1
|
Ramírez-Parra E, De la Rosa L. Designing Novel Strategies for Improving Old Legumes: An Overview from Common Vetch. PLANTS (BASEL, SWITZERLAND) 2023; 12:1275. [PMID: 36986962 PMCID: PMC10058852 DOI: 10.3390/plants12061275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Common vetch (Vicia sativa L.) is a grain legume used in animal feeding, rich in protein content, fatty acid, and mineral composition that makes for a very adequate component to enrich feedstuff. In addition, relevant pharmacological properties have been reported in humans. The common vetch, similar to other legumes, can fix atmospheric nitrogen, a crucial feature for sustainable agricultural systems. These properties enhance the use of vetch as a cover crop and its sowing in intercropping systems. Moreover, several studies have recently pointed out the potential of vetch in the phytoremediation of contaminated soils. These characteristics make vetch a relevant crop, which different potential improvements target. Varieties with different yields, flowering times, shattering resistance, nutritional composition, rhizobacteria associations, drought tolerance, nitrogen fixation capacity, and other agronomic-relevant traits have been identified when different vetch accessions are compared. Recently, the analysis of genomic and transcriptomic data has allowed the development of different molecular markers to be used for assisted breeding purposes, promoting crop improvement. Here, we review the potential of using the variability of V. sativa genetic resources and new biotechnological and molecular tools for selecting varieties with improved traits to be used in sustainable agriculture systems.
Collapse
Affiliation(s)
- Elena Ramírez-Parra
- Centro de Biotecnología y Genómica de Plantas, (CBGP, UPM-INIA/CSIC) Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Lucía De la Rosa
- Centro de Recursos Fitogenéticos, (CRF-INIA/CSIC) Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
2
|
Remnants of SIRE1 retrotransposons in human genome? J Genet 2022. [DOI: 10.1007/s12041-022-01398-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
De la Rosa L, López-Román MI, González JM, Zambrana E, Marcos-Prado T, Ramírez-Parra E. Common Vetch, Valuable Germplasm for Resilient Agriculture: Genetic Characterization and Spanish Core Collection Development. FRONTIERS IN PLANT SCIENCE 2021; 12:617873. [PMID: 33767716 PMCID: PMC7985455 DOI: 10.3389/fpls.2021.617873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/05/2021] [Indexed: 05/17/2023]
Abstract
Common vetch (Vicia sativa L.) is a legume used for animal feed because of its high protein content and great capacity for nitrogen fixation, making this crop relevant in sustainable agriculture. The Spanish vetch collection, conserved at the Spanish Plant Genetic Resources Center (CRF), is one of the largest collections of this species worldwide, including landraces, wild relatives mainly collected in Spain, and commercial cultivars, but also accessions of international origin. The analysis of the genetic diversity of this material, whose genome has not been sequenced yet, and the assembly of a representative collection could play a pivotal role in conserving and exploiting these genetic resources in breeding programs mainly in those focused on consequences and demands of climate change. In this work, a set of 14 simple sequence repeat (SSR) reference alleles for genetic diversity analysis of the CRF vetch collection has been developed, used for genotyping more than 545 common vetch accessions from all over the world and validated. All the tested markers were polymorphic for the analyzed accessions. Overall, at least 86 different loci were identified with 2-11 alleles per locus with an average of 6.1 alleles per locus. Also, the analyses of the generated SSR database support that most of these SSR markers are transferable across closely related species of Vicia genus. Analysis of molecular variance revealed that wild relatives have a higher genetic diversity than landraces. However, cultivars have similar diversity than landraces, indicating that genetic variability has been barely lost due to the breeding of this legume. Low differences of genetic variations between Spanish and non-Spanish accessions have been observed, suggesting a high degree of diversity within Spanish genotypes, which provide 95% of the total genetic variation, so we have focused our efforts on characterizing genotypes of Spanish origin that were further studied using storage protein profiles. Based on SSR, seed protein profiles, and agromorphological and passport data, a vetch core collection (VCC) containing 47 V. sativa accessions of Spanish origin has been established. In this collection, the characterization has been expanded using ISSR markers, and it has been reevaluated with new agromorphological data, including drought tolerance characters. This VCC presents a minimum loss of genetic diversity concerning the total collection and constitutes an invaluable material that can be used in future breeding programs for direct use in a resilient agricultural system.
Collapse
Affiliation(s)
- Lucía De la Rosa
- Centro de Recursos Fitogenéticos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Alcalá de Henares, Spain
| | - María Isabel López-Román
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain
| | - Juan M. González
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Encarnación Zambrana
- Centro de Recursos Fitogenéticos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Alcalá de Henares, Spain
| | - Teresa Marcos-Prado
- Centro de Recursos Fitogenéticos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Alcalá de Henares, Spain
| | - Elena Ramírez-Parra
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain
- *Correspondence: Elena Ramírez-Parra,
| |
Collapse
|
4
|
Sheeja TE, Kumar IPV, Giridhari A, Minoo D, Rajesh MK, Babu KN. Amplified Fragment Length Polymorphism: Applications and Recent Developments. Methods Mol Biol 2021; 2222:187-218. [PMID: 33301096 DOI: 10.1007/978-1-0716-0997-2_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AFLP or amplified fragment length polymorphism is a PCR-based molecular technique that uses selective amplification of a subset of digested DNA fragments from any source to generate and compare unique fingerprints of genomes. It is more efficient in terms of time, economy, reproducibility, informativeness, resolution, and sensitivity, compared to other popular DNA markers. Besides, it requires very small quantities of DNA and no prior genome information. This technique is widely used in plants for taxonomy, genetic diversity, phylogenetic analysis, construction of high-resolution genetic maps, and positional cloning of genes, to determine relatedness among cultivars and varietal identity, etc. The review encompasses in detail the various applications of AFLP in plants and the major advantages and disadvantages. The review also considers various modifications of this technique and novel developments in detection of polymorphism. A wet-lab protocol is also provided.
Collapse
Affiliation(s)
- Thotten Elampilay Sheeja
- Indian Institute of Spices Research, Kozhikode, Kerala, India.
- Division of Crop Improvement and Biotechnology, ICAR-Indian Institute of Spices Research, Kozhikode, Kerala, India.
| | | | | | | | | | | |
Collapse
|
5
|
AFLP-Based Analysis of Variation and Population Structure in Mutagenesis Induced Faba Bean. DIVERSITY 2020. [DOI: 10.3390/d12080303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Genetic diversity enrichment is urgently necessary to develop climate-resilient faba bean cultivars. The present study aimed to measure the enrichment of genetic diversity and changes in the population structure of faba bean, following induced mutagenesis. 120 samples, including 116 M2 mutant plants, generated by exposing the ILB4347 accession to four mutagen treatments (25 and 50 Gray gamma radiation and 0.01%, and 0.05% diethyl sulfate) and four reference genotypes were characterized using 11 amplified fragment length polymorphism (AFLP) primer combinations. The AFLP markers generated 1687 polymorphic alleles, including 756 alleles (45%) that were detected infrequently (f ≤ 0.1). The total allele count of the mutant plants ranged from 117 to 545. We observed a wide range of banding patterns and counts among the mutant plants, showing the high genetic diversity induced by mutation. Mutations also changed the population structure, by altering 31.78% of the total membership coefficient (Q). Although mutations changed the population structure, Nei’s genetic distance showed that the mutant population remained closely related to its control parent. This is the first report examining genetic diversity and population changes in faba bean mutant populations and, thus, could facilitate the application of induced mutagenesis during faba bean breeding.
Collapse
|
6
|
Maneesha, Upadhyaya KC. Analysis of genetic diversity in pigeon pea germplasm using retrotransposon-based molecular markers. J Genet 2017; 96:551-561. [PMID: 28947703 DOI: 10.1007/s12041-017-0802-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pigeon pea (Cajanus cajan), an important legume crop is predominantly cultivated in tropical and subtropical regions of Asia and Africa. It is normally considered to have a low degree of genetic diversity, an impediment in undertaking crop improvement programmes.We have analysed genetic polymorphism of domesticated pigeon pea germplasm (47 accessions) across the world using earlier characterized panzee retrotransposon-based molecularmarkers. Itwas conjectured that since retrotransposons are interspersed throughout the genome, retroelements-based markers would be able to uncover polymorphism possibly inherent in the diversity of retroelement sequences. Two PCR-based techniques, sequence-specific amplified polymorphism (SSAP) and retrotransposon microsatellite amplified polymorphism (REMAP) were utilized for the analyses.We show that a considerable degree of polymorphism could be detected using these techniques. Three primer combinations in SSAP generated 297 amplified products across 47 accessions with an average of 99 amplicons per assay. Degree of polymorphism varied from 84-95%. In the REMAP assays, the number of amplicons was much less but up to 73% polymorphism could be detected. On the basis of similarity coefficients, dendrograms were constructed. The results demonstrate that the retrotransposon-based markers could serve as a better alternative for the assessment of genetic diversity in crops with apparent low genetic base.
Collapse
Affiliation(s)
- Maneesha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India.
| | | |
Collapse
|
7
|
Rey-Baños R, Sáenz de Miera LE, García P, Pérez de la Vega M. Obtaining retrotransposon sequences, analysis of their genomic distribution and use of retrotransposon-derived genetic markers in lentil (Lens culinaris Medik.). PLoS One 2017; 12:e0176728. [PMID: 28448614 PMCID: PMC5407846 DOI: 10.1371/journal.pone.0176728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/14/2017] [Indexed: 12/02/2022] Open
Abstract
Retrotransposons with long terminal repeats (LTR-RTs) are widespread mobile elements in eukaryotic genomes. We obtained a total of 81 partial LTR-RT sequences from lentil corresponding to internal retrotransposon components and LTRs. Sequences were obtained by PCR from genomic DNA. Approximately 37% of the LTR-RT internal sequences presented premature stop codons, pointing out that these elements must be non-autonomous. LTR sequences were obtained using the iPBS technique which amplifies sequences between LTR-RTs. A total of 193 retrotransposon-derived genetic markers, mainly iPBS, were used to obtain a genetic linkage map from 94 F7 inbred recombinant lines derived from the cross between the cultivar Lupa and the wild ancestor L. culinaris subsp. orientalis. The genetic map included 136 markers located in eight linkage groups. Clusters of tightly linked retrotransposon-derived markers were detected in linkage groups LG1, LG2, and LG6, hence denoting a non-random genomic distribution. Phylogenetic analyses identified the LTR-RT families in which internal and LTR sequences are included. Ty3-gypsy elements were more frequent than Ty1-copia, mainly due to the high Ogre element frequency in lentil, as also occurs in other species of the tribe Vicieae. LTR and internal sequences were used to analyze in silico their distribution among the contigs of the lentil draft genome. Up to 8.8% of the lentil contigs evidenced the presence of at least one LTR-RT similar sequence. A statistical analysis suggested a non-random distribution of these elements within of the lentil genome. In most cases (between 97% and 72%, depending on the LTR-RT type) none of the internal sequences flanked by the LTR sequence pair was detected, suggesting that defective and non-autonomous LTR-RTs are very frequent in lentil. Results support that LTR-RTs are abundant and widespread throughout of the lentil genome and that they are a suitable source of genetic markers useful to carry out further genetic analyses.
Collapse
Affiliation(s)
- Rita Rey-Baños
- Área de Genética, Dpto. de Biología Molecular, Universidad de León, León, Spain
| | - Luis E. Sáenz de Miera
- Área de Genética, Dpto. de Biología Molecular, Universidad de León, León, Spain
- * E-mail:
| | - Pedro García
- Área de Genética, Dpto. de Biología Molecular, Universidad de León, León, Spain
| | | |
Collapse
|
8
|
Comparison of molecular genetic utilities of TD, AFLP, and MSAP among the accessions of japonica, indica, and Tongil of Oryza sativa L. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
O'Sullivan DM, Angra D. Advances in Faba Bean Genetics and Genomics. Front Genet 2016; 7:150. [PMID: 27597858 PMCID: PMC4993074 DOI: 10.3389/fgene.2016.00150] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 08/03/2016] [Indexed: 12/21/2022] Open
Abstract
Vicia faba L, is a globally important grain legume whose main centers of diversity are the Fertile Crescent and Mediterranean basin. Because of its small number (six) of exceptionally large and easily observed chromosomes it became a model species for plant cytogenetics the 70s and 80s. It is somewhat ironic therefore, that the emergence of more genomically tractable model plant species such as Arabidopsis and Medicago coincided with a marked decline in genome research on the formerly favored plant cytogenetic model. Thus, as ever higher density molecular marker coverage and dense genetic and even complete genome sequence maps of key crop and model species emerged through the 1990s and early 2000s, genetic and genome knowledge of Vicia faba lagged far behind other grain legumes such as soybean, common bean and pea. However, cheap sequencing technologies have stimulated the production of deep transcriptome coverage from several tissue types and numerous distinct cultivars in recent years. This has permitted the reconstruction of the faba bean meta-transcriptome and has fueled development of extensive sets of Simple Sequence Repeat and Single Nucleotide Polymorphism (SNP) markers. Genetics of faba bean stretches back to the 1930s, but it was not until 1993 that DNA markers were used to construct genetic maps. A series of Random Amplified Polymorphic DNA-based genetic studies mainly targeted at quantitative loci underlying resistance to a series of biotic and abiotic stresses were conducted during the 1990's and early 2000s. More recently, SNP-based genetic maps have permitted chromosome intervals of interest to be aligned to collinear segments of sequenced legume genomes such as the model legume Medicago truncatula, which in turn opens up the possibility for hypotheses on gene content, order and function to be translated from model to crop. Some examples of where knowledge of gene content and function have already been productively exploited are discussed. The bottleneck in associating genes and their functions has therefore moved from locating gene candidates to validating their function and the last part of this review covers mutagenesis and genetic transformation, two complementary routes to validating gene function and unlocking novel trait variation for the improvement of this important grain legume.
Collapse
Affiliation(s)
- Donal M. O'Sullivan
- School of Agriculture, Policy and Development, University of ReadingReading, UK
| | | |
Collapse
|
10
|
Roy NS, Kim NS. Genetic diversity analysis of maize lines using AFLP and TE-based molecular marker systems. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0461-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Oliveira HR, Tomás D, Silva M, Lopes S, Viegas W, Veloso MM. Genetic Diversity and Population Structure in Vicia faba L. Landraces and Wild Related Species Assessed by Nuclear SSRs. PLoS One 2016; 11:e0154801. [PMID: 27168146 PMCID: PMC4864303 DOI: 10.1371/journal.pone.0154801] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/19/2016] [Indexed: 12/19/2022] Open
Abstract
Faba bean (Vicia faba L.) is a facultative cross-pollinating legume crop with a great importance for food and feed due to its high protein content as well as the important role in soil fertility and nitrogen fixation. In this work we evaluated genetic diversity and population structure of faba bean accessions from the Western Mediterranean basin and wild related species. For that purpose we screened 53 V. faba, 2 V. johannis and 7 V. narbonensis accessions from Portugal, Spain and Morocco with 28 faba bean Single Sequence Repeats (SSR). SSR genotyping showed that the number of alleles detected per locus for the polymorphic markers ranged between 2 and 10, with Polymorphic Information Content (PIC) values between 0.662 and 0.071, and heterozygosity (HO) between 0–0.467. Heterozygosity and inbreeding coefficient levels indicate a higher level of inbreeding in wild related species than in cultivated Vicia. The analysis of molecular variance (AMOVA) showed a superior genetic diversity within accessions than between accessions even from distant regions. These results are in accordance to population structure analysis showing that individuals from the same accession can be genetically more similar to individuals from far away accessions, than from individuals from the same accession. In all three levels of analysis (whole panel of cultivated and wild accessions, cultivated faba bean accessions and Portuguese accessions) no population structure was observed based on geography or climatic factors. Differences between V. narbonensis and V. johannis are undetectable although these wild taxa are clearly distinct from V. faba accessions. Thus, a limited gene flow occurred between cultivated accessions and wild relatives. Contrastingly, the lack of population structure seems to indicate a high degree of gene flow between V. faba accessions, possibly explained by the partially allogamous habit in association with frequent seed exchange/introduction.
Collapse
Affiliation(s)
- Hugo R. Oliveira
- Plant Biology/CIBIO-Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485–661, Vairão, Portugal
| | - Diana Tomás
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda 1349–017, Lisboa, Portugal
- * E-mail:
| | - Manuela Silva
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda 1349–017, Lisboa, Portugal
| | - Susana Lopes
- CTM.CIBIO-Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485–661, Vairão, Portugal
| | - Wanda Viegas
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda 1349–017, Lisboa, Portugal
| | - Maria Manuela Veloso
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda 1349–017, Lisboa, Portugal
- Unidade de Investigação de Biotecnologia e Recursos Genéticos, INIAV, Quinta do Marquês, 2784–505, Oeiras, Portugal
| |
Collapse
|
12
|
Genetic Diversity Assessment of Portuguese Cultivated Vicia faba L. through IRAP Markers. DIVERSITY-BASEL 2016. [DOI: 10.3390/d8020008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
|
14
|
Retrotransposon-based molecular markers for analysis of genetic diversity within the Genus Linum. BIOMED RESEARCH INTERNATIONAL 2014; 2014:231589. [PMID: 25243121 PMCID: PMC4163409 DOI: 10.1155/2014/231589] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/18/2014] [Accepted: 08/01/2014] [Indexed: 12/25/2022]
Abstract
SSAP method was used to study the genetic diversity of 22 Linum species from sections Linum, Adenolinum, Dasylinum, Stellerolinum, and 46 flax cultivars. All the studied flax varieties were distinguished using SSAP for retrotransposons FL9 and FL11. Thus, the validity of SSAP method was demonstrated for flax marking, identification of accessions in genebank collections, and control during propagation of flax varieties. Polymorphism of Fl1a, Fl1b, and Cassandra insertions were very low in flax varieties, but these retrotransposons were successfully used for the investigation of Linum species. Species clusterization based on SSAP markers was in concordance with their taxonomic division into sections Dasylinum, Stellerolinum, Adenolinum, and Linum. All species of sect. Adenolinum clustered apart from species of sect. Linum. The data confirmed the accuracy of the separation in these sections. Members of section Linum are not as closely related as members of other sections, so taxonomic revision of this section is desirable. L. usitatissimum accessions genetically distant from modern flax cultivars were revealed in our work. These accessions are of utmost interest for flax breeding and introduction of new useful traits into flax cultivars. The chromosome localization of Cassandra retrotransposon in Linum species was determined.
Collapse
|
15
|
Alzohairy AM, Gyulai GB, Ramadan MF, Edris S, Sabir JSM, Jansen RK, Eissa HF, Bahieldin A. Retrotransposon-based molecular markers for assessment of genomic diversity. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:781-789. [PMID: 32481032 DOI: 10.1071/fp13351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/19/2014] [Indexed: 06/11/2023]
Abstract
Retrotransposons (RTs) are major components of most eukaryotic genomes. They are ubiquitous, dispersed throughout the genome, and their abundance correlates with genome size. Their copy-and-paste lifestyle in the genome consists of three molecular steps involving transcription of an RNA copy from the genomic RT, followed by reverse transcription to generate cDNA, and finally, reintegration into a new location in the genome. This process leads to new genomic insertions without excision of the original element. The target sites of insertions are relatively random and independent for different taxa; however, some elements cluster together in 'repeat seas' or have a tendency to cluster around the centromeres and telomeres. The structure and copy number of retrotransposon families are strongly influenced by the evolutionary history of the host genome. Molecular markers play an essential role in all aspects of genetics and genomics, and RTs represent a powerful tool compared with other molecular and morphological markers. All features of integration activity, persistence, dispersion, conserved structure and sequence motifs, and high copy number suggest that RTs are appropriate genomic features for building molecular marker systems. To detect polymorphisms for RTs, marker systems generally rely on the amplification of sequences between the ends of the RT, such as (long-terminal repeat)-retrotransposons and the flanking genomic DNA. Here, we review the utility of some commonly used PCR retrotransposon-based molecular markers, including inter-primer binding sequence (IPBS), sequence-specific amplified polymorphism (SSAP), retrotransposon-based insertion polymorphism (RBIP), inter retrotransposon amplified polymorphism (IRAP), and retrotransposon-microsatellite amplified polymorphism (REMAP).
Collapse
Affiliation(s)
- Ahmed M Alzohairy
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - G Bor Gyulai
- Institute of Genetics and Biotechnology, St. István University, Gödöll?, H-2103, Hungary
| | - Mohamed F Ramadan
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Sherif Edris
- King Abdulaziz University, Faculty of Science, Department of Biological Sciences, Genomics and Biotechnology Section, Jeddah 21589, Saudi Arabia
| | - Jamal S M Sabir
- King Abdulaziz University, Faculty of Science, Department of Biological Sciences, Genomics and Biotechnology Section, Jeddah 21589, Saudi Arabia
| | - Robert K Jansen
- King Abdulaziz University, Faculty of Science, Department of Biological Sciences, Genomics and Biotechnology Section, Jeddah 21589, Saudi Arabia
| | - Hala F Eissa
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
| | - Ahmed Bahieldin
- King Abdulaziz University, Faculty of Science, Department of Biological Sciences, Genomics and Biotechnology Section, Jeddah 21589, Saudi Arabia
| |
Collapse
|
16
|
Parisod C, Salmon A, Ainouche M, Grandbastien MA. Detecting epigenetic effects of transposable elements in plants. Methods Mol Biol 2014; 1112:211-217. [PMID: 24478017 DOI: 10.1007/978-1-62703-773-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Transposable elements (TE) represent a major fraction of eukaryotic genomes and play many roles in plant epigenetics. In this chapter, we describe the use of Sequence-Specific Amplified Polymorphism (SSAP) as a reliable Transposon Display technique applicable for use in many plant species. We also discuss the interpretation of SSAP data and associated risks. This technique has potential to allow rapid screening of plant populations, especially in nonmodel or wild species.
Collapse
Affiliation(s)
- Christian Parisod
- Laboratory of Evolutionary Botany, Biology Institute, University of Neuchâtel, Neuchâtel, Switzerland
| | | | | | | |
Collapse
|
17
|
Molecular diversity assessment using Sequence Related Amplified Polymorphism (SRAP) Markers in Vicia faba L. Int J Mol Sci 2012; 13:16457-71. [PMID: 23211669 PMCID: PMC3546701 DOI: 10.3390/ijms131216457] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 11/17/2022] Open
Abstract
Sequence-related amplified polymorphism (SRAP) markers were used to assess the genetic diversity and relationship among 58 faba bean (Vicia faba L.) genotypes. Fourteen SRAP primer combinations amplified a total of 1036 differently sized well-resolved peaks (fragments), of which all were polymorphic with a 0.96 PIC value and discriminated all of the 58 faba bean genotypes. An average pairwise similarity of 21% was revealed among the genotypes ranging from 2% to 65%. At a similarity of 28%, UPGMA clustered the genotypes into three main groups comprising 78% of the genotypes. The local landraces and most of the Egyptian genotypes in addition to the Sudan genotypes were grouped in the first main cluster. The advanced breeding lines were scattered in the second and third main clusters with breeding lines from the ICARDA and genotypes introduced from Egypt. At a similarity of 47%, all the genotypes formed separated clusters with the exceptions of Hassawi 1 and Hassawi 2. Group analysis of the genotypes according to their geographic origin and type showed that the landraces were grouped according to their origin, while others were grouped according to their seed type. To our knowledge, this is the first application of SRAP markers for the assessment of genetic diversity in faba bean. Such information will be useful to determine optimal breeding strategies to allow continued progress in faba bean breeding.
Collapse
|
18
|
Two novel Ty1-copia retrotransposons isolated from coffee trees can effectively reveal evolutionary relationships in the Coffea genus (Rubiaceae). Mol Genet Genomics 2011; 285:447-60. [PMID: 21505885 DOI: 10.1007/s00438-011-0617-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 03/29/2011] [Indexed: 12/14/2022]
Abstract
In the study, we developed new markers for phylogenetic relationships and intraspecies differentiation in Coffea. Nana and Divo, two novel Ty1-copia LTR-retrotransposon families, were isolated through C. canephora BAC clone sequencing. Nana- and Divo-based markers were used to test their: (1) ability to resolve recent phylogenetic relationships; (2) efficiency in detecting intra-species differentiation. Sequence-specific amplification polymorphism (SSAP), retrotransposon-microsatellite amplified polymorphism (REMAP) and retrotransposon-based insertion polymorphism (RBIP) approaches were applied to 182 accessions (31 Coffea species and one Psilanthus accession). Nana- and Divo-based markers revealed contrasted transpositional histories. At the BAC clone locus, RBIP results on C. canephora demonstrated that Nana insertion took place prior to C. canephora differentiation, while Divo insertion occurred after differentiation. Combined SSAP and REMAP data showed that Nana could resolve Coffea lineages, while Divo was efficient at a lower taxonomic level. The combined results indicated that the retrotransposon-based markers were useful in highlighting Coffea genetic diversity and the chronological pattern of speciation/differentiation events. Ongoing complete sequencing of the C. canephora genome will soon enable exhaustive identification of LTR-RTN families, as well as more precise in-depth analyses on contributions to genome size variation and Coffea evolution.
Collapse
|
19
|
Kalendar R, Flavell AJ, Ellis THN, Sjakste T, Moisy C, Schulman AH. Analysis of plant diversity with retrotransposon-based molecular markers. Heredity (Edinb) 2010; 106:520-30. [PMID: 20683483 DOI: 10.1038/hdy.2010.93] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Retrotransposons are both major generators of genetic diversity and tools for detecting the genomic changes associated with their activity because they create large and stable insertions in the genome. After the demonstration that retrotransposons are ubiquitous, active and abundant in plant genomes, various marker systems were developed to exploit polymorphisms in retrotransposon insertion patterns. These have found applications ranging from the mapping of genes responsible for particular traits and the management of backcrossing programs to analysis of population structure and diversity of wild species. This review provides an insight into the spectrum of retrotransposon-based marker systems developed for plant species and evaluates the contributions of retrotransposon markers to the analysis of population diversity in plants.
Collapse
Affiliation(s)
- R Kalendar
- MTT/BI Plant Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
20
|
Molecular markers based on LTR retrotransposons BARE-1 and Jeli uncover different strata of evolutionary relationships in diploid wheats. Mol Genet Genomics 2010; 283:551-63. [DOI: 10.1007/s00438-010-0539-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 03/29/2010] [Indexed: 01/02/2023]
|
21
|
Knox M, Moreau C, Lipscombe J, Baker D, Ellis N. High-throughput retrotransposon-based fluorescent markers: improved information content and allele discrimination. PLANT METHODS 2009; 5:10. [PMID: 19638216 PMCID: PMC2731089 DOI: 10.1186/1746-4811-5-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 07/28/2009] [Indexed: 05/26/2023]
Abstract
BACKGROUND Dense genetic maps, together with the efficiency and accuracy of their construction, are integral to genetic studies and marker assisted selection for plant breeding. High-throughput multiplex markers that are robust and reproducible can contribute to both efficiency and accuracy. Multiplex markers are often dominant and so have low information content, this coupled with the pressure to find alternatives to radio-labelling, has led us to adapt the SSAP (sequence specific amplified polymorphism) marker method from a 33P labelling procedure to fluorescently tagged markers analysed from an automated ABI 3730 xl platform. This method is illustrated for multiplexed SSAP markers based on retrotransposon insertions of pea and is applicable for the rapid and efficient generation of markers from genomes where repetitive element sequence information is available for primer design. We cross-reference SSAP markers previously generated using the 33P manual PAGE system to fluorescent peaks, and use these high-throughput fluorescent SSAP markers for further genetic studies in Pisum. RESULTS The optimal conditions for the fluorescent-labelling method used a triplex set of primers in the PCR. These included a fluorescently labelled specific primer together with its unlabelled counterpart, plus an adapter-based primer with two bases of selection on the 3' end. The introduction of the unlabelled specific primer helped to optimise the fluorescent signal across the range of fragment sizes expected, and eliminated the need for extensive dilutions of PCR amplicons. The software (GeneMarker Version 1.6) used for the high-throughput data analysis provided an assessment of amplicon size in nucleotides, peak areas and fluorescence intensity in a table format, so providing additional information content for each marker. The method has been tested in a small-scale study with 12 pea accessions resulting in 467 polymorphic fluorescent SSAP markers of which 260 were identified as having been mapped previously using the radio-labelling technique. Heterozygous individuals from pea cultivar crosses were identifiable after peak area data analysis using the fluorescent SSAP method. CONCLUSION As well as developing a rapid, and high-throughput marker method for genetic studies, the fluorescent SSAP system improved the accuracy of amplicon scoring, increased the available marker number, improved allele discrimination, and was sensitive enough to identify heterozygous loci in F1 and F2 progeny, indicating the potential to develop high-throughput codominant SSAPs.
Collapse
Affiliation(s)
- Maggie Knox
- Dept. Crop Genetics, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| | - Carol Moreau
- Dept. Crop Genetics, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| | - James Lipscombe
- The John Innes Centre Genome Laboratory (JGL), John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| | - David Baker
- The John Innes Centre Genome Laboratory (JGL), John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| | - Noel Ellis
- Dept. Crop Genetics, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| |
Collapse
|
22
|
Huo H, Conner JA, Ozias-Akins P. Genetic mapping of the apospory-specific genomic region in Pennisetum squamulatum using retrotransposon-based molecular markers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:199-212. [PMID: 19370319 DOI: 10.1007/s00122-009-1029-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 03/25/2009] [Indexed: 05/21/2023]
Abstract
Pennisetum squamulatum reproduces by apomixis, a type of asexual reproduction through seeds. Apomixis in P. squamulatum is transmitted as a dominant Mendelian trait, and a genomic region, the apospory-specific genomic region (ASGR), is sufficient for inheritance of the trait. The ASGR is physically large (>50 Mb), highly heterochromatic, hemizygous, and recombinationally suppressed. These characteristics have hindered high-resolution genetic mapping and map-based cloning of apomixis genes. In this study, the long terminal repeat (LTR) regions of ASGR-abundant retrotransposons in the genome of P. squamulatum and ASGR-linked bacterial artificial chromosome clones were identified and sequenced for designing LTR-specific primers. Two hundred and ninety single-dose sequence specific amplified polymorphism (SSAP) markers were generated from 38 primer combinations. The SSAP markers combined with two previous ASGR-mapped markers were used for genetic linkage analysis and construction of a genetic map resulting in the formation of 27 linkage groups at LOD 10, one of which contained >60% of the SSAP markers. After removing identical markers (identical band scoring) on the largest linkage group, 46 markers were finally used for genetic mapping at LOD 10. The markers distributed across 10 different loci covering 19 cM; however, 45 markers were distributed within 9 cM. Six markers were recovered and sequenced. Five markers were successfully converted into sequence characterized amplified regions (SCARs). Segregation of SCAR markers was not always consistent with the SSAP markers of origin suggesting a greater level of error in the SSAP map resulting in an inflated map distance for the ASGR. One SCAR marker (Pst 56-1205-400) detected expression of an ASGR retrotransposon in root, anther, leaf and ovary of P. squamulatum, although sequencing of the RT-PCR product failed to find a functional open reading frame for the transcript.
Collapse
Affiliation(s)
- Heqiang Huo
- Department of Horticulture, University of Georgia Tifton Campus, Tifton, GA 31793, USA
| | | | | |
Collapse
|