1
|
Zameer R, Ali M, Jalal AS, Fiaz S, Attia KA, Li C, Yu C, Azeem F, Li ZF. Reproductive Meristem (REM) family genes GhREM1 and GhREM5.4 act as potential regulators of temperature stress response in cotton. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109767. [PMID: 40311531 DOI: 10.1016/j.plaphy.2025.109767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/23/2025] [Accepted: 03/05/2025] [Indexed: 05/03/2025]
Abstract
Cotton (Gossypium spp.) is considered a major cash crop in agriculture, food, and textile industries all over the world. The foremost focus of scientists and farmers is to meet global food security needs, but unfortunately, evolving weather conditions have significantly reduced the overall production. Latest genome sequence of Gossypium hirsutum enables us to understand the molecular mechanisms and identify development-related and stress-responsive genes. The Reproductive Meristem (REM) gene family, a subfamily of B3 DNA-binding superfamily of transcription factors, is characterized in model plants including Arabidopsis and Chickpea, but no study reported in G. hirsutum. In current study, 33 members of REM gene family were predicted and confirmed to possess the conserved REM-related domains in G. hirsutum. The phylogenetic analysis revealed that REM family members are divided into six sub-groups consistent with Arabidopsis, further confirming the evolutionary relationship across species. The pattern of introns, exons, and conserved motifs also indicated evolutionary conservation. Gene duplication analysis suggested segmental duplication as a reason for the expansion of REM gene family. RNA-seq and real-time qPCR assisted expression analysis in root, leaf and stem under multiple abiotic stresses (drought, salt, low and high temperature) collectively suggesting GhREM1 and GhREM5.4 as potential regulators under low and high temperature stress which is supported with the presence of temperature responsive cis-elements. Furthermore, GhREM1-OE and GhREM5.4-OE revealed the significant regulation of peroxidase (POD) under both low and high temperature stress indicating the potential involvement in temperature tolerance. Green fluorescent protein GFP revealed that both genes were localized in the nucleus. Our findings elucidate the ground work for co-regulatory relationship of REM genes and antioxidant activity in cotton under temperature stress.
Collapse
Affiliation(s)
- Roshan Zameer
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, China.
| | - Mushtaque Ali
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, China.
| | - Areej S Jalal
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Sajid Fiaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 54590, Lahore, Pakistan.
| | - Kotb A Attia
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Cheng Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, China.
| | - Chengde Yu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, China.
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| | - Zhi-Fang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
2
|
Sirangelo TM. Molecular Investigations to Improve Fusarium Head Blight Resistance in Wheat: An Update Focusing on Multi-Omics Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:2179. [PMID: 39204615 PMCID: PMC11359810 DOI: 10.3390/plants13162179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Fusarium head blight (FHB) is mainly caused by Fusarium graminearum (Fg) and is a very widespread disease throughout the world, leading to severe damage to wheat with losses in both grain yield and quality. FHB also leads to mycotoxin contamination in the infected grains, being toxic to humans and animals. In spite of the continuous advancements to elucidate more and more aspects of FHB host resistance, to date, our knowledge about the molecular mechanisms underlying wheat defense response to this pathogen is not comprehensive, most likely due to the complex wheat-Fg interaction. Recently, due to climate changes, such as high temperature and heavy rainfall, FHB has become more frequent and severe worldwide, making it even more urgent to completely understand wheat defense mechanisms. In this review, after a brief description of the first wheat immune response to Fg, we discuss, for each FHB resistance type, from Type I to Type V resistances, the main molecular mechanisms involved, the major quantitative trait loci (QTLs) and candidate genes found. The focus is on multi-omics research helping discover crucial molecular pathways for each resistance type. Finally, according to the emerging examined studies and results, a wheat response model to Fg attack, showing the major interactions in the different FHB resistance types, is proposed. The aim is to establish a useful reference point for the researchers in the field interested to adopt an interdisciplinary omics approach.
Collapse
Affiliation(s)
- Tiziana M Sirangelo
- Division Biotechnologies and Agroindustry, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123 Rome, Italy
| |
Collapse
|
3
|
Singh J, Chhabra B, Raza A, Yang SH, Sandhu KS. Important wheat diseases in the US and their management in the 21st century. FRONTIERS IN PLANT SCIENCE 2023; 13:1010191. [PMID: 36714765 PMCID: PMC9877539 DOI: 10.3389/fpls.2022.1010191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/28/2022] [Indexed: 05/27/2023]
Abstract
Wheat is a crop of historical significance, as it marks the turning point of human civilization 10,000 years ago with its domestication. Due to the rapid increase in population, wheat production needs to be increased by 50% by 2050 and this growth will be mainly based on yield increases, as there is strong competition for scarce productive arable land from other sectors. This increasing demand can be further achieved using sustainable approaches including integrated disease pest management, adaption to warmer climates, less use of water resources and increased frequency of abiotic stress tolerances. Out of 200 diseases of wheat, 50 cause economic losses and are widely distributed. Each year, about 20% of wheat is lost due to diseases. Some major wheat diseases are rusts, smut, tan spot, spot blotch, fusarium head blight, common root rot, septoria blotch, powdery mildew, blast, and several viral, nematode, and bacterial diseases. These diseases badly impact the yield and cause mortality of the plants. This review focuses on important diseases of the wheat present in the United States, with comprehensive information of causal organism, economic damage, symptoms and host range, favorable conditions, and disease management strategies. Furthermore, major genetic and breeding efforts to control and manage these diseases are discussed. A detailed description of all the QTLs, genes reported and cloned for these diseases are provided in this review. This study will be of utmost importance to wheat breeding programs throughout the world to breed for resistance under changing environmental conditions.
Collapse
Affiliation(s)
- Jagdeep Singh
- Department of Crop, Soil & Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Bhavit Chhabra
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Ali Raza
- College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Seung Hwan Yang
- Department of Integrative Biotechnology, Chonnam National University, Yeosu, Republic of Korea
| | | |
Collapse
|
4
|
Hales B, Steed A, Giovannelli V, Burt C, Lemmens M, Molnár-Láng M, Nicholson P. Type II Fusarium head blight susceptibility conferred by a region on wheat chromosome 4D. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4703-4714. [PMID: 32473016 PMCID: PMC7410183 DOI: 10.1093/jxb/eraa226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/04/2020] [Indexed: 05/20/2023]
Abstract
Fusarium head blight (FHB) causes significant grain yield and quality reductions in wheat and barley. Most wheat varieties are incapable of preventing FHB spread through the rachis, but disease is typically limited to individually infected spikelets in barley. We point-inoculated wheat lines possessing barley chromosome introgressions to test whether FHB resistance could be observed in a wheat genetic background. The most striking differential was between 4H(4D) substitution and 4H addition lines. The 4H addition line was similarly susceptible to the wheat parent, but the 4H(4D) substitution line was highly resistant, which suggests that there is an FHB susceptibility factor on wheat chromosome 4D. Point inoculation of Chinese Spring 4D ditelosomic lines demonstrated that removing 4DS results in high FHB resistance. We genotyped four Chinese Spring 4DS terminal deletion lines to better characterize the deletions in each line. FHB phenotyping indicated that lines del4DS-2 and del4DS-4, containing smaller deletions, were susceptible and had retained the susceptibility factor. Lines del4DS-3 and del4DS-1 contain larger deletions and were both significantly more resistant, and hence had presumably lost the susceptibility factor. Combining the genotyping and phenotyping results allowed us to refine the susceptibility factor to a 31.7 Mbp interval on 4DS.
Collapse
Affiliation(s)
- Benjamin Hales
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Andrew Steed
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Vincenzo Giovannelli
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Christopher Burt
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marc Lemmens
- University of Natural Resources and Life Sciences, Institute for Biotechnology in Plant Production, Department of Agrobiotechnology, IFA Tulln, Tulln, Austria
| | - Marta Molnár-Láng
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Paul Nicholson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
- Correspondence:
| |
Collapse
|
5
|
Hales B, Steed A, Giovannelli V, Burt C, Lemmens M, Molnár-Láng M, Nicholson P. Type II Fusarium head blight susceptibility conferred by a region on wheat chromosome 4D. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4703-4714. [PMID: 32473016 DOI: 10.1101/2020.02.06.937425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/04/2020] [Indexed: 05/24/2023]
Abstract
Fusarium head blight (FHB) causes significant grain yield and quality reductions in wheat and barley. Most wheat varieties are incapable of preventing FHB spread through the rachis, but disease is typically limited to individually infected spikelets in barley. We point-inoculated wheat lines possessing barley chromosome introgressions to test whether FHB resistance could be observed in a wheat genetic background. The most striking differential was between 4H(4D) substitution and 4H addition lines. The 4H addition line was similarly susceptible to the wheat parent, but the 4H(4D) substitution line was highly resistant, which suggests that there is an FHB susceptibility factor on wheat chromosome 4D. Point inoculation of Chinese Spring 4D ditelosomic lines demonstrated that removing 4DS results in high FHB resistance. We genotyped four Chinese Spring 4DS terminal deletion lines to better characterize the deletions in each line. FHB phenotyping indicated that lines del4DS-2 and del4DS-4, containing smaller deletions, were susceptible and had retained the susceptibility factor. Lines del4DS-3 and del4DS-1 contain larger deletions and were both significantly more resistant, and hence had presumably lost the susceptibility factor. Combining the genotyping and phenotyping results allowed us to refine the susceptibility factor to a 31.7 Mbp interval on 4DS.
Collapse
Affiliation(s)
- Benjamin Hales
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Andrew Steed
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Vincenzo Giovannelli
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Christopher Burt
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marc Lemmens
- University of Natural Resources and Life Sciences, Institute for Biotechnology in Plant Production, Department of Agrobiotechnology, IFA Tulln, Tulln, Austria
| | - Marta Molnár-Láng
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Paul Nicholson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
6
|
Lv Y, Zhang S, Wang J, Hu Y. Quantitative Proteomic Analysis of Wheat Seeds during Artificial Ageing and Priming Using the Isobaric Tandem Mass Tag Labeling. PLoS One 2016; 11:e0162851. [PMID: 27632285 PMCID: PMC5025167 DOI: 10.1371/journal.pone.0162851] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/28/2016] [Indexed: 12/11/2022] Open
Abstract
Wheat (Triticum aestivum L.) is an important crop worldwide. The physiological deterioration of seeds during storage and seed priming is closely associated with germination, and thus contributes to plant growth and subsequent grain yields. In this study, wheat seeds during different stages of artificial ageing (45°C; 50% relative humidity; 98%, 50%, 20%, and 1% Germination rates) and priming (hydro-priming treatment) were subjected to proteomics analysis through a proteomic approach based on the isobaric tandem mass tag labeling. A total of 162 differentially expressed proteins (DEPs) mainly involved in metabolism, energy supply, and defense/stress responses, were identified during artificial ageing and thus validated previous physiological and biochemical studies. These DEPs indicated that the inability to protect against ageing leads to the incremental decomposition of the stored substance, impairment of metabolism and energy supply, and ultimately resulted in seed deterioration. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the up-regulated proteins involved in seed ageing were mainly enriched in ribosome, whereas the down-regulated proteins were mainly accumulated in energy supply (starch and sucrose metabolism) and stress defense (ascorbate and aldarate metabolism). Proteins, including hemoglobin 1, oleosin, agglutinin, and non-specific lipid-transfer proteins, were first identified in aged seeds and might be regarded as new markers of seed deterioration. Of the identified proteins, 531 DEPs were recognized during seed priming compared with unprimed seeds. In contrast to the up-regulated DEPs in seed ageing, several up-regulated DEPs in priming were involved in energy supply (tricarboxylic acid cycle, glycolysis, and fatty acid oxidation), anabolism (amino acids, and fatty acid synthesis), and cell growth/division. KEGG and protein-protein interaction analysis indicated that the up-regulated proteins in seed priming were mainly enriched in amino acid synthesis, stress defense (plant-pathogen interactions, and ascorbate and aldarate metabolism), and energy supply (oxidative phosphorylation and carbon metabolism). Therefore, DEPs associated with seed ageing and priming can be used to characterize seed vigor and optimize germination enhancement treatments. This work reveals new proteomic insights into protein changes that occur during seed deterioration and priming.
Collapse
Affiliation(s)
- Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shuaibing Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yuansen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
7
|
Al-Taweel K, Fernando WGD, Brûlé-Babel AL. Transcriptome profiling of wheat differentially expressed genes exposed to different chemotypes of Fusarium graminearum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1703-1718. [PMID: 24893796 DOI: 10.1007/s00122-014-2333-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 05/15/2014] [Indexed: 06/03/2023]
Abstract
The study is an overview of the behavior of the wheat transcriptome to the Fusarium graminearum fungus using two different chemotypes. The transcriptome profiles of seven putative differentially expressed defense-related genes were identified by SSH and further examined using qPCR. Fusarium head blight (FHB) of wheat (Triticum aestivum L.), caused by several species of the fungus fusarium, is important in all wheat growing regions worldwide. The most dominant species in Canada is Fusarium graminearum (Fg). F. graminearum isolates producing mycotoxins such as 3-acetyl-deoxynivalenol (3ADON) and 15-acetyl-deoxynivalenol (15ADON). The objective of this study was to investigate the effect of the different chemotypes of Fg on the transcriptome pattern of expressed wheat genes. A cDNA library was constructed from infected "Sumai 3" spikes harvested at different times after inoculation with a macroconidia suspension. Employing suppression subtractive hybridization (SSH), the subtracted cDNA library was differentially screened by dot-blot hybridization. Thirty-one clones were identified; one was isolated and characterized, and transcriptome profiling of seven up-regulated putative defense-related genes was performed using quantitative real-time reverse-transcriptase PCR. These genes may be involved in the wheat-pathogen interactions revealing transcript accumulation differences between the non-diseased, 3ADON-, and 15ADON-infected plants. Additionally, significant differences in gene expression were observed between 3ADON- and 15ADON-infected plants which highlight the significance of a particular chemotype in FHB disease.
Collapse
Affiliation(s)
- Khaled Al-Taweel
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada,
| | | | | |
Collapse
|
8
|
Identification and differential induction of ABCG transporter genes in wheat cultivars challenged by a deoxynivalenol-producing Fusarium graminearum strain. Mol Biol Rep 2014; 41:6181-94. [PMID: 24973883 DOI: 10.1007/s11033-014-3497-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
Fusarium head blight (FHB), predominantly caused by Fusarium graminearum, is a devastating disease that poses a serious threat to wheat (Triticum aestivum L.) production worldwide. A suppression subtractive hybridization cDNA library was constructed from F. graminearum infected spikes of a resistant Belgian winter wheat, Centenaire, exhibiting Type II resistance to FHB in order to identify differentially expressed members of full-size ABCG family. Members of the ABCG family are pleiotropic drug transporters allowing the movement of structurally unrelated metabolites, including pathogens-derived virulent compounds, across biological membranes and could be potentially involved in resistance to plant pathogens. In this study, five new full-size ABCG transporter expressed sequence tags TaABCG2, TaABCG3, TaABCG4, TaABCG5 and TaABCG6 have been identified. Time-course gene expression profiling between the FHB resistant Centenaire and the susceptible Robigus genotype showed that the newly isolated transcripts were differentially expressed up to 72 h-post inoculation. The respective genes encoding these transcripts were mapped to corresponding wheat chromosomes or chromosomal arms known to harbor quantitative trait loci for FHB resistance. Interestingly, these ABCG transcripts were also induced by deoxynivalenol (DON) treatment of germinating wheat seeds and the toxin treatment inhibited root and hypocotyl growth. However, the hypocotyl of the FHB resistant cultivar Centenaire was less affected than that of the susceptible cultivar Robigus, reflecting more likely the genotype-dependent differential expression pattern of the identified ABCG genes. This work emphasizes the potential involvement of ABCG transporters in wheat resistance to FHB, at least in part through the detoxification of the pathogen-produced DON.
Collapse
|
9
|
Chaudhary P, Shank RA, Montina T, Goettel JT, Foroud NA, Hazendonk P, Eudes F. Hydrogen-bonding interactions in T-2 toxin studied using solution and solid-state NMR. Toxins (Basel) 2011; 3:1310-31. [PMID: 22069698 PMCID: PMC3210463 DOI: 10.3390/toxins3101310] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/28/2011] [Accepted: 10/11/2011] [Indexed: 01/03/2023] Open
Abstract
The structure of T-2 toxin in the solid-state is limited to X-ray crystallographic studies, which lack sufficient resolution to provide direct evidence for hydrogen-bonding interactions. Furthermore, its solution-structure, despite extensive Nuclear Magnetic Resonance (NMR) studies, has provided little insight into its hydrogen-bonding behavior, thus far. Hydrogen-bonding interactions are often an important part of biological activity. In order to study these interactions, the structure of T-2 toxin was compared in both the solution- and solid-state using NMR Spectroscopy. It was determined that the solution- and solid-state structure differ dramatically, as indicated by differences in their carbon chemical shifts, these observations are further supported by solution proton spectral parameters and exchange behavior. The slow chemical exchange process and cross-relaxation dynamics with water observed between the hydroxyl hydrogen on C-3 and water supports the existence of a preferential hydrogen bonding interaction on the opposite side of the molecule from the epoxide ring, which is known to be essential for trichothecene toxicity. This result implies that these hydrogen-bonding interactions could play an important role in the biological function of T-2 toxin and posits towards a possible interaction for the trichothecene class of toxins and the ribosome. These findings clearly illustrate the importance of utilizing solid-state NMR for the study of biological compounds, and suggest that a more detailed study of this whole class of toxins, namely trichothecenes, should be pursued using this methodology.
Collapse
Affiliation(s)
- Praveen Chaudhary
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge AB T1K 3M4, Canada; (P.C.); (R.A.S.); (T.M.); (J.T.G.)
| | - Roxanne A. Shank
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge AB T1K 3M4, Canada; (P.C.); (R.A.S.); (T.M.); (J.T.G.)
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge AB T1J 4B1, Canada;
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge AB T1K 3M4, Canada; (P.C.); (R.A.S.); (T.M.); (J.T.G.)
| | - James T. Goettel
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge AB T1K 3M4, Canada; (P.C.); (R.A.S.); (T.M.); (J.T.G.)
| | - Nora A. Foroud
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge AB T1J 4B1, Canada;
| | - Paul Hazendonk
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge AB T1K 3M4, Canada; (P.C.); (R.A.S.); (T.M.); (J.T.G.)
| | - François Eudes
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge AB T1J 4B1, Canada;
| |
Collapse
|
10
|
Shang Y, Xiao J, Ma L, Wang H, Qi Z, Chen P, Liu D, Wang X. Characterization of a PDR type ABC transporter gene from wheat (Triticum aestivum L.). ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11434-009-0553-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Lulin M, Yi S, Aizhong C, Zengjun Q, Liping X, Peidu C, Dajun L, Xiu-E W. Molecular cloning and characterization of an up-regulated UDP-glucosyltransferase gene induced by DON from Triticum aestivum L. cv. Wangshuibai. Mol Biol Rep 2009; 37:785-95. [PMID: 19585272 DOI: 10.1007/s11033-009-9606-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 06/25/2009] [Indexed: 11/24/2022]
Abstract
Fusarium head blight, also called scab, is a serious disease of small grain cereals and maize. Scab can not only cause yield loss, more seriously is that it can also deteriorate seed quality by contaminating the infected grains with trichothecenes toxins harmful to human and animal health. Deoxynivalenol (DON) is one of the most important toxin members. It was proposed that DON acted first as a virulence factor during fungal pathogenesis and then accumulated in grain to levels posing a threat to human and animal health. In the present research, by expression analysis of DON-induced samples using GeneChip Wheat Genome Array ( http://www.affymetrix.com/products/arrays/specific/wheat.affx ), a DON-resistance related gene TaUGT3 (GenBank accession FJ236328) was cloned and characterized from a scab resistant wheat (Triticum aestivum L.) variety Wangshuibai. The full-length cDNA of TaUGT3 was 1,755 bp and contained a putative open reading frame (ORF) with 496 amino acids encoding a UDP-glucosyltransferase (UGT). TaUGT3 showed high similarity in amino acid level with DOGT1 gene in Arabidopsis, which is able to detoxify DON. TaUGT3 was located on the group 3 chromosomes of wheat using nulli-tetrasomic lines and deletion lines of Chinese Spring. Co-transformed of TaUGT3 with GFP genes to onion epidermis cells using transient transformation technique by microprojectile bombardment indicated the subcellular location of the protein encoded by TaUGT3 was in the plasma membrane and nuclear. Transformation and overexpression of the TaUGT3 gene in Arabidopsis could enhance tolerance against DON.
Collapse
Affiliation(s)
- Ma Lulin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Proctor RH, Butchko RAE, Brown DW, Moretti A. Functional characterization, sequence comparisons and distribution of a polyketide synthase gene required for perithecial pigmentation in someFusariumspecies. ACTA ACUST UNITED AC 2007; 24:1076-87. [PMID: 17886180 DOI: 10.1080/02652030701546495] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Polyketides are a structurally diverse class of secondary metabolites produced by bacteria, fungi, plants and animals. The fungal genus Fusarium includes agronomically important plant pathogenic and mycotoxin-producing species and produces numerous polyketides. The study further characterized a polyketide synthase-encoding gene (PKS3 = PGL1) that was previously identified in F. graminearum and F. verticillioides. Disruption of the F. verticillioides PGL1 indicated that it is required for the production of the dark pigment in perithecial walls, as previously shown in F. graminearum. A third PGL1 orthologue was identified in the genomic sequence of N. haematococca (anamorph F. solani f. sp. pisi). Analysis of the carboxy-terminal end of the deduced PGL1 protein indicated that it had a functional domain related to dehydrogenases/reductases that is sometimes present in non-ribosomal peptide synthetases. Comparison of the genomic regions flanking PGL1 in F. graminearum, F. verticillioides and N. haematococca revealed that the extent of gene synteny in this region was greater between F. graminearum and F. verticillioides than between either of these species and N. haematococca. Southern blot analysis indicated that PGL1 occurs widely within the genus Fusarium including species with no known sexual stage.
Collapse
Affiliation(s)
- R H Proctor
- National Center for Agricultural Utilization Research, US Department of Agriculture, Agricultural Research Service, Peoria, Illinois, USA.
| | | | | | | |
Collapse
|