1
|
Lopes-Caitar VS, Nomura RBG, Hishinuma-Silva SM, de Carvalho MCDCG, Abdelnoor RV, Dias WP, Marcelino-Guimarães FC. Time Course RNA-seq Reveals Soybean Responses against Root-Lesion Nematode and Resistance Players. PLANTS (BASEL, SWITZERLAND) 2022; 11:2983. [PMID: 36365436 PMCID: PMC9655969 DOI: 10.3390/plants11212983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Pratylenchus brachyurus causes serious damage to soybean production and other crops worldwide. Plant molecular responses to RLN infection remain largely unknown and no resistance genes have been identified in soybean. In this study, we analyzed molecular responses to RLN infection in moderately resistant BRSGO (Chapadões-BRS) and susceptible TMG115 RR (TMG) Glycine max genotypes. Differential expression analysis revealed two stages of response to RLN infection and a set of differentially expressed genes (DEGs) in the first stage suggested a pattern-triggered immunity (PTI) in both genotypes. The divergent time-point of DEGs between genotypes was observed four days post-infection, which included the activation of mitogen-activated protein kinase (MAPK) and plant-pathogen interaction genes in the BRS, suggesting the occurrence of an effector-triggered immunity response (ETI) in BRS. The co-expression analyses combined with single nucleotide polymorphism (SNP) uncovered a key element, a transcription factor phytochrome-interacting factor (PIF7) that is a potential regulator of moderate resistance to RLN infection. Two genes for resistance-related leucine-rich repeat (LRR) proteins were found as BRS-specific expressed genes. In addition, alternative splicing analysis revealed an intron retention in a myo-inositol oxygenase (MIOX) transcript, a gene related to susceptibility, may cause a loss of function in BRS.
Collapse
Affiliation(s)
- Valéria Stefania Lopes-Caitar
- Department of Biological Sciences, Universidade Estadual de Londrina (UEL), Londrina 86057-970, PR, Brazil
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
| | - Rafael Bruno Guayato Nomura
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
- Department Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), Londrina 86057-970, PR, Brazil
| | - Suellen Mika Hishinuma-Silva
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
- Department Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), Londrina 86057-970, PR, Brazil
| | | | | | - Waldir Pereira Dias
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
| | | |
Collapse
|
2
|
Kumar A, Harloff HJ, Melzer S, Leineweber J, Defant B, Jung C. A rhomboid-like protease gene from an interspecies translocation confers resistance to cyst nematodes. THE NEW PHYTOLOGIST 2021; 231:801-813. [PMID: 33866563 DOI: 10.1111/nph.17394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/01/2021] [Indexed: 05/10/2023]
Abstract
Plant-parasitic nematodes are severe pests in crop production worldwide. Chemical control of nematodes has been continuously reduced in recent decades owing to environmental and health concerns. Therefore, breeding nematode-resistant crops is an important aim if we are to secure harvests. The beet cyst nematode impairs root development and causes severe losses in sugar beet production. The only sources for resistance are distantly related wild species of the genus Patellifolia. Nematode resistance had been introduced into the beet genome via translocations from P. procumbens. We sequenced three translocations and identified the translocation breakpoints. By comparative sequence analysis of three translocations, we localized the resistance gene Hs4 within a region c. 230 kb in size. A candidate gene was characterized by CRISPR-Cas-mediated knockout and overexpression in susceptible roots. The gene encodes a rhomboid-like protease, which is predicted to be bound to the endoplasmic reticulum. Gene knockout resulted in complete loss of resistance, while overexpression caused resistance. The data confirm that the Hs4 gene alone protects against the pest. Thus, it constitutes a previously unknown mechanism of plants to combat parasitic nematodes. Its function in a nonrelated species suggests that the gene can confer resistance in crop species from different plant families.
Collapse
Affiliation(s)
- Avneesh Kumar
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstrasse 40, Kiel, D-24098, Germany
| | - Hans-Joachim Harloff
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstrasse 40, Kiel, D-24098, Germany
| | - Siegbert Melzer
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstrasse 40, Kiel, D-24098, Germany
| | - Johanna Leineweber
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstrasse 40, Kiel, D-24098, Germany
| | - Birgit Defant
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstrasse 40, Kiel, D-24098, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstrasse 40, Kiel, D-24098, Germany
| |
Collapse
|
3
|
Zhong X, Zhou Q, Cui N, Cai D, Tang G. BvcZR3 and BvHs1pro-1 Genes Pyramiding Enhanced Beet Cyst Nematode ( Heterodera schachtii Schm.) Resistance in Oilseed Rape ( Brassica napus L.). Int J Mol Sci 2019; 20:ijms20071740. [PMID: 30965683 PMCID: PMC6479909 DOI: 10.3390/ijms20071740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/03/2019] [Accepted: 04/06/2019] [Indexed: 11/16/2022] Open
Abstract
Beet cyst nematode (Heterodera schachtii Schm.) is one of the most damaging pests in sugar beet growing areas around the world. The Hs1pro-1 and cZR3 genes confer resistance to the beet cyst nematode, and both were cloned from sugar beet translocation line (A906001). The translocation line carried the locus from B. procumbens chromosome 1 including Hs1pro-1 gene and resistance gene analogs (RGA), which confer resistance to Heterodera schachtii. In this research, BvHs1pro-1 and BvcZR3 genes were transferred into oilseed rape to obtain different transgenic lines by A. tumefaciens mediated transformation method. The cZR3Hs1pro-1 gene was pyramided into the same plants by crossing homozygous cZR3 and Hs1pro-1 plants to identify the function and interaction of cZR3 and Hs1pro-1 genes. In vitro and in vivo cyst nematode resistance tests showed that cZR3 and Hs1pro-1 plants could be infested by beet cyst nematode (BCN) juveniles, however a large fraction of penetrated nematode juveniles was not able to develop normally and stagnated in roots of transgenic plants, consequently resulting in a significant reduction in the number of developed nematode females. A higher efficiency in inhibition of nematode females was observed in plants expressing pyramiding genes than in those only expressing a single gene. Molecular analysis demonstrated that BvHs1pro-1 and BvcZR3 gene expressions in oilseed rape constitutively activated transcription of plant-defense related genes such as NPR1 (non-expresser of PR1), SGT1b (enhanced disease resistance 1) and RAR1 (suppressor of the G2 allele of skp1). Transcript of NPR1 gene in transgenic cZR3 and Hs1pro-1 plants were slightly up-regulated, while its expression was considerably enhanced in cZR3Hs1pro-1 gene pyramiding plants. The expression of EDS1 gene did not change significantly among transgenic cZR3, Hs1pro-1 and cZR3Hs1pro-1 gene pyramiding plants and wild type. The expression of SGT1b gene was slightly up-regulated in transgenic cZR3 and Hs1pro-1 plants compared with the wild type, however, its expression was not changed in cZR3Hs1pro-1 gene pyramiding plant and had no interaction effect. RAR1 gene expression was significantly up-regulated in transgenic cZR3 and cZR3Hs1pro-1 genes pyramiding plants, but almost no expression was found in Hs1pro-1 transgenic plants. These results show that nematode resistance genes from sugar beet were functional in oilseed rape and conferred BCN resistance by activation of a CC-NBS-LRR R gene mediated resistance response. The gene pyramiding had enhanced resistance, thus offering a novel approach for the BCN control by preventing the propagation of BCN in oilseed rape. The transgenic oilseed rape could be used as a trap crop to offer an alternative method for beet cyst nematode control.
Collapse
Affiliation(s)
- Xuanbo Zhong
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Qizheng Zhou
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Nan Cui
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Daguang Cai
- Department of Molecular Phytopathology, Christian-Albrechts-University of Kiel, Hermann Rodewald Str. 9, D-24118 Kiel, Germany.
| | - Guixiang Tang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
4
|
Zakrzewski F, Schubert V, Viehoever P, Minoche AE, Dohm JC, Himmelbauer H, Weisshaar B, Schmidt T. The CHH motif in sugar beet satellite DNA: a modulator for cytosine methylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:937-50. [PMID: 24661787 DOI: 10.1111/tpj.12519] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 05/03/2023]
Abstract
Methylation of DNA is important for the epigenetic silencing of repetitive DNA in plant genomes. Knowledge about the cytosine methylation status of satellite DNAs, a major class of repetitive DNA, is scarce. One reason for this is that arrays of tandemly arranged sequences are usually collapsed in next-generation sequencing assemblies. We applied strategies to overcome this limitation and quantified the level of cytosine methylation and its pattern in three satellite families of sugar beet (Beta vulgaris) which differ in their abundance, chromosomal localization and monomer size. We visualized methylation levels along pachytene chromosomes with respect to small satellite loci at maximum resolution using chromosome-wide fluorescent in situ hybridization complemented with immunostaining and super-resolution microscopy. Only reduced methylation of many satellite arrays was obtained. To investigate methylation at the nucleotide level we performed bisulfite sequencing of 1569 satellite sequences. We found that the level of methylation of cytosine strongly depends on the sequence context: cytosines in the CHH motif show lower methylation (44-52%), while CG and CHG motifs are more strongly methylated. This affects the overall methylation of satellite sequences because CHH occurs frequently while CG and CHG are rare or even absent in the satellite arrays investigated. Evidently, CHH is the major target for modulation of the cytosine methylation level of adjacent monomers within individual arrays and contributes to their epigenetic function. This strongly indicates that asymmetric cytosine methylation plays a role in the epigenetic modification of satellite repeats in plant genomes.
Collapse
Affiliation(s)
- Falk Zakrzewski
- Department of Plant Cell and Molecular Biology, TU Dresden, D-01062, Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Wollrab C, Heitkam T, Holtgräwe D, Weisshaar B, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T. Evolutionary reshuffling in the Errantivirus lineage Elbe within the Beta vulgaris genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:636-51. [PMID: 22804913 DOI: 10.1111/j.1365-313x.2012.05107.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
LTR retrotransposons and retroviruses are closely related. Although a viral envelope gene is found in some LTR retrotransposons and all retroviruses, only the latter show infectivity. The identification of Ty3-gypsy-like retrotransposons possessing putative envelope-like open reading frames blurred the taxonomical borders and led to the establishment of the Errantivirus, Metavirus and Chromovirus genera within the Metaviridae. Only a few plant Errantiviruses have been described, and their evolutionary history is not well understood. In this study, we investigated 27 retroelements of four abundant Elbe retrotransposon families belonging to the Errantiviruses in Beta vulgaris (sugar beet). Retroelements of the Elbe lineage integrated between 0.02 and 5.59 million years ago, and show family-specific variations in autonomy and degree of rearrangements: while Elbe3 members are highly fragmented, often truncated and present in a high number of solo LTRs, Elbe2 members are mainly autonomous. We observed extensive reshuffling of structural motifs across families, leading to the formation of new retrotransposon families. Elbe retrotransposons harbor a typical envelope-like gene, often encoding transmembrane domains. During the course of Elbe evolution, the additional open reading frames have been strongly modified or independently acquired. Taken together, the Elbe lineage serves as retrotransposon model reflecting the various stages in Errantivirus evolution, and allows a detailed analysis of retrotransposon family formation.
Collapse
Affiliation(s)
- Cora Wollrab
- Department of Biology, Dresden University of Technology, D-01062, Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Male gametogenesis in plants can be impaired by an incompatibility between nuclear and mitochondrial genomes, termed cytoplasmic male sterility (CMS). A sterilizing factor resides in mitochondria, whereas a nuclear factor, Restorer-of-fertility (Rf), restores male fertility. Although a majority of plant Rf genes are thought to encode a family of RNA-binding proteins called pentatrico-peptide repeat (PPR) proteins, we isolated a novel type of Rf from sugar beet. Two BACs and one cosmid clone that constituted a 383-kbp contig covering the sugar beet Rf1 locus were sequenced. Of 41 genes borne by the contig, quadruplicated genes were found to be associated with specific transcripts in Rf1 flower buds. The quadruplicated genes encoded a protein resembling OMA1, a protein known from yeast and mammals to be involved in mitochondrial protein quality control. Construction of transgenic plants revealed that one of the four genes (bvORF20) was capable of restoring partial pollen fertility to CMS sugar beet; the level of restoration was comparable to that evaluated by a crossing experiment. However, the other genes lacked such a capability. A GFP-fusion experiment showed that bvORF20 encoded a mitochondrial protein. The corresponding gene was cloned from rf1rf1 sugar beet and sequenced, and a solitary gene that was similar but not identical to bvORF20 was found. Genetic features exhibited by sugar beet Rf1, such as gene clustering and copy-number variation between Rf1 and rf, were reminiscent of PPR-type Rf, suggesting that a common evolutionary mechanism(s) operates on plant Rfs irrespective of the translation product.
Collapse
|
7
|
Butorina AK, Kornienko AV. Molecular genetic investigation of sugar beet (Beta vulgaris L.). RUSS J GENET+ 2011. [DOI: 10.1134/s102279541110005x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Abou-Elwafa SF, Büttner B, Chia T, Schulze-Buxloh G, Hohmann U, Mutasa-Göttgens E, Jung C, Müller AE. Conservation and divergence of autonomous pathway genes in the flowering regulatory network of Beta vulgaris. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3359-74. [PMID: 20974738 PMCID: PMC3130164 DOI: 10.1093/jxb/erq321] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/13/2010] [Accepted: 09/15/2010] [Indexed: 05/19/2023]
Abstract
The transition from vegetative growth to reproductive development is a complex process that requires an integrated response to multiple environmental cues and endogenous signals. In Arabidopsis thaliana, which has a facultative requirement for vernalization and long days, the genes of the autonomous pathway function as floral promoters by repressing the central repressor and vernalization-regulatory gene FLC. Environmental regulation by seasonal changes in daylength is under control of the photoperiod pathway and its key gene CO. The root and leaf crop species Beta vulgaris in the caryophyllid clade of core eudicots, which is only very distantly related to Arabidopsis, is an obligate long-day plant and includes forms with or without vernalization requirement. FLC and CO homologues with related functions in beet have been identified, but the presence of autonomous pathway genes which function in parallel to the vernalization and photoperiod pathways has not yet been reported. Here, this begins to be addressed by the identification and genetic mapping of full-length homologues of the RNA-regulatory gene FLK and the chromatin-regulatory genes FVE, LD, and LDL1. When overexpressed in A. thaliana, BvFLK accelerates bolting in the Col-0 background and fully complements the late-bolting phenotype of an flk mutant through repression of FLC. In contrast, complementation analysis of BvFVE1 and the presence of a putative paralogue in beet suggest evolutionary divergence of FVE homologues. It is further shown that BvFVE1, unlike FVE in Arabidopsis, is under circadian clock control. Together, the data provide first evidence for evolutionary conservation of components of the autonomous pathway in B. vulgaris, while also suggesting divergence or subfunctionalization of one gene. The results are likely to be of broader relevance because B. vulgaris expands the spectrum of evolutionarily diverse species which are subject to differential developmental and/or environmental regulation of floral transition.
Collapse
Affiliation(s)
- Salah F. Abou-Elwafa
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - Bianca Büttner
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - Tansy Chia
- Broom's Barn Research Centre, Higham, Bury St. Edmunds, Suffolk IP28 6NP, UK
| | - Gretel Schulze-Buxloh
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - Uwe Hohmann
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | | | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - Andreas E. Müller
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
9
|
|
10
|
Wenke T, Holtgräwe D, Horn AV, Weisshaar B, Schmidt T. An abundant and heavily truncated non-LTR retrotransposon (LINE) family in Beta vulgaris. PLANT MOLECULAR BIOLOGY 2009; 71:585-97. [PMID: 19697140 DOI: 10.1007/s11103-009-9542-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 08/10/2009] [Indexed: 05/18/2023]
Abstract
We describe a non-LTR retrotransposon family,BvL, of the long interspersed nuclear elements L1 clade isolated from sugar beet (Beta vulgaris). Characteristic molecular domains of three full-length BvL elements were determined in detail, showing that coding sequences are interrupted and most likely non-functionally. In addition,eight highly conserved endonuclease regions were defined by comparison with other plant LINEs. The abundant BvL family is widespread within the genus Beta, however, the vast majority of BvL copies are extremely 50 truncated indicating an error-prone reverse transcriptase activity. The dispersed distribution of BvL copies on all sugar beet chromosomes with exclusion of most heterochromatic regions was shown by fluorescent in situ hybridization. The analysis of BvL 30 end sequences and corresponding flanking regions, respectively, revealed the preferred integration of BvL into A/T-rich regions of the sugar beet genome, but no specific target sequences.
Collapse
Affiliation(s)
- Torsten Wenke
- Institute of Botany, Dresden University of Technology, 01062 Dresden, Germany
| | | | | | | | | |
Collapse
|
11
|
Lange C, Holtgräwe D, Schulz B, Weisshaar B, Himmelbauer H. Construction and characterization of a sugar beet (Beta vulgaris) fosmid library. Genome 2009; 51:948-51. [PMID: 18956027 DOI: 10.1139/g08-071] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A sugar beet (Beta vulgaris) fosmid library from the doubled haploid accession KWS2320 encompassing 115 200 independent clones was constructed and characterized. The average insert size of the fosmid library was determined by pulsed field gel electrophoresis to be 39 kbp on average, thus representing 5.9-fold coverage of the sugar beet genome (758 Mbp). PCR screening of plate pools with primer pairs against nine sugar beet genes supported the insert size estimation. BLAST searches with 2951 fosmid end-sequences originating from 1510 clones (1536 clones attempted) revealed little contamination with organellar DNA (2.1% chloroplast DNA, 0.3% mitochondrial DNA). The sugar beet fosmid library will be integrated in the presently ongoing efforts to determine the sequence of the sugar beet genome. Fosmids will be publicly available in the format of plate pools and individual clones.
Collapse
Affiliation(s)
- Cornelia Lange
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
12
|
Kuykendall D, Shao J, Trimmer K. A Nest of LTR Retrotransposons Adjacent the Disease Resistance-Priming Gene NPR1 in Beta vulgaris L. U.S. Hybrid H20. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2009; 2009:576742. [PMID: 19390694 PMCID: PMC2669250 DOI: 10.1155/2009/576742] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 01/25/2009] [Indexed: 05/02/2023]
Abstract
A nest of long terminal repeat (LTR) retrotransposons (RTRs), discovered by LTR_STRUC analysis, is near core genes encoding the NPR1 disease resistance-activating factor and a heat-shock-factor-(HSF-) like protein in sugarbeet hybrid US H20. SCHULTE, a 10 833 bp LTR retrotransposon, with 1372 bp LTRs that are 0.7% divergent, has two ORFs with unexpected introns but encoding a reverse transcriptase with rve and Rvt2 domains similar to Ty1/copia-type retrotransposons and a hypothetical protein. SCHULTE produced significant nucleotide BLAST alignments with repeat DNA elements from all four families of plants represented in the TIGR plant repeat database (PRD); the best nucleotide sequence alignment was to ToRTL1 in Lycopersicon esculentum. A second sugarbeet LTR retrotransposon, SCHMIDT, 11 565 bp in length, has 2561 bp LTRs that share 100% identity with each other and share 98-99% nucleotide sequence identity over 10% of their length with DRVs, a family of highly repetitive, relatively small DNA sequences that are widely dispersed over the sugarbeet genome. SCHMIDT encodes a complete gypsy-like polyprotein in a single ORF. Analysis using LTR_STRUC of an in silico deletion of both of the above two LTR retrotransposons found that SCHULTE and SCHMIDT had inserted within an older LTR retrotransposon, resulting in a nest that is only about 10 Kb upstream of NPR1 in sugarbeet hybrid US H20.
Collapse
Affiliation(s)
- David Kuykendall
- Molecular Plant Pathology Laboratory, ARS, USDA, Beltsville, MD 20705, USA
- *David Kuykendall:
| | - Jonathan Shao
- Molecular Plant Pathology Laboratory, ARS, USDA, Beltsville, MD 20705, USA
| | - Kenneth Trimmer
- Molecular Plant Pathology Laboratory, ARS, USDA, Beltsville, MD 20705, USA
| |
Collapse
|
13
|
Lein JC, Asbach K, Tian Y, Schulte D, Li C, Koch G, Jung C, Cai D. Resistance gene analogues are clustered on chromosome 3 of sugar beet and cosegregate with QTL for rhizomania resistance. Genome 2007; 50:61-71. [PMID: 17546072 DOI: 10.1139/g06-131] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Worldwide, rhizomania is the most important disease of sugar beet. The only way to control this disease is to use resistant varieties. Four full-length resistance gene analogues (RGAs) from sugar beet (cZR-1, cZR-3, cZR-7, and cZR-9) were used in this study. Their predicted polypeptides carry typical nucleotide-binding sites (NBSs) and leucin-rich repeat (LRR) regions, and share high homology to various plant virus resistance genes. Their corresponding alleles were cloned and sequenced from a rhizomania resistant genotype. The 4 RGAs were mapped as molecular markers, using sequence-specific primers to determine their linkage to the rhizomania resistance locus Rz1 in a population segregating for rhizomania resistance. One cZR-3 allele, named Rz-C, together with 5 other molecular markers, mapped to the Rz1 locus on chromosome 3 and cosegregated with quantitative trait loci for rhizomania resistance. After screening a bacterial artificial chromosome (BAC) library, 25 cZR-3-positive BACs were identified. Of these, 15 mapped within an interval of approximately 14 cM on chromosome 3, in clusters close to the Rz1 locus. Rz-C differentiates between susceptible and resistant beet varieties, and its transcripts could be detected in all rhizomania resistant varieties investigated. The potential of this RGA marker for cloning of rhizomania resistance genes is discussed.
Collapse
Affiliation(s)
- Jens Christoph Lein
- Plant Breeding Institute, Christian Albrechts University of Kiel, Olshausen Str. 40, D-24118 Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Seah S, Telleen AC, Williamson VM. Introgressed and endogenous Mi-1 gene clusters in tomato differ by complex rearrangements in flanking sequences and show sequence exchange and diversifying selection among homologues. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:1289-302. [PMID: 17318492 DOI: 10.1007/s00122-007-0519-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 02/02/2007] [Indexed: 05/04/2023]
Abstract
Many plant disease resistance genes (R-genes) encode proteins characterized by the presence of a nucleotide-binding site (NBS) and a leucine-rich repeat (LRR) region and occur in clusters of related genes in plant genomes. One such gene, Mi-1, confers isolate-specific resistance against root-knot nematodes, aphids and whiteflies in cultivated tomato, Solanum lycopersicon. The DNA region carrying Mi-1 and six closely related sequences was introgressed into tomato from Solanum peruvianum in the 1940s. For both susceptible and resistant tomato, Mi-1 homologues are present in two clusters with 3 and 4 copies each on the short arm of chromosome 6. Two homologues from each source are pseudogenes, and one homologue from each source encodes a truncated product. DNA sequence identity among the homologues including the truncated genes, but excluding the pseudogenes, ranges from 92.9 to 96.7%. All the non-pseudogene homologues are transcribed. Comparison of homologues suggests that extensive sequence exchange has occurred. Regions of diversifying selection are present in the ARC2 domain of the NBS region and dispersed throughout the LRR region, suggesting that these regions are possible locations of specificity determinants. Other sequences in the introgressed region have similarity to the Arabidopsis auxin-receptor protein TIR1, a jumonji-like transcription factor and a Na(+)/H(+) antiporter. Analysis of sequences flanking the Mi-1-homologues reveals blocks of homology, but complex differences in arrangement of these blocks when susceptible and resistant genotypes are compared indicating that the region has undergone considerable rearrangement during evolution, perhaps contributing to evolution of specificity.
Collapse
Affiliation(s)
- Stuart Seah
- CSIRO Entomology, Private Bag 5, Wembley, WA, 6913, Australia
| | | | | |
Collapse
|
15
|
Satoh M, Kubo T, Mikami T. The Owen mitochondrial genome in sugar beet (Beta vulgaris L.): possible mechanisms of extensive rearrangements and the origin of the mitotype-unique regions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:477-84. [PMID: 16736139 DOI: 10.1007/s00122-006-0312-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 05/06/2006] [Indexed: 05/09/2023]
Abstract
The mitochondrial genomes of normal fertile and male-sterile (Owen CMS) cytoplasms of sugar beet are highly rearranged relative to each other and dozens of inversional recombinations and other reshuffling events must be postulated to interconvert the two genomes. In this paper, a comparative analysis of the entire nucleotide sequences of the two genomes revealed that most of the inversional recombinations involved short repeats present at their endpoints. Attention was also focused on the origin of the Owen CMS-unique mtDNA regions, which occupy 13.6% of the Owen genome and are absent from the normal mtDNA. BLAST search was performed to assign the sequences, and as a result, 7.6% of the unique regions showed significant homology to previously determined mitochondrial sequences, 17.9% to nuclear DNA, 4.6% to mitochondrial episomes, and 0.1% to plastid DNA. Southern blot analysis revealed that additional sequences of nuclear origin may be included within the unique regions. We also found that the copies of many short repeat families are scattered throughout the unique regions. This suggests that, in addition to the incorporation of foreign DNAs, extensive duplication of short repetitive sequences and continued scrambling of mtDNA sequences may be implicated in the generation of the Owen CMS-unique regions.
Collapse
Affiliation(s)
- Mizuho Satoh
- Laboratory of Genetic Engineering, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | | | | |
Collapse
|