1
|
Van Lommel J, Holtof M, Tilleman L, Cools D, Vansteenkiste S, Polgun D, Verdonck R, Van Nieuwerburgh F, Vanden Broeck J. Post-feeding transcriptomics reveals essential genes expressed in the midgut of the desert locust. Front Physiol 2023; 14:1232545. [PMID: 37692997 PMCID: PMC10484617 DOI: 10.3389/fphys.2023.1232545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 09/12/2023] Open
Abstract
The digestive tract constitutes an important interface between an animal's internal and external environment. In insects, available gut transcriptome studies are mostly exploratory or look at changes upon infection or upon exposure to xenobiotics, mainly performed in species belonging to holometabolan orders, such as Diptera, Lepidoptera or Coleoptera. By contrast, studies focusing on gene expression changes after food uptake and during digestion are underrepresented. We have therefore compared the gene expression profiles in the midgut of the desert locust, Schistocerca gregaria, between three different time points after feeding, i.e., 24 h (no active digestion), 10 min (the initial stage of feeding), and 2 h (active food digestion). The observed gene expression profiles were consistent with the polyphagous herbivorous lifestyle of this hemimetabolan (orthopteran) species. Our study reveals the upregulation of 576 genes 2 h post-feeding. These are mostly predicted to be associated with digestive physiology, such as genes encoding putative digestive enzymes or nutrient transporters, as well as genes putatively involved in immunity or in xenobiotic metabolism. The 10 min time point represented an intermediate condition, suggesting that the S. gregaria midgut can react rapidly at the transcriptional level to the presence of food. Additionally, our study demonstrated the critical importance of two transcripts that exhibited a significant upregulation 2 h post-feeding: the vacuolar-type H(+)-ATPase and the sterol transporter Niemann-Pick 1b protein, which upon RNAi-induced knockdown resulted in a marked increase in mortality. Their vital role and accessibility via the midgut lumen may make the encoded proteins promising insecticidal target candidates, considering that the desert locust is infamous for its huge migrating swarms that can devastate the agricultural production in large areas of Northern Africa, the Middle East, and South Asia. In conclusion, the transcriptome datasets presented here will provide a useful and promising resource for studying the midgut physiology of S. gregaria, a socio-economically important pest species.
Collapse
Affiliation(s)
- Joachim Van Lommel
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Michiel Holtof
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | | | - Dorien Cools
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Seppe Vansteenkiste
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Daria Polgun
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Rik Verdonck
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | | | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Labbé F, Abdeladhim M, Abrudan J, Araki AS, Araujo RN, Arensburger P, Benoit JB, Brazil RP, Bruno RV, Bueno da Silva Rivas G, Carvalho de Abreu V, Charamis J, Coutinho-Abreu IV, da Costa-Latgé SG, Darby A, Dillon VM, Emrich SJ, Fernandez-Medina D, Figueiredo Gontijo N, Flanley CM, Gatherer D, Genta FA, Gesing S, Giraldo-Calderón GI, Gomes B, Aguiar ERGR, Hamilton JGC, Hamarsheh O, Hawksworth M, Hendershot JM, Hickner PV, Imler JL, Ioannidis P, Jennings EC, Kamhawi S, Karageorgiou C, Kennedy RC, Krueger A, Latorre-Estivalis JM, Ligoxygakis P, Meireles-Filho ACA, Minx P, Miranda JC, Montague MJ, Nowling RJ, Oliveira F, Ortigão-Farias J, Pavan MG, Horacio Pereira M, Nobrega Pitaluga A, Proveti Olmo R, Ramalho-Ortigao M, Ribeiro JMC, Rosendale AJ, Sant’Anna MRV, Scherer SE, Secundino NFC, Shoue DA, da Silva Moraes C, Gesto JSM, Souza NA, Syed Z, Tadros S, Teles-de-Freitas R, Telleria EL, Tomlinson C, Traub-Csekö YM, Marques JT, Tu Z, Unger MF, Valenzuela J, Ferreira FV, de Oliveira KPV, Vigoder FM, Vontas J, Wang L, Weedall GD, Zhioua E, Richards S, Warren WC, Waterhouse RM, Dillon RJ, McDowell MA. Genomic analysis of two phlebotomine sand fly vectors of Leishmania from the New and Old World. PLoS Negl Trop Dis 2023; 17:e0010862. [PMID: 37043542 PMCID: PMC10138862 DOI: 10.1371/journal.pntd.0010862] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/27/2023] [Accepted: 02/13/2023] [Indexed: 04/13/2023] Open
Abstract
Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites.
Collapse
Affiliation(s)
- Frédéric Labbé
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre dame, Notre Dame, Indiana, United States of America
| | - Maha Abdeladhim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jenica Abrudan
- Genomic Sciences & Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Alejandra Saori Araki
- Laboratório de Bioquímica e Fisiologia de Insetos, IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Ricardo N. Araujo
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciencias Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Brazil
| | - Peter Arensburger
- Department of Biological Sciences, California State Polytechnic University, Pomona, California, United States of America
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | | | - Rafaela V. Bruno
- Laboratório de Bioquímica e Fisiologia de Insetos, IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Gustavo Bueno da Silva Rivas
- Laboratório de Bioquímica e Fisiologia de Insetos, IOC, FIOCRUZ, Rio de Janeiro, Brazil
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| | - Vinicius Carvalho de Abreu
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jason Charamis
- Department of Biology, University of Crete, Voutes University Campus, Heraklion, Greece
- Molecular Entomology Lab, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
| | - Iliano V. Coutinho-Abreu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, California, United States of America
| | | | - Alistair Darby
- Institute of Integrative Biology, The University of Liverpool, Liverpool, United Kingdom
| | - Viv M. Dillon
- Institute of Integrative Biology, The University of Liverpool, Liverpool, United Kingdom
| | - Scott J. Emrich
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, United States of America
| | | | - Nelder Figueiredo Gontijo
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciencias Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Brazil
| | - Catherine M. Flanley
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre dame, Notre Dame, Indiana, United States of America
| | - Derek Gatherer
- Division of Biomedical & Life Sciences, Faculty of Health & Medicine, Lancaster University, Lancaster, United Kingdom
| | - Fernando A. Genta
- Laboratório de Bioquímica e Fisiologia de Insetos, IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Sandra Gesing
- Discovery Partners Institute, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Gloria I. Giraldo-Calderón
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre dame, Notre Dame, Indiana, United States of America
- Dept. Ciencias Biológicas & Dept. Ciencias Básicas Médicas, Universidad Icesi, Cali, Colombia
| | - Bruno Gomes
- Laboratório de Bioquímica e Fisiologia de Insetos, IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - James G. C. Hamilton
- Division of Biomedical & Life Sciences, Faculty of Health & Medicine, Lancaster University, Lancaster, United Kingdom
| | - Omar Hamarsheh
- Department of Life Sciences, Faculty of Science and Technology, Al-Quds University, Jerusalem, Palestine
| | - Mallory Hawksworth
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre dame, Notre Dame, Indiana, United States of America
| | - Jacob M. Hendershot
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Paul V. Hickner
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville, Texas, United States of America
| | - Jean-Luc Imler
- CNRS-UPR9022 Institut de Biologie Moléculaire et Cellulaire and Faculté des Sciences de la Vie-Université de Strasbourg, Strasbourg, France
| | - Panagiotis Ioannidis
- Molecular Entomology Lab, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
| | - Emily C. Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Charikleia Karageorgiou
- Molecular Entomology Lab, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
- Genomics Group – Bioinformatics and Evolutionary Biology Lab, Department of Genetics and Microbiology, Autonomous University of Barcelona, Barcelona, Spain
| | - Ryan C. Kennedy
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre dame, Notre Dame, Indiana, United States of America
| | - Andreas Krueger
- Medical Entomology Branch, Dept. Microbiology, Bundeswehr Hospital, Hamburg, Germany
- Medical Zoology Branch, Dept. Microbiology, Central Bundeswehr Hospital, Koblenz, Germany
| | - José M. Latorre-Estivalis
- Laboratorio de Insectos Sociales, Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
| | - Petros Ligoxygakis
- Laboratory of Cell Biology, Development and Genetics, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Patrick Minx
- Donald Danforth Plant Science Center, Olivette, Missouri, United States of America
| | - Jose Carlos Miranda
- Laboratório de Imunoparasitologia, CPqGM, Fundação Oswaldo Cruz, Bahia, Brazil
| | - Michael J. Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ronald J. Nowling
- Department of Electrical Engineering and Computer Science, Milwaukee School of Engineering, Milwaukee, Wisconsin, United States of America
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | | | - Marcio G. Pavan
- Laboratório de Bioquímica e Fisiologia de Insetos, IOC, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Transmissores de Hematozoários, IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Marcos Horacio Pereira
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciencias Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Brazil
| | - Andre Nobrega Pitaluga
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil
| | - Roenick Proveti Olmo
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Ramalho-Ortigao
- F. Edward Hebert School of Medicine, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, United States of America
| | - José M. C. Ribeiro
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Andrew J. Rosendale
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| | - Mauricio R. V. Sant’Anna
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciencias Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Brazil
| | - Steven E. Scherer
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | | | - Douglas A. Shoue
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre dame, Notre Dame, Indiana, United States of America
| | | | | | - Nataly Araujo Souza
- Laboratory Interdisciplinar em Vigilancia Entomologia em Diptera e Hemiptera, Fiocruz, Rio de Janeiro, Brazil
| | - Zainulabueddin Syed
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Samuel Tadros
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre dame, Notre Dame, Indiana, United States of America
| | | | - Erich L. Telleria
- Department of Electrical Engineering and Computer Science, Milwaukee School of Engineering, Milwaukee, Wisconsin, United States of America
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | - João Trindade Marques
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| | - Zhijian Tu
- Fralin Life Science Institute and Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Maria F. Unger
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jesus Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Flávia V. Ferreira
- Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Karla P. V. de Oliveira
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Felipe M. Vigoder
- Universidade Federal do Rio de Janeiro, Instituto de Biologia. Rio de Janeiro, Brazil
| | - John Vontas
- Molecular Entomology Lab, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
- Pesticide Science Lab, Department of Crop Science, Agricultural University of Athens, Athens Greece
| | - Lihui Wang
- Donald Danforth Plant Science Center, Olivette, Missouri, United States of America
| | - Gareth D. Weedall
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Elyes Zhioua
- Vector Ecology Unit, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wesley C. Warren
- Department of Animal Sciences, Department of Surgery, Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, United States of America
| | - Robert M. Waterhouse
- Department of Ecology & Evolution and Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Rod J. Dillon
- Division of Biomedical & Life Sciences, Faculty of Health & Medicine, Lancaster University, Lancaster, United Kingdom
| | - Mary Ann McDowell
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
3
|
Omondi ZN, Arserim SK, Töz S, Özbel Y. Host-Parasite Interactions: Regulation of Leishmania Infection in Sand Fly. Acta Parasitol 2022; 67:606-618. [PMID: 35107776 DOI: 10.1007/s11686-022-00519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/11/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Sand flies are the only proven vectors of leishmaniases, a tropical neglected disease endemic in at least 92 countries. Vector-parasite interactions play a significant role in vector-borne disease transmission. There are various bottlenecks to Leishmania colonization of the sand fly midgut. Such bottlenecks include the production of innate immune-related molecules, digestive proteases, parasite impermeable peritrophic membrane, and resident gut microbiota. These barriers determine the parasite load transmitted and, consequently, the disease outcome in mammalian host. Therefore, it is important to understand the molecular responses of both sand fly and Leishmania during infection. METHOD Here, we reviewed the published literature on sand fly-Leishmania interactions bringing together earlier and current findings to highlight new developments and research gaps in the field. CONCLUSION Recent research studies on sand fly-Leishmania interaction have revealed contrasting observations to past studies. However, how Leishmania parasites evade the sand fly immune response still needs further research. Sand fly response to Leishmania infection can be best understood by analyzing its tissue transcriptome. Better characterization of the role of midgut components could be a game changer in development of transmission-blocking strategies for leishmaniasis.
Collapse
Affiliation(s)
- Zeph Nelson Omondi
- Department of Biology, Faculty of Science, Ege University, Erzene Street, 35040, Bornova/Izmir, Turkey.
| | - Suha Kenan Arserim
- Vocational School of Health Sciences, Manisa Celal Bayar University, Manisa, Turkey
| | - Seray Töz
- Department of Parasitology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Yusuf Özbel
- Department of Parasitology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
4
|
Barletta Ferreira AB, Bahia AC, Pitaluga AN, Barros E, Gama dos Santos D, Bottino-Rojas V, Kubota MS, Oliveira PLD, Pimenta PFP, Traub-Csekö YM, Sorgine MHF. Sexual Dimorphism in Immune Responses and Infection Resistance in Aedes aegypti and Other Hematophagous Insect Vectors. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.847109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sexual dimorphism in immune function is prevalent across different species, where males trade their ability to fight pathogens for a practical reproductive function while females favor an extended lifespan. In insects, these differences in immune function reflect an evolutionary life strategy, where females have a presumably more robust immune system than insect males. Here, we evaluate immune functioning in four male and female insect vectors, Aedes aegypti (Diptera, Culicidae), Anopheles aquasalis (Diptera, Culicidae), Lutzomyia longipalpis (Diptera, Psychodidae) and Rhodnius prolixus (Hemiptera, Reduviidae). We show evidence that challenges the concept of immune sexual dimorphism in three of these insect vectors. In the three Diptera species, A. aegypti, A. aquasalis and L. longipalpis that transmit arboviruses, Plasmodium spp. (Haemospororida, Plasmodiidae) and Leishmania spp. (Trypanosomatida, Trypanosomatidae), respectively, unchallenged adult males express higher levels of immune-related genes than adult females and immature developmental stages. The main components of the Toll, IMD, and Jak/STAT pathways and antimicrobial effectors are highly expressed in whole-body males. Additionally, males present lower midgut basal microbiota levels than females. In A. aegypti mosquitoes, the differences in immune gene expression and microbiota levels are established in adult mosquitoes but are not present at the recently emerged adults and pupal stage. Antibiotic treatment does not affect the consistently higher expression of immune genes in males, except defensin, which is reduced significantly after microbiota depletion and restored after re-introduction. Our data suggest that Diptera males have a basal state of activation of the immune system and that activation of a more robust response through systemic immune challenge acutely compromises their survival. The ones who survive clear the infection entirely. Females follow a different strategy where a moderate immune reaction render higher tolerance to infection and survival. In contrast, hematophagous adult males of the Hemiptera vector R. prolixus, which transmits Trypanosoma cruzi, present no differences in immune activation compared to females, suggesting that diet differences between males and females may influence immune sexual dimorphism. These findings expand our understanding of the biology of insect vectors of human pathogens, which can help to direct the development of new strategies to limit vector populations.
Collapse
|
5
|
Rêgo FD, Soares RP. Lutzomyia longipalpis: an update on this sand fly vector. AN ACAD BRAS CIENC 2021; 93:e20200254. [PMID: 33950136 DOI: 10.1590/0001-37652021xxxx] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/17/2020] [Indexed: 12/13/2022] Open
Abstract
Lutzomyia longipalpis is the most important vector of Leishmania infantum, the etiological agent of visceral leishmaniasis (VL) in the New World. It is a permissive vector susceptible to infection with several Leishmania species. One of the advantages that favors the study of this sand fly is the possibility of colonization in the laboratory. For this reason, several researchers around the world use this species as a model for different subjects including biology, insecticides testing, host-parasite interaction, physiology, genetics, proteomics, molecular biology, and saliva among others. In 2003, we published our first review (Soares & Turco 2003) on this vector covering several aspects of Lu. longipalpis. This current review summarizes what has been published between 2003-2020. During this period, modern approaches were incorporated following the development of more advanced and sensitive techniques to assess this sand fly.
Collapse
Affiliation(s)
- Felipe D Rêgo
- Fundação Oswaldo Cruz (FIOCRUZ/MG), Instituto René Rachou, Avenida Augusto de Lima, 1715, Barro Preto, 30180-104 Belo Horizonte, MG, Brazil
| | - Rodrigo Pedro Soares
- Fundação Oswaldo Cruz (FIOCRUZ/MG), Instituto René Rachou, Avenida Augusto de Lima, 1715, Barro Preto, 30180-104 Belo Horizonte, MG, Brazil
| |
Collapse
|
6
|
RÊGO FELIPED, SOARES RODRIGOPEDRO. Lutzomyia longipalpis: an update on this sand fly vector. AN ACAD BRAS CIENC 2021. [DOI: 10.1590/0001-3765202120200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
7
|
Abstract
Background Leishmania development in the sand fly gut leads to highly infective forms called metacyclic promastigotes. This process can be routinely mimicked in culture. Gene expression–profiling studies by transcriptome analysis have been performed with the aim of studying promastigote forms in the sand fly gut, as well as differences between sand fly–and culture-derived promastigotes. Findings Transcriptome analysis has revealed the crucial role of the microenvironment in parasite development within the sand fly gut because substantial differences and moderate correlation between the transcriptomes of cultured and sand fly–derived promastigotes have been found. Sand fly–derived metacyclics are more infective than metacyclics in culture. Therefore, some caution should be exercised when using cultured promastigotes, depending on the experimental design. The most remarkable examples are the hydrophilic acidic surface protein/small endoplasmic reticulum protein (HASP/SHERP) cluster, the glycoprotein 63 (gp63), and autophagy genes, which are up-regulated in sand fly–derived promastigotes compared with cultured promastigotes. Because HASP/SHERP genes are up-regulated in nectomonad and metacyclic promastigotes in the sand fly, the encoded proteins are not metacyclic specific. Metacyclic promastigotes are distinguished by morphology and high infectivity. Isolating them from the sand fly gut is not exempt from technical difficulty, because other promastigote forms remain in the gut even 15 days after infection. Leishmania major procyclic promastigotes within the sand fly gut up-regulate genes involved in cell cycle regulation and glucose catabolism, whereas metacyclics increase transcript levels of fatty acid biosynthesis and ATP-coupled proton transport genes. Most parasite's signal transduction pathways remain uncharacterized. Future elucidation may improve understanding of parasite development, particularly signaling molecule-encoding genes in sand fly versus culture and between promastigote forms in the sand fly gut. Conclusions Transcriptome analysis has been demonstrated to be technically efficacious to study differential gene expression in sand fly gut promastigote forms. Transcript and protein levels are not well correlated in these organisms (approximately 25% quantitative coincidences), especially under stress situations and at differentiation processes. However, transcript and protein levels behave similarly in approximately 60% of cases from a qualitative point of view (increase, decrease, or no variation). Changes in translational efficiency observed in other trypanosomatids strongly suggest that the differences are due to translational regulation and regulation of the steady-state protein levels. The lack of low-input sample strategies does not allow translatome and proteome analysis of sand fly–derived promastigotes so far.
Collapse
|
8
|
Abstract
In this review, we explore the state-of-the-art of sand fly relationships with microbiota, viruses and Leishmania, with particular emphasis on the vector immune responses. Insect-borne diseases are a major public health problem in the world. Phlebotomine sand flies are proven vectors of several aetiological agents including viruses, bacteria and the trypanosomatid Leishmania, which are responsible for diseases such as viral encephalitis, bartonellosis and leishmaniasis, respectively. All metazoans in nature coexist intimately with a community of commensal microorganisms known as microbiota. The microbiota has a fundamental role in the induction, maturation and function of the host immune system, which can modulate host protection from pathogens and infectious diseases. We briefly review viruses of public health importance present in sand flies and revisit studies done on bacterial and fungal gut contents of these vectors. We bring this information into the context of sand fly development and immune responses. We highlight the immunity mechanisms that the insect utilizes to survive the potential threats involved in these interactions and discuss the recently discovered complex interactions among microbiota, sand fly, Leishmania and virus. Additionally, some of the alternative control strategies that could benefit from the current knowledge are considered.
Collapse
|
9
|
Petrella V, Aceto S, Musacchia F, Colonna V, Robinson M, Benes V, Cicotti G, Bongiorno G, Gradoni L, Volf P, Salvemini M. De novo assembly and sex-specific transcriptome profiling in the sand fly Phlebotomus perniciosus (Diptera, Phlebotominae), a major Old World vector of Leishmania infantum. BMC Genomics 2015; 16:847. [PMID: 26493315 PMCID: PMC4619268 DOI: 10.1186/s12864-015-2088-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/15/2015] [Indexed: 12/17/2022] Open
Abstract
Background The phlebotomine sand fly Phlebotomus perniciosus (Diptera: Psychodidae, Phlebotominae) is a major Old World vector of the protozoan Leishmania infantum, the etiological agent of visceral and cutaneous leishmaniases in humans and dogs, a worldwide re-emerging diseases of great public health concern, affecting 101 countries. Despite the growing interest in the study of this sand fly species in the last years, the development of genomic resources has been limited so far. To increase the available sequence data for P. perniciosus and to start studying the molecular basis of the sexual differentiation in sand flies, we performed whole transcriptome Illumina RNA sequencing (RNA-seq) of adult males and females and de novo transcriptome assembly. Results We assembled 55,393 high quality transcripts, of which 29,292 were unique, starting from adult whole body male and female pools. 11,736 transcripts had at least one functional annotation, including full-length low abundance salivary transcripts, 981 transcripts were classified as putative long non-coding RNAs and 244 transcripts encoded for putative novel proteins specific of the Phlebotominae sub-family. Differential expression analysis identified 8590 transcripts significantly biased between sexes. Among them, some show relaxation of selective constraints when compared to their orthologs of the New World sand fly species Lutzomyia longipalpis. Conclusions In this paper, we present a comprehensive transcriptome resource for the sand fly species P. perniciosus built from short-read RNA-seq and we provide insights into sex-specific gene expression at adult stage. Our analysis represents a first step towards the identification of sex-specific genes and pathways and a foundation for forthcoming investigations into this important vector species, including the study of the evolution of sex-biased genes and of the sexual differentiation in phlebotomine sand flies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2088-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- V Petrella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - S Aceto
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - F Musacchia
- Stazione Zoologica "Anton Dohrn", Naples, Italy
| | - V Colonna
- National Research Council, Institute of Genetics and Biophysics, Naples, Italy
| | - M Robinson
- Institute of Molecular Life Science, University of Zurich, Zurich, Switzerland.,SIB-Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - V Benes
- Genomics Core Facility, EMBL, Heidelberg, Germany
| | - G Cicotti
- Institute for High Performance Computing and Networking, ICAR-CNR, Naples, Italy
| | - G Bongiorno
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - L Gradoni
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - P Volf
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - M Salvemini
- Department of Biology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
10
|
Di-Blasi T, Lobo AR, Nascimento LM, Córdova-Rojas JL, Pestana K, Marín-Villa M, Tempone AJ, Telleria EL, Ramalho-Ortigão M, McMahon-Pratt D, Traub-Csekö YM. The flagellar protein FLAG1/SMP1 is a candidate for Leishmania-sand fly interaction. Vector Borne Zoonotic Dis 2015; 15:202-9. [PMID: 25793476 DOI: 10.1089/vbz.2014.1736] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Leishmaniasis is a serious problem that affects mostly poor countries. Various species of Leishmania are the agents of the disease, which take different clinical manifestations. The parasite is transmitted by sandflies, predominantly from the Phlebotomus genus in the Old World and Lutzomyia in the New World. During development in the gut, Leishmania must survive various challenges, which include avoiding being expelled with blood remnants after digestion. It is believed that attachment to the gut epithelium is a necessary step for vector infection, and molecules from parasites and sand flies have been implicated in this attachment. In previous work, monoclonal antibodies were produced against Leishmania. Among these an antibody was obtained against Leishmania braziliensis flagella, which blocked the attachment of Leishmania panamensis flagella to Phlebotomus papatasi guts. The protein recognized by this antibody was identified and named FLAG1, and the complete FLAG1 gene sequence was obtained. This protein was later independently identified as a small, myristoylated protein and called SMP1, so from now on it will be denominated FLAG1/SMP1. The FLAG1/SMP1 gene is expressed in all developmental stages of the parasite, but has higher expression in promastigotes. The anti-FLAG1/SMP1 antibody recognized the flagellum of all Leishmania species tested and generated the expected band by western blots. This antibody was used in attachment and infection blocking experiments. Using the New World vector Lutzomyia longipalpis and Leishmania infantum chagasi, no inhibition of attachment ex vivo or infection in vivo was seen. On the other hand, when the Old World vectors P. papatasi and Leishmania major were used, a significant decrease of both attachment and infection were seen in the presence of the antibody. We propose that FLAG1/SMP1 is involved in the attachment/infection of Leishmania in the strict vector P. papatasi and not the permissive vector L. longipalpis.
Collapse
Affiliation(s)
- Tatiana Di-Blasi
- 1 Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz , FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Meireles-Filho ACA, Kyriacou CP. Circadian rhythms in insect disease vectors. Mem Inst Oswaldo Cruz 2014; 108 Suppl 1:48-58. [PMID: 24473802 PMCID: PMC4109179 DOI: 10.1590/0074-0276130438] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/12/2013] [Indexed: 01/16/2023] Open
Abstract
Organisms from bacteria to humans have evolved under predictable daily environmental
cycles owing to the Earth’s rotation. This strong selection pressure has generated
endogenous circadian clocks that regulate many aspects of behaviour, physiology and
metabolism, anticipating and synchronising internal time-keeping to changes in the
cyclical environment. In haematophagous insect vectors the circadian clock
coordinates feeding activity, which is important for the dynamics of pathogen
transmission. We have recently witnessed a substantial advance in molecular studies
of circadian clocks in insect vector species that has consolidated behavioural data
collected over many years, which provided insights into the regulation of the clock
in the wild. Next generation sequencing technologies will facilitate the study of
vector genomes/transcriptomes both among and within species and illuminate some of
the species-specific patterns of adaptive circadian phenotypes that are observed in
the field and in the laboratory. In this review we will explore these recent findings
and attempt to identify potential areas for further investigation.
Collapse
Affiliation(s)
- Antonio Carlos Alves Meireles-Filho
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Switzerland, Lausanne, Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Charalambos Panayiotis Kyriacou
- Department of Genetics, University of Leicester, UK, Leicester, Department of Genetics, University of Leicester, Leicester, UK
| |
Collapse
|
12
|
Sigle LT, Ramalho-Ortigão M. Kazal-type serine proteinase inhibitors in the midgut of Phlebotomus papatasi. Mem Inst Oswaldo Cruz 2014; 108:671-8. [PMID: 24037187 PMCID: PMC3970688 DOI: 10.1590/0074-0276108062013001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/02/2013] [Indexed: 12/26/2022] Open
Abstract
Sandflies (Diptera: Psychodidae) are important disease vectors of parasites of
the genus Leishmania, as well as bacteria and viruses.
Following studies of the midgut transcriptome of Phlebotomus
papatasi, the principal vector of Leishmania
major, two non-classical Kazal-type serine proteinase inhibitors were
identified (PpKzl1 and PpKzl2). Analyses of
expression profiles indicated that PpKzl1 and
PpKzl2 transcripts are both regulated by blood-feeding in
the midgut of P. papatasi and are also expressed in males,
larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression
system (CHO-S free style cells) that was applied to in vitro studies to assess
serine proteinase inhibition. Recombinant PpKzl2 inhibited α-chymotrypsin to
9.4% residual activity and also inhibited α-thrombin and trypsin to 33.5% and
63.9% residual activity, suggesting that native PpKzl2 is an active serine
proteinase inhibitor and likely involved in regulating digestive enzymes in the
midgut. Early stages of Leishmania are susceptible to killing
by digestive proteinases in the sandfly midgut. Thus, characterising serine
proteinase inhibitors may provide new targets and strategies to prevent
transmission of Leishmania.
Collapse
|
13
|
Wagner G, Jardim R, Tschoeke DA, Loureiro DR, Ocaña KACS, Ribeiro ACB, Emmel VE, Probst CM, Pitaluga AN, Grisard EC, Cavalcanti MC, Campos MLM, Mattoso M, Dávila AMR. STINGRAY: system for integrated genomic resources and analysis. BMC Res Notes 2014; 7:132. [PMID: 24606808 PMCID: PMC4015962 DOI: 10.1186/1756-0500-7-132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/28/2014] [Indexed: 01/30/2023] Open
Abstract
Background The STINGRAY system has been conceived to ease the tasks of integrating, analyzing, annotating and presenting genomic and expression data from Sanger and Next Generation Sequencing (NGS) platforms. Findings STINGRAY includes: (a) a complete and integrated workflow (more than 20 bioinformatics tools) ranging from functional annotation to phylogeny; (b) a MySQL database schema, suitable for data integration and user access control; and (c) a user-friendly graphical web-based interface that makes the system intuitive, facilitating the tasks of data analysis and annotation. Conclusion STINGRAY showed to be an easy to use and complete system for analyzing sequencing data. While both Sanger and NGS platforms are supported, the system could be faster using Sanger data, since the large NGS datasets could potentially slow down the MySQL database usage. STINGRAY is available at
http://stingray.biowebdb.org and the open source code at
http://sourceforge.net/projects/stingray-biowebdb/.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Alberto M R Dávila
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil 4365, 21040-360 Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Abrudan J, Ramalho-Ortigão M, O'Neil S, Stayback G, Wadsworth M, Bernard M, Shoue D, Emrich S, Lawyer P, Kamhawi S, Rowton ED, Lehane MJ, Bates PA, Valenzeula JG, Tomlinson C, Appelbaum E, Moeller D, Thiesing B, Dillon R, Clifton S, Lobo NF, Wilson RK, Collins FH, McDowell MA. The characterization of the Phlebotomus papatasi transcriptome. INSECT MOLECULAR BIOLOGY 2013; 22:211-232. [PMID: 23398403 PMCID: PMC3594503 DOI: 10.1111/imb.12015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
As important vectors of human disease, phlebotomine sand flies are of global significance to human health, transmitting several emerging and re-emerging infectious diseases. The most devastating of the sand fly transmitted infections are the leishmaniases, causing significant mortality and morbidity in both the Old and New World. Here we present the first global transcriptome analysis of the Old World vector of cutaneous leishmaniasis, Phlebotomus papatasi (Scopoli) and compare this transcriptome to that of the New World vector of visceral leishmaniasis, Lutzomyia longipalpis. A normalized cDNA library was constructed using pooled mRNA from Phlebotomus papatasi larvae, pupae, adult males and females fed sugar, blood, or blood infected with Leishmania major. A total of 47 615 generated sequences was cleaned and assembled into 17 120 unique transcripts. Of the assembled sequences, 50% (8837 sequences) were classified using Gene Ontology (GO) terms. This collection of transcripts is comprehensive, as demonstrated by the high number of different GO categories. An in-depth analysis revealed 245 sequences with putative homology to proteins involved in blood and sugar digestion, immune response and peritrophic matrix formation. Twelve of the novel genes, including one trypsin, two peptidoglycan recognition proteins (PGRP) and nine chymotrypsins, have a higher expression level during larval stages. Two novel chymotrypsins and one novel PGRP are abundantly expressed upon blood feeding. This study will greatly improve the available genomic resources for P. papatasi and will provide essential information for annotation of the full genome.
Collapse
Affiliation(s)
- Jenica Abrudan
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Marcelo Ramalho-Ortigão
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | | - Phillip Lawyer
- Intracellular Parasite Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Edgar D. Rowton
- Entomology Program, Walter Reed Army Institute of Research, 530 Robert Grant Ave., Silver Spring, MD 20910, USA
| | | | - Paul A. Bates
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, LA1 4YQ, UK
| | - Jesus G. Valenzeula
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Chad Tomlinson
- The Genome Institute at Washington University, St. Louis, Missouri, 63108, USA
| | - Elizabeth Appelbaum
- The Genome Institute at Washington University, St. Louis, Missouri, 63108, USA
| | - Deborah Moeller
- The Genome Institute at Washington University, St. Louis, Missouri, 63108, USA
| | - Brenda Thiesing
- The Genome Institute at Washington University, St. Louis, Missouri, 63108, USA
| | - Rod Dillon
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, LA1 4YQ, UK
| | - Sandra Clifton
- The Genome Institute at Washington University, St. Louis, Missouri, 63108, USA
| | - Neil F. Lobo
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Richard K. Wilson
- The Genome Institute at Washington University, St. Louis, Missouri, 63108, USA
| | - Frank H. Collins
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Mary Ann McDowell
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
15
|
McCarthy CB, Santini MS, Pimenta PFP, Diambra LA. First comparative transcriptomic analysis of wild adult male and female Lutzomyia longipalpis, vector of visceral leishmaniasis. PLoS One 2013; 8:e58645. [PMID: 23554910 PMCID: PMC3595279 DOI: 10.1371/journal.pone.0058645] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/05/2013] [Indexed: 01/08/2023] Open
Abstract
Leishmaniasis is a vector-borne disease with a complex epidemiology and ecology. Visceral leishmaniasis (VL) is its most severe clinical form as it results in death if not treated. In Latin America VL is caused by the protist parasite Leishmania infantum (syn. chagasi) and transmitted by Lutzomyia longipalpis. This phlebotomine sand fly is only found in the New World, from Mexico to Argentina. However, due to deforestation, migration and urbanisation, among others, VL in Latin America is undergoing an evident geographic expansion as well as dramatic changes in its transmission patterns. In this context, the first VL outbreak was recently reported in Argentina, which has already caused 7 deaths and 83 reported cases. Insect vector transcriptomic analyses enable the identification of molecules involved in the insect's biology and vector-parasite interaction. Previous studies on laboratory reared Lu. longipalpis have provided a descriptive repertoire of gene expression in the whole insect, midgut, salivary gland and male reproductive organs. Nevertheless, the study of wild specimens would contribute a unique insight into the development of novel bioinsecticides. Given the recent VL outbreak in Argentina and the compelling need to develop appropriate control strategies, this study focused on wild male and female Lu. longipalpis from an Argentine endemic (Posadas, Misiones) and a Brazilian non-endemic (Lapinha Cave, Minas Gerais) VL location. In this study, total RNA was extracted from the sand flies, submitted to sequence independent amplification and high-throughput pyrosequencing. This is the first time an unbiased and comprehensive transcriptomic approach has been used to analyse an infectious disease vector in its natural environment. Transcripts identified in the sand flies showed characteristic profiles which correlated with the environment of origin and with taxa previously identified in these same specimens. Among these, various genes represented putative targets for vector control via RNA interference (RNAi).
Collapse
Affiliation(s)
- Christina B McCarthy
- Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Florencio Varela, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
16
|
González-Caballero N, Valenzuela JG, Ribeiro JMC, Cuervo P, Brazil RP. Transcriptome exploration of the sex pheromone gland of Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae). Parasit Vectors 2013; 6:56. [PMID: 23497448 PMCID: PMC3632494 DOI: 10.1186/1756-3305-6-56] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/19/2013] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Molecules involved in pheromone biosynthesis may represent alternative targets for insect population control. This may be particularly useful in managing the reproduction of Lutzomyia longipalpis, the main vector of the protozoan parasite Leishmania infantum in Latin America. Besides the chemical identity of the major components of the L. longipalpis sex pheromone, there is no information regarding the molecular biology behind its production. To understand this process, obtaining information on which genes are expressed in the pheromone gland is essential. METHODS In this study we used a transcriptomic approach to explore the pheromone gland and adjacent abdominal tergites in order to obtain substantial general sequence information. We used a laboratory-reared L. longipalpis (one spot, 9-Methyl GermacreneB) population, captured in Lapinha Cave, state of Minas Gerais, Brazil for this analysis. RESULTS From a total of 3,547 cDNA clones, 2,502 high quality sequences from the pheromone gland and adjacent tissues were obtained and assembled into 1,387 contigs. Through blast searches of public databases, a group of transcripts encoding proteins potentially involved in the production of terpenoid precursors were identified in the 4th abdominal tergite, the segment containing the pheromone gland. Among them, protein-coding transcripts for four enzymes of the mevalonate pathway such as 3-hydroxyl-3-methyl glutaryl CoA reductase, phosphomevalonate kinase, diphosphomevalonate descarboxylase, and isopentenyl pyrophosphate isomerase were identified. Moreover, transcripts coding for farnesyl diphosphate synthase and NADP+ dependent farnesol dehydrogenase were also found in the same tergite. Additionally, genes potentially involved in pheromone transportation were identified from the three abdominal tergites analyzed. CONCLUSION This study constitutes the first transcriptomic analysis exploring the repertoire of genes expressed in the tissue containing the L. longipalpis pheromone gland as well as the flanking tissues. Using a comparative approach, a set of molecules potentially present in the mevalonate pathway emerge as interesting subjects for further study regarding their association to pheromone biosynthesis. The sequences presented here may be used as a reference set for future research on pheromone production or other characteristics of pheromone communication in this insect. Moreover, some matches for transcripts of unknown function may provide fertile ground of an in-depth study of pheromone-gland specific molecules.
Collapse
Affiliation(s)
- Natalia González-Caballero
- Laboratório de Bioquímica e Fisiologia de Insetos, IOC, FIOCRUZ, Av, Brasil 4365, Manguinhos, Pav, Leônidas Deane, Sala 213, Rio de Janeiro, RJ, CEP: 21040-360, Brasil
| | | | | | | | | |
Collapse
|
17
|
Bacterial feeding, Leishmania infection and distinct infection routes induce differential defensin expression in Lutzomyia longipalpis. Parasit Vectors 2013; 6:12. [PMID: 23311993 PMCID: PMC3573903 DOI: 10.1186/1756-3305-6-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Phlebotomine insects harbor bacterial, viral and parasitic pathogens that can cause diseases of public health importance. Lutzomyia longipalpis is the main vector of visceral leishmaniasis in the New World. Insects can mount a powerful innate immune response to pathogens. Defensin peptides take part in this response and are known to be active against Gram-positive and Gram-negative bacteria, and some parasites. We studied the expression of a defensin gene from Lutzomyia longipalpis to understand its role in sand fly immune response. METHODS We identified, sequenced and evaluated the expression of a L. longipalpis defensin gene by semi-quantitative RT-PCR. The gene sequence was compared to other vectors defensins and expression was determined along developmental stages and after exposure of adult female L. longipalpis to bacteria and Leishmania. RESULTS Phylogenetic analysis showed that the L. longipalpis defensin is closely related to a defensin from the Old World sand fly Phlebotomus duboscqi. Expression was high in late L4 larvae and pupae in comparison to early larval stages and newly emerged flies. Defensin expression was modulated by oral infection with bacteria. The Gram-positive Micrococcus luteus induced early high defensin expression, whilst the Gram-negative entomopathogenic Serratia marcescens induced a later response. Bacterial injection also induced defensin expression in adult insects. Female sand flies infected orally with Leishmania mexicana showed no significant difference in defensin expression compared to blood fed insects apart from a lower defensin expression 5 days post Leishmania infection. When Leishmania was introduced into the hemolymph by injection there was no induction of defensin expression until 72 h later. CONCLUSIONS Our results suggest that L. longipalpis modulates defensin expression upon bacterial and Leishmania infection, with patterns of expression that are distinct among bacterial species and routes of infection.
Collapse
|
18
|
Abstract
Leishmaniases are vector-borne parasitic diseases with 0.9 - 1.4 million new human cases each year worldwide. In the vectorial part of the life-cycle, Leishmania development is confined to the digestive tract. During the first few days after blood feeding, natural barriers to Leishmania development include secreted proteolytic enzymes, the peritrophic matrix surrounding the ingested blood meal and sand fly immune reactions. As the blood digestion proceeds, parasites need to bind to the midgut epithelium to avoid being excreted with the blood remnant. This binding is strictly stage-dependent as it is a property of nectomonad and leptomonad forms only. While the attachment in specific vectors (P. papatasi, P. duboscqi and P. sergenti) involves lipophosphoglycan (LPG), this Leishmania molecule is not required for parasite attachment in other sand fly species experimentally permissive for various Leishmania. During late-stage infections, large numbers of parasites accumulate in the anterior midgut and produce filamentous proteophosphoglycan creating a gel-like plug physically obstructing the gut. The parasites attached to the stomodeal valve cause damage to the chitin lining and epithelial cells of the valve, interfering with its function and facilitating reflux of parasites from the midgut. Transformation to metacyclic stages highly infective for the vertebrate host is the other prerequisite for effective transmission. Here, we review the current state of knowledge of molecular interactions occurring in all these distinct phases of parasite colonization of the sand fly gut, highlighting recent discoveries in the field.
Collapse
Affiliation(s)
- Anna Dostálová
- Department of Parasitology, Faculty of Science, Charles University in Prague, Vinicna 7, 12844 Praha 2, Czech Republic
| | | |
Collapse
|
19
|
Freitas VC, Parreiras KP, Duarte APM, Secundino NFC, Pimenta PFP. Development of Leishmania (Leishmania) infantum chagasi in its natural sandfly vector Lutzomyia longipalpis. Am J Trop Med Hyg 2012; 86:606-12. [PMID: 22492144 DOI: 10.4269/ajtmh.2012.11-0386] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We analyzed the development of Leishmania (Leishmania) infantum chagasi in its natural sandfly vector Lutzomyia longipalpis. In addition, we compared sandfly infections initiated with axenic amastigotes or promastigotes. Our data showed no important difference between Lu. longipalpis infection rates resulting from either type of infections. Furthermore, development of infection was equivalent in both cases. All promastigote forms were found inside the sandfly and, after blood digestion, most of the population consisted of procyclics and nectomonads. A low percentage of metacyclic forms was coincident with a high number of nectomonads during late stages of infection, but which form gives rise to metacyclic forms in L. infantum chagasi is unknown. These results also show that the promastigote infection model, at least for this situation, is suitable for obtaining of infected sandflies because it is easier and less laborious.
Collapse
Affiliation(s)
- Vanessa C Freitas
- Laboratory of Medical Entomology, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil.
| | | | | | | | | |
Collapse
|
20
|
Azevedo RVDM, Dias DBS, Bretãs JAC, Mazzoni CJ, Souza NA, Albano RM, Wagner G, Davila AMR, Peixoto AA. The transcriptome of Lutzomyia longipalpis (Diptera: Psychodidae) male reproductive organs. PLoS One 2012; 7:e34495. [PMID: 22496818 PMCID: PMC3320635 DOI: 10.1371/journal.pone.0034495] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 03/01/2012] [Indexed: 11/30/2022] Open
Abstract
Background It has been suggested that genes involved in the reproductive biology of insect disease vectors are potential targets for future alternative methods of control. Little is known about the molecular biology of reproduction in phlebotomine sand flies and there is no information available concerning genes that are expressed in male reproductive organs of Lutzomyia longipalpis, the main vector of American visceral leishmaniasis and a species complex. Methods/Principal Findings We generated 2678 high quality ESTs (“Expressed Sequence Tags”) of L. longipalpis male reproductive organs that were grouped in 1391 non-redundant sequences (1136 singlets and 255 clusters). BLAST analysis revealed that only 57% of these sequences share similarity with a L. longipalpis female EST database. Although no more than 36% of the non-redundant sequences showed similarity to protein sequences deposited in databases, more than half of them presented the best-match hits with mosquito genes. Gene ontology analysis identified subsets of genes involved in biological processes such as protein biosynthesis and DNA replication, which are probably associated with spermatogenesis. A number of non-redundant sequences were also identified as putative male reproductive gland proteins (mRGPs), also known as male accessory gland protein genes (Acps). Conclusions The transcriptome analysis of L. longipalpis male reproductive organs is one step further in the study of the molecular basis of the reproductive biology of this important species complex. It has allowed the identification of genes potentially involved in spermatogenesis as well as putative mRGPs sequences, which have been studied in many insect species because of their effects on female post-mating behavior and physiology and their potential role in sexual selection and speciation. These data open a number of new avenues for further research in the molecular and evolutionary reproductive biology of sand flies.
Collapse
Affiliation(s)
| | - Denise B. S. Dias
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Biologia Celular, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Camila J. Mazzoni
- Institut für Zoo-und Wildtierforschung, Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
| | - Nataly A. Souza
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodolpho M. Albano
- Departamento de Bioquímica, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glauber Wagner
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
- Área de Ciências Biológicas e da Saúde, Universidade do Oeste de Santa Catarina, Joaçaba, Santa Catarina, Brazil
| | - Alberto M. R. Davila
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
- Pólo de Biologia Computacional e Sistemas, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre A. Peixoto
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
21
|
Telleria EL, Sant'Anna MRV, Ortigão-Farias JR, Pitaluga AN, Dillon VM, Bates PA, Traub-Csekö YM, Dillon RJ. Caspar-like gene depletion reduces Leishmania infection in sand fly host Lutzomyia longipalpis. J Biol Chem 2012; 287:12985-93. [PMID: 22375009 DOI: 10.1074/jbc.m111.331561] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Female phlebotomine sand flies Lutzomyia longipalpis naturally harbor populations of the medically important Leishmania infantum (syn. Leishmania chagasi) parasite in the gut, but the extent to which the parasite interacts with the immune system of the insect vector is unknown. To investigate the sand fly immune response and its interaction with the Leishmania parasite, we identified a homologue for caspar, a negative regulator of immune deficiency signaling pathway. We found that feeding antibiotics to adult female L. longipalpis resulted in an up-regulation of caspar expression relative to controls. caspar was differentially expressed when females were fed on gram-negative and gram-positive bacterial species. caspar expression was significantly down-regulated in females between 3 and 6 days after a blood feed containing Leishmania mexicana amastigotes. RNA interference was used to deplete caspar expression in female L. longipalpis, which were subsequently fed with Leishmania in a blood meal. Sand fly gut populations of both L. mexicana and L. infantum were significantly reduced in caspar-depleted females. The prevalence of L. infantum infection in the females fell from 85 to 45%. Our results provide the first insight into the operation of immune homeostasis in phlebotomine sand flies during the growth of bacterial and Leishmania populations in the digestive tract. We have demonstrated that the activation of the sand fly immune system, via depletion of a single gene, can lead to the abortion of Leishmania development and the disruption of transmission by the phlebotomine sand fly.
Collapse
Affiliation(s)
- Erich L Telleria
- Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, 21045-900, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Dostálová A, Votýpka J, Favreau AJ, Barbian KD, Volf P, Valenzuela JG, Jochim RC. The midgut transcriptome of Phlebotomus (Larroussius) perniciosus, a vector of Leishmania infantum: comparison of sugar fed and blood fed sand flies. BMC Genomics 2011; 12:223. [PMID: 21569254 PMCID: PMC3107814 DOI: 10.1186/1471-2164-12-223] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 05/10/2011] [Indexed: 11/30/2022] Open
Abstract
Background Parasite-vector interactions are fundamental in the transmission of vector-borne diseases such as leishmaniasis. Leishmania development in the vector sand fly is confined to the digestive tract, where sand fly midgut molecules interact with the parasites. In this work we sequenced and analyzed two midgut-specific cDNA libraries from sugar fed and blood fed female Phlebotomus perniciosus and compared the transcript expression profiles. Results A total of 4111 high quality sequences were obtained from the two libraries and assembled into 370 contigs and 1085 singletons. Molecules with putative roles in blood meal digestion, peritrophic matrix formation, immunity and response to oxidative stress were identified, including proteins that were not previously reported in sand flies. These molecules were evaluated relative to other published sand fly transcripts. Comparative analysis of the two libraries revealed transcripts differentially expressed in response to blood feeding. Molecules up regulated by blood feeding include a putative peritrophin (PperPer1), two chymotrypsin-like proteins (PperChym1 and PperChym2), a putative trypsin (PperTryp3) and four putative microvillar proteins (PperMVP1, 2, 4 and 5). Additionally, several transcripts were more abundant in the sugar fed midgut, such as two putative trypsins (PperTryp1 and PperTryp2), a chymotrypsin (PperChym3) and a microvillar protein (PperMVP3). We performed a detailed temporal expression profile analysis of the putative trypsin transcripts using qPCR and confirmed the expression of blood-induced and blood-repressed trypsins. Trypsin expression was measured in Leishmania infantum-infected and uninfected sand flies, which identified the L. infantum-induced down regulation of PperTryp3 at 24 hours post-blood meal. Conclusion This midgut tissue-specific transcriptome provides insight into the molecules expressed in the midgut of P. perniciosus, an important vector of visceral leishmaniasis in the Old World. Through the comparative analysis of the libraries we identified molecules differentially expressed during blood meal digestion. Additionally, this study provides a detailed comparison to transcripts of other sand flies. Moreover, our analysis of putative trypsins demonstrated that L. infantum infection can reduce the transcript abundance of trypsin PperTryp3 in the midgut of P. perniciosus.
Collapse
Affiliation(s)
- Anna Dostálová
- Department of Parasitology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 44 Praha 2, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
23
|
Telleria EL, de Araújo APO, Secundino NF, d'Avila-Levy CM, Traub-Csekö YM. Trypsin-like serine proteases in Lutzomyia longipalpis--expression, activity and possible modulation by Leishmania infantum chagasi. PLoS One 2010; 5:e10697. [PMID: 20502532 PMCID: PMC2872664 DOI: 10.1371/journal.pone.0010697] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 04/29/2010] [Indexed: 01/15/2023] Open
Abstract
Background Midgut enzymatic activity is one of the obstacles that Leishmania must surpass to succeed in establishing infection. Trypsins are abundant digestive enzymes in most insects. We have previously described two trypsin cDNAs of L. longipalpis: one (Lltryp1) with a bloodmeal induced transcription pattern, the other (Lltryp2) with a constitutive transcription pattern. We have now characterized the expression and activity of trypsin-like proteases of Lutzomyia longipalpis, the main vector of visceral leishmaniasis in Brazil. Methodology and Principal Findings In order to study trypsin expression profiles we produced antibodies against peptides specific for Lltryp1 and Lltryp2. The anti-Lltryp1-peptide antibody revealed a band of 28 kDa between 6 and 48 hours. The anti-Lltryp2 peptide antibody did not evidence any band. When proteinaceous substrates (gelatin, hemoglobin, casein or albumin) were co-polymerized in polyacrylamide gels, insect midguts obtained at 12 hours after feeding showed a unique proteolytic pattern for each substrate. All activity bands were strongly inhibited by TLCK, benzamidine and 4-amino-benzamidine, indicating that they are trypsin-like proteases. The trypsin-like activity was also measured in vitro at different time points after ingestion of blood or blood containing Leishmania infantum chagasi, using the chromogenic substrate BAρNA. L. longipalpis females fed on blood infected with L. i. chagasi had lower levels of trypsin activity after 12 and 48 hours than non-infected insects, suggesting that the parasite may have a role in this modulation. Conclusions and Significance Trypsins are important and abundant digestive enzymes in L. longipalpis. Protein production and enzymatic activity followed previously identified gene expression of a blood modulated trypsin gene. A decrease of enzymatic activity upon the parasite infection, previously detected mostly in Old World vectors, was detected for the first time in the natural vector-parasite pair L. longipalpis-L. i. chagasi.
Collapse
Affiliation(s)
- Erich Loza Telleria
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Nágila Francinete Secundino
- Laboratório de Entomologia Médica, Centro de Pesquisas René Rachou, Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Claudia Masini d'Avila-Levy
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yara Maria Traub-Csekö
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
24
|
Ramalho-Ortigao M, Saraiva EM, Traub-Csekö YM. Sand fly- Leishmania interactions: long relationships are not necessarily easy. ACTA ACUST UNITED AC 2010; 4:195-204. [PMID: 24159365 DOI: 10.2174/1874421401004010195] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sand fly and Leishmania are one of the best studied vector-parasite models. Much is known about the development of these parasites within the sand fly, and how transmission to a suitable vertebrate host takes place. Various molecules secreted by the vector assist the establishment of the infection in a vertebrate, and changes to the vector are promoted by the parasites in order to facilitate or enhance transmission. Despite a generally accepted view that sand flies and Leishmania are also one of the oldest vector-pathogen pairs known, such long history has not been translated into a harmonic relationship. Leishmania are faced with many barriers to the establishment of a successful infection within the sand fly vector, and specific associations have been developed which are thought to represent aspects of a co-evolution between the parasite and its vectors. In this review, we highlight the journey taken by Leishmania during its development within the vector, and describe the issues associated with the natural barriers encountered by the parasite. Recent data revealed sexual replication of Leishmania within the sand fly, but it is yet unknown if such reproduction affects disease outcome. New approaches targeting sand fly molecules to prevent parasite transmission are being sought, and various techniques related to genetic manipulation of sand flies are being utilized.
Collapse
|