1
|
Šatović E, Luchetti A, Pasantes JJ, García-Souto D, Cedilak A, Mantovani B, Plohl M. Terminal-Repeat Retrotransposons in Miniature (TRIMs) in bivalves. Sci Rep 2019; 9:19962. [PMID: 31882746 PMCID: PMC6934838 DOI: 10.1038/s41598-019-56502-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Terminal repeat retrotransposons in miniature (TRIMs) are small non-autonomous LTR retrotransposons consisting of two terminal direct repeats surrounding a short internal domain. The detection and characterization of these elements has been mainly limited to plants. Here we present the first finding of a TRIM element in bivalves, and among the first known in the kingdom Animalia. Class Bivalvia has high ecological and commercial importance in marine ecosystems and aquaculture, and, in recent years, an increasing number of genomic studies has addressed to these organisms. We have identified biv-TRIM in several bivalve species: Donax trunculus, Ruditapes decussatus, R. philippinarum, Venerupis corrugata, Polititapes rhomboides, Venus verrucosa, Dosinia exoleta, Glycymeris glycymeris, Cerastoderma edule, Magallana gigas, Mytilus galloprovincialis. biv-TRIM has several characteristics typical for this group of elements, exhibiting different variations. In addition to canonically structured elements, solo-TDRs and tandem repeats were detected. The presence of this element in the genome of each species is <1%. The phylogenetic analysis showed a complex clustering pattern of biv-TRIM elements, and indicates the involvement of horizontal transfer in the spreading of this element.
Collapse
Affiliation(s)
- Eva Šatović
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
| | - Andrea Luchetti
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Juan J Pasantes
- Departamento de Bioquímica, Xenética e Inmunoloxía, Universidade de Vigo, Vigo, Spain
| | - Daniel García-Souto
- Departamento de Bioquímica, Xenética e Inmunoloxía, Universidade de Vigo, Vigo, Spain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Andrea Cedilak
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Barbara Mantovani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
2
|
Murukarthick J, Sampath P, Lee SC, Choi BS, Senthil N, Liu S, Yang TJ. BrassicaTED - a public database for utilization of miniature transposable elements in Brassica species. BMC Res Notes 2014; 7:379. [PMID: 24948109 PMCID: PMC4077149 DOI: 10.1186/1756-0500-7-379] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/13/2014] [Indexed: 12/04/2022] Open
Abstract
Background MITE, TRIM and SINEs are miniature form transposable elements (mTEs) that are ubiquitous and dispersed throughout entire plant genomes. Tens of thousands of members cause insertion polymorphism at both the inter- and intra- species level. Therefore, mTEs are valuable targets and resources for development of markers that can be utilized for breeding, genetic diversity and genome evolution studies. Taking advantage of the completely sequenced genomes of Brassica rapa and B. oleracea, characterization of mTEs and building a curated database are prerequisite to extending their utilization for genomics and applied fields in Brassica crops. Findings We have developed BrassicaTED as a unique web portal containing detailed characterization information for mTEs of Brassica species. At present, BrassicaTED has datasets for 41 mTE families, including 5894 and 6026 members from 20 MITE families, 1393 and 1639 members from 5 TRIM families, 1270 and 2364 members from 16 SINE families in B. rapa and B. oleracea, respectively. BrassicaTED offers different sections to browse structural and positional characteristics for every mTE family. In addition, we have added data on 289 MITE insertion polymorphisms from a survey of seven Brassica relatives. Genes with internal mTE insertions are shown with detailed gene annotation and microarray-based comparative gene expression data in comparison with their paralogs in the triplicated B. rapa genome. This database also includes a novel tool, K BLAST (Karyotype BLAST), for clear visualization of the locations for each member in the B. rapa and B. oleracea pseudo-genome sequences. Conclusions BrassicaTED is a newly developed database of information regarding the characteristics and potential utility of mTEs including MITE, TRIM and SINEs in B. rapa and B. oleracea. The database will promote the development of desirable mTE-based markers, which can be utilized for genomics and breeding in Brassica species. BrassicaTED will be a valuable repository for scientists and breeders, promoting efficient research on Brassica species. BrassicaTED can be accessed at http://im-crop.snu.ac.kr/BrassicaTED/index.php.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea.
| |
Collapse
|
3
|
Genetics of cryptic speciation within an Arctic mustard, Draba nivalis. PLoS One 2014; 9:e93834. [PMID: 24691072 PMCID: PMC3972243 DOI: 10.1371/journal.pone.0093834] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 03/09/2014] [Indexed: 01/13/2023] Open
Abstract
Crossing experiments indicate that hybrid sterility barriers frequently have developed within diploid, circumpolar plant species of the genus Draba. To gain insight into the rapid evolution of postzygotic reproductive isolation in this system, we augmented the linkage map of one of these species, D. nivalis, and searched for quantitative trait loci (QTLs) associated with reproductive isolation. The map adds 63 new dominant markers to a previously published dataset of 31 co-dominant microsatellites. These markers include 52 amplified fragment length polymorphisms (AFLPs) and 11 sequence-specific amplified polymorphisms (SSAPs) based on retrotransposon sequence. 22 markers displaying transmission ratio distortion were further included in the map. We resolved eight linkage groups with a total map length of 894 cM. Significant genotype-trait associations, or quantitative trait loci (QTL), were detected for reproductive phenotypes including pollen fertility (4 QTLs), seed set (3 QTLs), flowering time (3 QTLs) and number of flowers (4 QTLs). Observed patterns of inheritance were consistent with the influence of both nuclear-nuclear interactions and chromosomal changes on these traits. All seed set QTLs and one pollen fertility QTL displayed underdominant effects suggestive of the involvement of chromosomal rearrangements in hybrid sterility. Interestingly, D. nivalis is predominantly self-fertilizing, which may facilitate the establishment of underdominant loci and contribute to reproductive isolation.
Collapse
|
4
|
Schulman AH. Retrotransposon replication in plants. Curr Opin Virol 2013; 3:604-14. [PMID: 24035277 DOI: 10.1016/j.coviro.2013.08.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 12/31/2022]
Abstract
Retrotransposons comprise the bulk of large plant genomes, replicating via an RNA intermediate whereby the original, integrated element remains in place. Of the two main orders, the LTR retrotransposons considerably outnumber the LINEs. LINEs integrate into target sites simultaneously with the RNA transcript being copied into cDNA by target-primed reverse transcription. LTR retrotransposon replication is basically equivalent to the intracellular phase of retroviral life cycles. The envelope gene giving extracellular mobility to retroviruses is in fact widespread in plants and their retrotransposons. Evolutionary analyses of the retrotransposons and retroviruses suggest that both form an ancient monophyletic group. The particular adaptations of LTR retrotransposons to plant life cycles enabling their success remain to be clarified.
Collapse
Affiliation(s)
- Alan H Schulman
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland; Biotechnology and Food Research, MTT Agrifood Research Finland, Jokioinen FIN-31600, Finland.
| |
Collapse
|
5
|
Santana MF, Batista AD, Ribeiro LE, de Araújo EF, de Queiroz MV. Terminal repeat retrotransposons as DNA markers in fungi. J Basic Microbiol 2013; 53:823-7. [PMID: 23440766 DOI: 10.1002/jobm.201200453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/12/2012] [Indexed: 11/10/2022]
Abstract
In this study, we demonstrate that ClIRAP primers designed using the transposable element RetroCl1 sequence from Colletotrichum lindemuthianum can be used to generate an efficient IRAP (inter-retrotransposon amplified polymorphism) molecular marker to study intra- and inter-species diversity in fungi. It has been previously demonstrated that primers generated from this TRIM-like element can be used in the Colletotrichum species. We now prove that the RetroCl1 sequence can also be used to analyze diversity in different fungi. IRAP profiles were successfully generated for 27 fungi species from 11 different orders, and intra-species genetic variability was detected in six species. The ClIRAP primers facilitate the use of the IRAP technique for a variety of fungi without prior knowledge of the genome.
Collapse
|
6
|
Zhou Y, Cahan SH. A novel family of terminal-repeat retrotransposon in miniature (TRIM) in the genome of the red harvester ant, Pogonomyrmex barbatus. PLoS One 2012; 7:e53401. [PMID: 23285291 PMCID: PMC3532108 DOI: 10.1371/journal.pone.0053401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 11/29/2012] [Indexed: 12/03/2022] Open
Abstract
We report the first described non-plant family of TRIMs (terminal-repeat retrotransposons in miniature), which are small nonautonomous LTR retrotransposons, from the whole-genome sequence of the red harvester ant, Pogonomyrmex barbatus (Hymenoptera: Myrmicinae). Members of this retrotransposon family, named PbTRIM, have typical features of plant TRIMs in length and structure, although they share no overall sequence similarity. PbTRIM elements and their solo-LTRs are abundant in the host genome and exhibit an uneven distribution pattern. Elements are preferentially inserted into TA-rich regions with ATAT as the most common pattern of target site duplication (TSD). PbTRIM is most likely mobile as indicated by the young age of many complete elements, the high degree of sequence similarity among elements at different genomic locations, the abundance of elements in the host genome, and the presence of 4-bp target site duplications (TSDs) flanking the elements and solo-LTRs. Many PbTRIM elements and their solo-LTRs are located within or near genes, suggesting their potential roles in restructuring the host genes and genome. Database search, PCR and sequencing analysis revealed the presence of homologous PbTRIM elements in other ant species. The high sequence similarity between elements from distantly related ant species, the incongruence between the phylogenies of PbTRIM and its hosts, and the patchy distribution of the retroelement within the Myrmicinae subfamily indicate possible horizontal transfer events of the retroelement.
Collapse
Affiliation(s)
- Yihong Zhou
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
| | - Sara Helms Cahan
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
7
|
Eickbush DG, Eickbush TH. R2 and R2/R1 hybrid non-autonomous retrotransposons derived by internal deletions of full-length elements. Mob DNA 2012; 3:10. [PMID: 22621441 PMCID: PMC3414825 DOI: 10.1186/1759-8753-3-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/23/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND R2 is a non-long terminal repeat (non-LTR) retrotransposable element that inserts site specifically into the 28S genes of the ribosomal (r)RNA gene loci. Encoded at the 5' end is a ribozyme that generates the precise 5' end by self-cleavage of a 28S gene cotranscript. Sequences at the 3' end are necessary for the R2 protein to bind RNA and initiate the target primed reverse transcription (TPRT) reaction. These minimal RNA requirements suggested that if recombination/DNA repair conjoined the 5' and 3' ends of R2, the result would be a non-autonomous element that could survive as long as autonomous R2 elements supplied the TPRT activity. RESULTS A PCR-based survey of 39 Drosophila species aided by genomic sequences from 12 of these species revealed two types of non-autonomous elements. We call these elements SIDEs (for 'Short Internally Deleted Elements'). The first consisted of a 5' ribozyme and a 3' end of an R2 element as predicted. Variation at the 5' junctions of the R2 SIDE copies was typical for R2 insertions suggesting their propagation by TPRT. The second class of SIDE contained sequences from R1 elements, another non-LTR retrotransposon that inserts into rRNA gene loci. These insertions had an R2 ribozyme immediately upstream of R1 3' end sequences. These hybrid SIDEs were inserted at the R1 site with 14 bp target site duplications typical of R1 insertions suggesting they used the R1 machinery for retrotransposition. Finally, the survey revealed examples of U12 small nuclear (sn)RNA and tRNA sequences at the 5' end of R2 elements suggesting the R2 reverse transcriptase can template jump from the R2 transcript to a second RNA during TPRT. CONCLUSIONS The R2 SIDE and R2/R1 hybrid SIDEs are rare examples of non-autonomous retrotransposons in the Drosophila genome. Associated non-autonomous elements and in vivo template jumps are two additional characteristics R2 shares with other non-LTR retrotransposons such as mammalian L1s. Analysis of the hybrid SIDEs provides supporting evidence that R1 elements, like R2 elements, recognize their 3' untranslated region (UTR) sequences and, thus, belong to the stringent class of non-LTR elements.
Collapse
Affiliation(s)
- Danna G Eickbush
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
| | | |
Collapse
|
8
|
Mo YJ, Kim KY, Shin WC, Lee GM, Ko JC, Nam JK, Kim BK, Ko JK, Yu Y, Yang TJ. Characterization of Imcrop, a Mutator-like MITE family in the rice genome. Genes Genomics 2012. [DOI: 10.1007/s13258-011-0193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Wu J, Gu YQ, Hu Y, You FM, Dandekar AM, Leslie CA, Aradhya M, Dvorak J, Luo MC. Characterizing the walnut genome through analyses of BAC end sequences. PLANT MOLECULAR BIOLOGY 2012; 78:95-107. [PMID: 22101470 DOI: 10.1007/s11103-011-9849-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/29/2011] [Indexed: 05/31/2023]
Abstract
Persian walnut (Juglans regia L.) is an economically important tree for its nut crop and timber. To gain insight into the structure and evolution of the walnut genome, we constructed two bacterial artificial chromosome (BAC) libraries, containing a total of 129,024 clones, from in vitro-grown shoots of J. regia cv. Chandler using the HindIII and MboI cloning sites. A total of 48,218 high-quality BAC end sequences (BESs) were generated, with an accumulated sequence length of 31.2 Mb, representing approximately 5.1% of the walnut genome. Analysis of repeat DNA content in BESs revealed that approximately 15.42% of the genome consists of known repetitive DNA, while walnut-unique repetitive DNA identified in this study constitutes 13.5% of the genome. Among the walnut-unique repetitive DNA, Julia SINE and JrTRIM elements represent the first identified walnut short interspersed element (SINE) and terminal-repeat retrotransposon in miniature (TRIM) element, respectively; both types of elements are abundant in the genome. As in other species, these SINEs and TRIM elements could be exploited for developing repeat DNA-based molecular markers in walnut. Simple sequence repeats (SSR) from BESs were analyzed and found to be more abundant in BESs than in expressed sequence tags. The density of SSR in the walnut genome analyzed was also slightly higher than that in poplar and papaya. Sequence analysis of BESs indicated that approximately 11.5% of the walnut genome represents a coding sequence. This study is an initial characterization of the walnut genome and provides the largest genomic resource currently available; as such, it will be a valuable tool in studies aimed at genetically improving walnut.
Collapse
Affiliation(s)
- Jiajie Wu
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Development of new molecular markers for the Colletotrichum genus using RetroCl1 sequences. World J Microbiol Biotechnol 2011; 28:1087-95. [PMID: 22805830 DOI: 10.1007/s11274-011-0909-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 09/23/2011] [Indexed: 10/17/2022]
Abstract
A nonautonomous element of 624 bp, called RetroCl1 (Retroelement Colletotrichum lindemuthianum 1), was identified in the plant pathogenic fungus Colletotrichum lindemuthianum. RetroCl1 contains terminal direct repeats (223 bp) that are surrounded by CTAGT sequences. It has a short internal domain of 178 bp and shows characteristics of terminal-repeat retrotransposon in miniature (TRIM) family. We used RetroCl1 sequence to develop molecular markers for the Colletotrichum genus. IRAP (Inter-Retrotransposon Amplified Polymorphism) and REMAP (Retrotransposon-Microsatellite Amplified Polymorphism) markers were used to analyze the genetic diversity of C. lindemuthianum. Fifty-four isolates belonging to different races were used. A total of 45 loci were amplified. The Nei index showed significant differences among the populations divided according to race, indicating that they are structured according to pathotype. No clear correlation between IRAP and REMAP markers with pathogenic characterization was found. C. lindemuthianum has high genetic diversity, and the analysis of molecular variance showed that 51% of variability is found among the populations of different races. The markers were also tested in different Colletotrichum species. In every case, multiple bands were amplified, indicating that these markers can be successfully used in different species belonging to the Colletotrichum genus.
Collapse
|
11
|
Abstract
There is increasing evidence that epigenetic marks such as DNA methylation contribute to phenotypic variation by regulating gene transcription, developmental plasticity, and interactions with the environment. However, relatively little is known about the relationship between the stability and distribution of DNA methylation within chromosomes and the ability to detect trait loci. Plant genomes have a distinct range of target sites and more extensive DNA methylation than animals. We analyzed the stability and distribution of epialleles within the complex genome of the oilseed crop plant Brassica napus. For methylation sensitive AFLP (MSAP) and retrotransposon (RT) epimarkers, we found a high degree of stability, with 90% of mapped markers retaining their allelic pattern in contrasting environments and developmental stages. Moreover, for two distinct parental lines 97% of epialleles were transmitted through five meioses and segregated in a mapping population. For the first time we have established the genetic position for 17 of the 19 centromeres within this amphidiploid species. Epiloci and genetic loci were distributed within distinct clusters, indicating differential detection of recombination events. This enabled us to identify additional significant QTL associated with seven important agronomic traits in the centromeric regions of five linkage groups.
Collapse
|
12
|
Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genetics 2010; 187:37-49. [PMID: 21041557 DOI: 10.1534/genetics.110.122473] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Investigating recombination of homoeologous chromosomes in allopolyploid species is central to understanding plant breeding and evolution. However, examining chromosome pairing in the allotetraploid Brassica napus has been hampered by the lack of chromosome-specific molecular probes. In this study, we establish the identification of all homoeologous chromosomes of allopolyploid B. napus by using robust molecular cytogenetic karyotypes developed for the progenitor species Brassica rapa (A genome) and Brassica oleracea (C genome). The identification of every chromosome among these three Brassica species utilized genetically mapped bacterial artificial chromosomes (BACs) from B. rapa as probes for fluorescent in situ hybridization (FISH). With this BAC-FISH data, a second karyotype was developed using two BACs that contained repetitive DNA sequences and the ubiquitous ribosomal and pericentromere repeats. Using this diagnostic probe mix and a BAC that contained a C-genome repeat in two successive hybridizations allowed for routine identification of the corresponding homoeologous chromosomes between the A and C genomes of B. napus. When applied to the B. napus cultivar Stellar, we detected one chromosomal rearrangement relative to the parental karyotypes. This robust novel chromosomal painting technique will have biological applications for the understanding of chromosome pairing, homoeologous recombination, and genome evolution in the genus Brassica and will facilitate new applied breeding technologies that rely upon identification of chromosomes.
Collapse
|
13
|
Mun JH, Kwon SJ, Yang TJ, Seol YJ, Jin M, Kim JA, Lim MH, Kim JS, Baek S, Choi BS, Yu HJ, Kim DS, Kim N, Lim KB, Lee SI, Hahn JH, Lim YP, Bancroft I, Park BS. Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol 2009; 10:R111. [PMID: 19821981 PMCID: PMC2784326 DOI: 10.1186/gb-2009-10-10-r111] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 08/09/2009] [Accepted: 10/12/2009] [Indexed: 02/01/2023] Open
Abstract
Euchromatic regions of the Brassica rapa genome were sequenced and mapped onto the corresponding regions in the Arabidopsis thaliana genome. Background Brassica rapa is one of the most economically important vegetable crops worldwide. Owing to its agronomic importance and phylogenetic position, B. rapa provides a crucial reference to understand polyploidy-related crop genome evolution. The high degree of sequence identity and remarkably conserved genome structure between Arabidopsis and Brassica genomes enables comparative tiling sequencing using Arabidopsis sequences as references to select the counterpart regions in B. rapa, which is a strong challenge of structural and comparative crop genomics. Results We assembled 65.8 megabase-pairs of non-redundant euchromatic sequence of B. rapa and compared this sequence to the Arabidopsis genome to investigate chromosomal relationships, macrosynteny blocks, and microsynteny within blocks. The triplicated B. rapa genome contains only approximately twice the number of genes as in Arabidopsis because of genome shrinkage. Genome comparisons suggest that B. rapa has a distinct organization of ancestral genome blocks as a result of recent whole genome triplication followed by a unique diploidization process. A lack of the most recent whole genome duplication (3R) event in the B. rapa genome, atypical of other Brassica genomes, may account for the emergence of B. rapa from the Brassica progenitor around 8 million years ago. Conclusions This work demonstrates the potential of using comparative tiling sequencing for genome analysis of crop species. Based on a comparative analysis of the B. rapa sequences and the Arabidopsis genome, it appears that polyploidy and chromosomal diploidization are ongoing processes that collectively stabilize the B. rapa genome and facilitate its evolution.
Collapse
Affiliation(s)
- Jeong-Hwan Mun
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, 150 Suin-ro, Gwonseon-gu, Suwon 441-707, Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zou J, Gong H, Yang TJ, Meng J. Retrotransposons - a major driving force in plant genome evolution and a useful tool for genome analysis. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s12892-009-0070-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|