal genic regions. These characteristic features of nDart1-3 subgroup elements seem to be suitable for developing an efficient and somaclonal variation-free gene tagging system for rice functional genomics.
Collapse
|
28
|
Wang N, Wang H, Wang H, Zhang D, Wu Y, Ou X, Liu S, Dong Z, Liu B. Transpositional reactivation of the Dart transposon family in rice lines derived from introgressive hybridization with Zizania latifolia. BMC PLANT BIOLOGY 2010; 10:190. [PMID: 20796287 PMCID: PMC2956540 DOI: 10.1186/1471-2229-10-190] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 08/26/2010] [Indexed: 05/06/2023]
Abstract
BACKGROUND It is widely recognized that interspecific hybridization may induce "genome shock", and lead to genetic and epigenetic instabilities in the resultant hybrids and/or backcrossed introgressants. A prominent component involved in the genome shock is reactivation of cryptic transposable elements (TEs) in the hybrid genome, which is often associated with alteration in the elements' epigenetic modifications like cytosine DNA methylation. We have previously reported that introgressants derived from hybridization between Oryza sativa (rice) and Zizania latifolia manifested substantial methylation re-patterning and rampant mobilization of two TEs, a copia retrotransposon Tos17 and a MITE mPing. It was not known however whether other types of TEs had also been transpositionally reactivated in these introgressants, their relevance to alteration in cytosine methylation, and their impact on expression of adjacent cellular genes. RESULTS We document in this study that the Dart TE family was transpositionally reactivated followed by stabilization in all three studied introgressants (RZ1, RZ2 and RZ35) derived from introgressive hybridization between rice (cv. Matsumae) and Z. latifolia, while the TEs remained quiescent in the recipient rice genome. Transposon-display (TD) and sequencing verified the element's mobility and mapped the excisions and re-insertions to the rice chromosomes. Methylation-sensitive Southern blotting showed that the Dart TEs were heavily methylated along their entire length, and moderate alteration in cytosine methylation patterns occurred in the introgressants relative to their rice parental line. Real-time qRT-PCR quantification on the relative transcript abundance of six single-copy genes flanking the newly excised or inserted Dart-related TE copies indicated that whereas marked difference in the expression of all four genes in both tissues (leaf and root) were detected between the introgressants and their rice parental line under both normal and various stress conditions, the difference showed little association with the presence or absence of the newly mobilized Dart-related TEs. CONCLUSION Introgressive hybridization has induced transpositional reactivation of the otherwise immobile Dart-related TEs in the parental rice line (cv. Matsumae), which was accompanied with a moderate alteration in the element's cytosine methylation. Significant difference in expression of the Dart-adjacent genes occurred between the introgressants and their rice parental line under both normal and various abiotic stress conditions, but the alteration in gene expression was not coupled with the TEs.
Collapse
Affiliation(s)
- Ningning Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Hongyan Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
- Faculty of Life Science, Liaoning University, Shenyang 110036, China
| | - Hui Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Di Zhang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Xiufang Ou
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Shuang Liu
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Zhenying Dong
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
29
|
Fujino K, Wu J, Sekiguchi H, Ito T, Izawa T, Matsumoto T. Multiple introgression events surrounding the Hd1 flowering-time gene in cultivated rice, Oryza sativa L. Mol Genet Genomics 2010; 284:137-46. [PMID: 20607290 DOI: 10.1007/s00438-010-0555-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 06/22/2010] [Indexed: 12/18/2022]
Abstract
Flowering time is a major determinant for the local adaptation of crops. Hd1 is a key flowering-time gene in rice and is orthologous to the Arabidopsis CONSTANS gene. To elucidate the role of Hd1 in selection, we examined the Hd1 alleles of 60 landraces of Asian cultivated rice (Oryza sativa L.) originating from all regions of Asia, which comprised three cultivar groups, indica, japonica, and aus. The identified alleles were classified into four allele groups. The functional Hd1 alleles in allele groups I and II corresponded to indica and japonica, respectively. Non-functional alleles in these groups were not clearly associated with cultivar groups or locations. Allele groups III and IV corresponded to the aus cultivar group. The ancestry of each cultivar group was identified by the coalescent approach for Hd1 molecular evolution using the haplotype patterns of 14 regions over the 1.1 Mb chromosomal region surrounding Hd1 and the pSINE patterns of two loci, 1.4 and 4.4 Mb apart from Hd1. The haplotype patterns clearly revealed that Hd1 allele migration was caused by multiple and complex introgression events between cultivar groups. The Hd1 haplotypes among dozens of accessions of the wild species O. rufipogon were strongly divergent and only two of the haplotype clusters in O. rufipogon were closely related to those in cultivated rice. This strongly suggested that multiple introgression events have played an important role in the shaping and diversification of adaptation in addition to primary selection steps at the beginning of domestication.
Collapse
Affiliation(s)
- Kenji Fujino
- Plant Breeding and Production Division, Agricultural Research Institute, HOKUREN Federation of Agricultural Cooperatives, Higashi-5, Kita-15, Naganuma, Hokkaido 0691317, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Fujino K, Matsuda Y, Sekiguchi H. Transcriptional activity of rice autonomous transposable element Dart. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1537-43. [PMID: 19410335 DOI: 10.1016/j.jplph.2009.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 03/21/2009] [Accepted: 03/24/2009] [Indexed: 05/15/2023]
Abstract
The rice Dart/nDart transposon system belongs to the hAT superfamily of class II transposons. The nonautonomous element nDart is active in intact rice plants. The autonomous element Dart was identified based on sequence similarity to nDart. Because the rice genome sequence of Nipponbare contains at least 51 Dart elements, it is not clear whether Dart elements are expressed or whether they are transposable. This study characterized for the expression of the predicted ORF of Dart. RNA blotting analysis revealed three transcripts of different lengths. Only the longest transcript (2.5kb) corresponding to the predicted ORF of the Dart element produced a functional TPase. The other transcripts had a frame-shift generating a premature stop codon through alternative splicing. These transcripts were expressed from either of two potentially autonomous Dart elements, Dart01/28 and Dart02. The frequency of alternative splicing differed between the transcripts of the derivative elements. More than 90% of the transcripts from Dart02 were alternatively spliced, compared with only 3% from Dart01/28. The element-specific expression and alternative splicing may control the transposition of nDart.
Collapse
Affiliation(s)
- Kenji Fujino
- Agricultural Research Institute, HOKUREN Federation of Agricultural Cooperatives, Naganuma, 0691317 Hokkaido, Japan.
| | | | | |
Collapse
|
31
|
Ngezahayo F, Xu C, Wang H, Jiang L, Pang J, Liu B. Tissue culture-induced transpositional activity of mPing is correlated with cytosine methylation in rice. BMC PLANT BIOLOGY 2009; 9:91. [PMID: 19604382 PMCID: PMC2715021 DOI: 10.1186/1471-2229-9-91] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Accepted: 07/15/2009] [Indexed: 05/04/2023]
Abstract
BACKGROUND mPing is an endogenous MITE in the rice genome, which is quiescent under normal conditions but can be induced towards mobilization under various stresses. The cellular mechanism responsible for modulating the activity of mPing remains unknown. Cytosine methylation is a major epigenetic modification in most eukaryotes, and the primary function of which is to serve as a genome defense system including taming activity of transposable elements (TEs). Given that tissue-culture is capable of inducing both methylation alteration and mPing transposition in certain rice genotypes, it provides a tractable system to investigate the possible relationship between the two phenomena. RESULTS mPing transposition and cytosine methylation alteration were measured in callus and regenerated plants in three rice (ssp. indica) genotypes, V14, V27 and R09. All three genotypes showed transposition of mPing, though at various frequencies. Cytosine methylation alteration occurred both at the mPing-flanks and at random loci sampled globally in callus and regenerated plants of all three genotypes. However, a sharp difference in the changing patterns was noted between the mPing-flanks and random genomic loci, with a particular type of methylation modification, i.e., CNG hypermethylation, occurred predominantly at the mPing-flanks. Pearson's test on pairwise correlations indicated that mPing activity is positively correlated with specific patterns of methylation alteration at random genomic loci, while the element's immobility is positively correlated with methylation levels of the mPing's 5'-flanks. Bisulfite sequencing of two mPing-containing loci showed that whereas for the immobile locus loss of CG methylation in the 5'-flank was accompanied by an increase in CHG methylation, together with an overall increase in methylation of all three types (CG, CHG and CHH) in the mPing-body region, for the active locus erasure of CG methylation in the 5'-flank was not followed by such a change. CONCLUSION Our results documented that tissue culture-induced mPing activity in rice ssp. indica is correlated with alteration in cytosine methylation patterns at both random genomic loci and the elements' flanks, while the stability of mPing positively correlates with enhanced methylation levels of both the flanks and probably the elements per se. Thus, our results implicate a possible role of cytosine methylation in maintaining mPing stability under normal conditions, and in releasing the element's activity as a consequence of epigenetic perturbation in a locus-specific manner under certain stress conditions.
Collapse
Affiliation(s)
- Frédéric Ngezahayo
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, PR China
- Ecole Normale Supérieure, B.P. 6983 Bujumbura, Burundi
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, PR China
| | - Hongyan Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, PR China
| | - Lily Jiang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, PR China
| | - Jinsong Pang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, PR China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, PR China
| |
Collapse
|
32
|
Huang J, Zhang K, Shen Y, Huang Z, Li M, Tang D, Gu M, Cheng Z. Identification of a high frequency transposon induced by tissue culture, nDaiZ, a member of the hAT family in rice. Genomics 2009; 93:274-81. [DOI: 10.1016/j.ygeno.2008.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 10/04/2008] [Accepted: 11/14/2008] [Indexed: 10/21/2022]
|
33
|
Characterization of autonomous Dart1 transposons belonging to the hAT superfamily in rice. Mol Genet Genomics 2009; 281:329-44. [PMID: 19123010 PMCID: PMC2758194 DOI: 10.1007/s00438-008-0410-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 11/27/2008] [Indexed: 11/23/2022]
Abstract
An endogenous 0.6-kb rice DNA transposon, nDart1-0, was found as an active nonautonomous element in a mutable virescent line, pyl-v, displaying leaf variegations. Here, we demonstrated that the active autonomous element aDart in pyl-v corresponds to Dart1-27 on chromosome 6 in Nipponbare, which carries no active aDart elements, and that aDart and Dart1-27 are identical in their sequences and chromosomal locations, indicating that Dart1-27 is epigenetically silenced in Nipponbare. The identification of aDart in pyl-v was first performed by map-based cloning and by detection of the accumulated transposase transcripts. Subsequently, various transposition activities of the cloned Dart1-27 element from Nipponbare were demonstrated in Arabidopsis. Dart1-27 in Arabidopsis was able to excise nDart1-0 and Dart1-27 from cloned sites, generating footprints, and to integrate into new sites, generating 8-bp target site duplications. In addition to Dart1-27, Nipponbare contains 37 putative autonomous Dart1 elements because their putative transposase genes carry no apparent nonsense or frameshift mutations. Of these, at least four elements were shown to become active aDart elements in transgenic Arabidopsis plants, even though considerable sequence divergence arose among their transposases. Thus, these four Dart1 elements and Dart1-27 in Nipponbare must be potential autonomous elements silenced epigenetically. The regulatory and evolutionary implications of the autonomous Dart1 elements and the development of an efficient transposon-tagging system in rice are discussed.
Collapse
|
34
|
Jung KH, Lee J, Dardick C, Seo YS, Cao P, Canlas P, Phetsom J, Xu X, Ouyang S, An K, Cho YJ, Lee GC, Lee Y, An G, Ronald PC. Identification and functional analysis of light-responsive unique genes and gene family members in rice. PLoS Genet 2008; 4:e1000164. [PMID: 18725934 PMCID: PMC2515340 DOI: 10.1371/journal.pgen.1000164] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 07/15/2008] [Indexed: 12/29/2022] Open
Abstract
Functional redundancy limits detailed analysis of genes in many organisms. Here, we report a method to efficiently overcome this obstacle by combining gene expression data with analysis of gene-indexed mutants. Using a rice NSF45K oligo-microarray to compare 2-week-old light- and dark-grown rice leaf tissue, we identified 365 genes that showed significant 8-fold or greater induction in the light relative to dark conditions. We then screened collections of rice T-DNA insertional mutants to identify rice lines with mutations in the strongly light-induced genes. From this analysis, we identified 74 different lines comprising two independent mutant lines for each of 37 light-induced genes. This list was further refined by mining gene expression data to exclude genes that had potential functional redundancy due to co-expressed family members (12 genes) and genes that had inconsistent light responses across other publicly available microarray datasets (five genes). We next characterized the phenotypes of rice lines carrying mutations in ten of the remaining candidate genes and then carried out co-expression analysis associated with these genes. This analysis effectively provided candidate functions for two genes of previously unknown function and for one gene not directly linked to the tested biochemical pathways. These data demonstrate the efficiency of combining gene family-based expression profiles with analyses of insertional mutants to identify novel genes and their functions, even among members of multi-gene families.
Collapse
Affiliation(s)
- Ki-Hong Jung
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Jinwon Lee
- Functional Genomic Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Chris Dardick
- The Appalachian Fruit Research Station, USDA-ARS, Kearneysville, West Virginia, United States of America
| | - Young-Su Seo
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Peijian Cao
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Patrick Canlas
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Jirapa Phetsom
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Xia Xu
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Shu Ouyang
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Kyungsook An
- Functional Genomic Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yun-Ja Cho
- Functional Genomic Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Geun-Cheol Lee
- College of Business Administration, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | - Yoosook Lee
- School of Veterinary Medicine, Department of Pathology, Immunology and Microbiology, University of California Davis, Davis, California, United States of America
| | - Gynheung An
- Functional Genomic Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Pamela C. Ronald
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
35
|
Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Proc Natl Acad Sci U S A 2008; 105:12623-8. [PMID: 18719107 DOI: 10.1073/pnas.0805303105] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tolerance to abiotic stress is an important agronomic trait in crops and is controlled by many genes, which are called quantitative trait loci (QTLs). Identification of these QTLs will contribute not only to the understanding of plant biology but also for plant breeding, to achieve stable crop production around the world. Previously, we mapped three QTLs controlling low-temperature tolerance at the germination stage (called low-temperature germinability). To understand the molecular basis of one of these QTLs, qLTG3-1 (quantitative trait locus for low-temperature germinability on chromosome 3), map-based cloning was performed, and this QTL was shown to be encoded by a protein of unknown function. The QTL qLTG3-1 is strongly expressed in the embryo during seed germination. Before and during seed germination, specific localization of beta-glucuronidase staining in the tissues covering the embryo, which involved the epiblast covering the coleoptile and the aleurone layer of the seed coat, was observed. Expression of qLTG3-1 was tightly associated with vacuolation of the tissues covering the embryo. This may cause tissue weakening, resulting in reduction of the mechanical resistance to the growth potential of the coleoptile. These phenomena are quite similar to the model system of seed germination presented by dicot plants, suggesting that this model may be conserved in both dicot and monocot plants.
Collapse
|
36
|
Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije MW, Sekiguchi H. NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genomics 2008; 279:499-507. [PMID: 18293011 DOI: 10.1007/s00438-008-0328-3] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 01/22/2008] [Indexed: 01/18/2023]
Abstract
Elucidation of the genetic basis of the control of leaf shape could be of use in the manipulation of crop traits, leading to more stable and increased crop production. To improve our understanding of the process controlling leaf shape, we identified a mutant gene in rice that causes a significant decrease in the width of the leaf blade, termed narrow leaf 7 (nal7). This spontaneous mutation of nal7 occurred during the process of developing advanced back-crossed progeny derived from crosses of rice varieties with wild type leaf phenotype. While the mutation resulted in reduced leaf width, no significant morphological changes at the cellular level in leaves were observed, except in bulli-form cells. The NAL7 locus encodes a flavin-containing monooxygenase, which displays sequence homology with YUCCA. Inspection of a structural model of NAL7 suggests that the mutation results in an inactive enzyme. The IAA content in the nal7 mutant was altered compared with that of wild type. The nal7 mutant overexpressing NAL7 cDNA exhibited overgrowth and abnormal morphology of the root, which was likely to be due to auxin overproduction. These results indicate that NAL7 is involved in auxin biosynthesis.
Collapse
Affiliation(s)
- Kenji Fujino
- Agricultural Research Institute, HOKUREN Federation of Agricultural Cooperatives, Higashi-5, Kita-15, Naganuma, Hokkaido 0691317, Japan.
| | | | | | | | | | | | | |
Collapse
|
37
|
Fujino K, Sekiguchi H. Site specific cytosine methylation in rice nonautonomous transposable element nDart. PLANT MOLECULAR BIOLOGY 2008; 67:511-8. [PMID: 18409027 DOI: 10.1007/s11103-008-9335-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 04/03/2008] [Indexed: 05/15/2023]
Abstract
The mobile nonautonomous element nDart, which is active in intact rice plants, exhibits locus specific transposition. Due to the high homogeneity of nDart elements, the locus specificity of nDart transposition might be controlled by factors other than genetic differences. In this study, we elucidated the regulation of the locus specificity of nDart transposition. The difference of transpositional activities in 10 nDart elements among rice varieties exhibiting nDart transposition was clearly correlated with the methylation state of nDart elements. Both hyper- and hypo-methylated nDart elements were inactive, while site specific methylation in both subterminal regions was identified in active nDart loci. The specific methylation sites contain the pentamer motif GCC/ACG. The repeated motifs in the subterminal region of nDart elements may contribute to the stable secondary structure of nDart elements with low free energy. Our results suggested that site specific cytosine methylation may loosen the stable secondary structure of the nDart element to allow it to bind TPase, which then perform the excision of nDart elements from genomic loci.
Collapse
Affiliation(s)
- Kenji Fujino
- Agricultural Research Institute, HOKUREN Federation of Agricultural Cooperatives, Higashi-5, Kita-15, Naganuma 0691317, Hokkaido, Japan.
| | | |
Collapse
|
38
|
Nishimura H, Ahmed N, Tsugane K, Iida S, Maekawa M. Distribution and mapping of an active autonomous aDart element responsible for mobilizing nonautonomous nDart1 transposons in cultivated rice varieties. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:395-405. [PMID: 18060657 DOI: 10.1007/s00122-007-0677-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 11/08/2007] [Indexed: 05/25/2023]
Abstract
An endogenous 0.6-kb rice DNA transposon, nDart1, has been identified as a causative element of a spontaneous mutable virescent allele pyl-v conferring pale-yellow leaves with dark-green sectors in the seedlings, due to somatic excision of nDart1 integrated into the OsClpP5 gene encoding the nuclear-coded chloroplast protease. As the transposition of nDart1 depends on the presence of an active autonomous aDart element in the genome, the plants exhibiting the leaf variegation carry the active aDart element. As several mutable alleles caused by nDart1 insertions have subsequently been identified, nDart1-promoted gene tagging has been proven to be an effective system. At present, the nDart/aDart system appears to be the only endogenous rice DNA transposon system whose transposition activity can be controlled under natural growth conditions without any artificial treatments, including tissue cultures. To apply the nDart/aDart tagging system in various cultivated rice varieties, we explored the presence and distribution of an active autonomous aDart element in 19 temperate japonica, 30 tropical japonica, and 51 indica varieties. Only eight temperate japonica varieties were found to bear a single copy of an active aDart element, and no aDart activity could be detected in the indica varieties examined. Six of seven japonica varieties appear to carry the active aDart element at the identical site on chromosome 6, whereas the remaining one contains aDart on chromosome 5. Leaf variegations in the plants with the mutable pyl-v allele and the excision frequencies of endogenous nDart1 elements indicated that the aDart element on chromosome 6 is more active than that on chromosome 5. The findings described here are an important step in the development of a new and efficient nDart1-promoted gene-tagging system in various rice cultivars.
Collapse
Affiliation(s)
- Hideki Nishimura
- Research Institute for Bioresources, Okayama University, Kurashiki, 710-0046, Japan
| | | | | | | | | |
Collapse
|
39
|
Takata M, Kiyohara A, Takasu A, Kishima Y, Ohtsubo H, Sano Y. Rice transposable elements are characterized by various methylation environments in the genome. BMC Genomics 2007; 8:469. [PMID: 18093338 PMCID: PMC2222647 DOI: 10.1186/1471-2164-8-469] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 12/20/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent studies using high-throughput methods have revealed that transposable elements (TEs) are a comprehensive target for DNA methylation. However, the relationship between TEs and their genomic environment regarding methylation still remains unclear. The rice genome contains representatives of all known TE families with different characteristics of chromosomal distribution, structure, transposition, size, and copy number. Here we studied the DNA methylation state around 12 TEs in nine genomic DNAs from cultivated rice strains and their closely related wild strains. RESULTS We employed a transposon display (TD) method to analyze the methylation environments in the genomes. The 12 TE families, consisting of four class I elements, seven class II elements, and one element of a different class, were differentially distributed in the rice chromosomes: some elements were concentrated in the centromeric or pericentromeric regions, but others were located in euchromatic regions. The TD analyses revealed that the TE families were embedded in flanking sequences with different methylation degrees. Each TE had flanking sequences with similar degrees of methylation among the nine rice strains. The class I elements tended to be present in highly methylated regions, while those of the class II elements showed widely varying degrees of methylation. In some TE families, the degrees of methylation were markedly lower than the average methylation state of the genome. In two families, dramatic changes of the methylation state occurred depending on the distance from the TE. CONCLUSION Our results demonstrate that the TE families in the rice genomes can be characterized by the methylation states of their surroundings. The copy number and degree of conservation of the TE family are not likely to be correlated with the degree of methylation. We discuss possible relationships between the methylation state of TEs and their surroundings. This is the first report demonstrating that TEs in the genome are associated with a particular methylation environment that is a feature of a given TE.
Collapse
Affiliation(s)
- Miwako Takata
- Laboratory of Plant Breeding, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Jiao Y, Deng XW. A genome-wide transcriptional activity survey of rice transposable element-related genes. Genome Biol 2007; 8:R28. [PMID: 17326825 PMCID: PMC1852403 DOI: 10.1186/gb-2007-8-2-r28] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 12/18/2006] [Accepted: 02/27/2007] [Indexed: 12/20/2022] Open
Abstract
A genome-wide survey of the transcriptional activity of TE-related genes that were associated with fifteen developmental stages and stress conditions revealed clear, albeit low, general transcription of TE-related genes. Background Transposable element (TE)-related genes comprise a significant portion of the gene catalog of grasses, although their functions are insufficiently characterized. The recent availability of TE-related gene annotation from the complete genome sequence of rice (Oryza sativa) has created an opportunity to conduct a comprehensive evaluation of the transcriptional activities of these potentially mobile elements and their related genes. Results We conducted a genome-wide survey of the transcriptional activity of TE-related genes associated with 15 developmental stages and stress conditions. This dataset was obtained using a microarray encompassing 2,191 unique TE-related rice genes, which were represented by oligonucleotide probes that were free from cross-hybridization. We found that TE-related genes exhibit much lower transcriptional activities than do non-TE-related genes, although representative transcripts were detected from all superfamilies of both type I and II TE-related genes. The strongest transcriptional activities were detected in TE-related genes from among the MULE and CACTA superfamilies. Phylogenetic analyses suggest that domesticated TE-related genes tend to form clades with active transcription. In addition, chromatin-level regulations through histone and DNA modifications, as well as enrichment of certain cis elements in the promoters, appear to contribute to the transcriptional activation of representative TE-related genes. Conclusion Our findings reveal clear, albeit low, general transcription of TE-related genes. In combination with phylogenetic analysis, transcriptional analysis has the potential to lead to the identification of domesticated TEs with adapted host functions.
Collapse
Affiliation(s)
- Yuling Jiao
- Department of Molecular, Cellular and Developmental Biology, Yale University, 165 Prospect Street, New Haven, CT 06520, USA
| | - Xing Wang Deng
- Department of Molecular, Cellular and Developmental Biology, Yale University, 165 Prospect Street, New Haven, CT 06520, USA
| |
Collapse
|
41
|
Moon S, Jung KH, Lee DE, Jiang WZ, Koh HJ, Heu MH, Lee DS, Suh HS, An G. Identification of Active Transposon dTok , a Member of the hAT Family, in Rice. ACTA ACUST UNITED AC 2006; 47:1473-83. [PMID: 16990289 DOI: 10.1093/pcp/pcl012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Recent completion of the sequencing of the rice genome has revealed that it contains >40% repetitive sequences, most of which are related to inactive transposable elements. During the molecular analysis of the floral organ number 1/multiple pistil 2 (fon1/mp2) mutant, we identified an active transposable element dTok0 that was inserted at the kinase domain of FON1, a homolog of CLAVATA1. Insertion of the element into FON1 generated an 8 bp duplication of its target sites, which is one of the major characteristics of the hAT family of transposons. The dTok0 element was actively transposed out of the FON1 gene, leaving 5-8 bp footprints. Reinsertion into a new location was observed at a low frequency. Analysis of the genome sequence showed that the rice cultivar 'Nipponbare' contains 25 copies of dTok elements; similar numbers were present in all the Oryza species examined. Because dTok0 does not encode a transposase, enzyme activity should be provided in trans. We identified a putative autonomous transposon, Tok1 that contains an intact open reading frame of the Ac-like transposase.
Collapse
Affiliation(s)
- Sunok Moon
- National Research Laboratory of Plant Functional Genomics, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tsugane K, Maekawa M, Takagi K, Takahara H, Qian Q, Eun CH, Iida S. An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:46-57. [PMID: 16367953 DOI: 10.1111/j.1365-313x.2005.02600.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
While characterized mutable alleles caused by DNA transposons have been abundant in maize since the discovery of Dissociation conferring variegation by Barbara McClintock, only a few mutable alleles have been described in rice even though the rice genome contains various transposons. Here, we show that a spontaneous mutable virescent allele, pyl-v, is caused by the disruption of the nuclear-coded essential chloroplast protease gene, OsClpP5, due to insertion of a 607-bp non-autonomous DNA transposon, non-autonomous DNA-based active rice transposon one (nDart1), belonging to the hAT superfamily. The transposition of nDart1 can be induced by crossing with a line containing an autonomous element, aDart, and stabilized by segregating out of aDart. We also identified a novel mutable dwarf allele thl-m caused by an insertion of nDart1. The japonica cultivar Nipponbare carries no aDart, although it contains epigenetically silenced Dart element(s), which can be activated by 5-azacytidine. Nipponbare bears four subgroups of about 3.6-kb Dart-like sequences, three of which contain potential transposase genes, and around 3.6-kb elements without an apparent transposase gene, as well as three subgroups of about 0.6-kb nDart1-related elements that are all internal deletions of the Dart-like sequences. Both nDart1 and 3.6-kb Dart-like elements were also present in indica varieties 93-11 and Kasalath. nDart1 appears to be the most active mutagen among nDart1-related elements contributing to generating natural variations. A candidate for an autonomous element, aDart, and a possible application of nDart1 for transposon tagging are discussed.
Collapse
Affiliation(s)
- Kazuo Tsugane
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Moreno-Vázquez S, Ning J, Meyers BC. hATpin, a family of MITE-like hAT mobile elements conserved in diverse plant species that forms highly stable secondary structures. PLANT MOLECULAR BIOLOGY 2005; 58:869-886. [PMID: 16240179 DOI: 10.1007/s11103-005-8271-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Accepted: 06/01/2005] [Indexed: 05/04/2023]
Abstract
We identified a 178 bp mobile DNA element in lettuce with characteristic CGAGC/GCTCG repeats in the subterminal regions. This element has terminal inverted repeats and 8-bp target site duplications typical of the hAT superfamily of class II mobile elements, but its small size and potential to form a single-stranded stable hairpin-like secondary structure suggest that it is related to MITE elements. In silico searches for related elements identified 252 plant sequences with 8-bp target site duplications and sequence similarity in their terminal and subterminal regions. Some of these sequences were predicted to encode transposases and may be autonomous elements; these constituted a separate clade within the phylogram of hAT transposases. We demonstrate that the CGAGC/GCTCG pentamer maximizes the hairpin stability compared to any other pentamer with the same C + G content, and the secondary structures of these elements are more stable than for most MITEs. We named these elements collectively as hATpin elements because of the hAT similarity and their hairpin structures. The nearly complete rice genome sequence and the highly advanced genome annotation allowed us to localize most rice elements and to deduce insertion preferences. hATpin elements are distributed on all chromosomes, but with significant bias for chromosomes 1 and 10 and in regions of moderate gene density. This family of class II mobile elements is found primarily in monocot species, but is also present in dicot species.
Collapse
Affiliation(s)
- Santiago Moreno-Vázquez
- Departamento de Biología Vegetal, E.T.S. Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040, Madrid, Spain
| | - Jianchang Ning
- Delaware Biotechnology Institute, University of Delaware, 19711, Newark, DE, USA
| | - Blake C Meyers
- Delaware Biotechnology Institute, University of Delaware, 19711, Newark, DE, USA.
- Department of Plant and Soil Sciences, University of Delaware, 19714, Newark, DE, USA.
| |
Collapse
|