1
|
Singh A, Singh S, Singh R, Kumar S, Singh SK, Singh IK. Dynamics of Zea mays transcriptome in response to a polyphagous herbivore, Spodoptera litura. Funct Integr Genomics 2021; 21:571-592. [PMID: 34415472 DOI: 10.1007/s10142-021-00796-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/17/2021] [Accepted: 07/02/2021] [Indexed: 12/01/2022]
Abstract
Zea mays defense response is well-crafted according to the physical and chemical weapons utilized by their invaders during the coevolutionary period. Maize plants employ diversified defense strategies and alter the spatiotemporal distribution of several classes of defensive compounds to affect insect herbivore performance. However, only little knowledge is available about the defense orchestration of maize in response to Spodoptera litura, a voracious Noctuidae pest. In order to decipher the defense status of Zea mays (African tall variety) against S. litura, a comparative feeding bioassay was executed, which revealed reduced performance of the herbivore on maize. In order to understand the molecular mechanism behind maize tolerance against S. litura, a microarray-based genome-wide expression analysis was performed. The comparative analysis displayed 792 differentially expressed genes (DEGs), wherein 357 genes were upregulated and 435 genes were downregulated at fold change ≥ 2 and p value ≤ 0.05. The upregulated genes were identified and categorized as defense-related, oxidative stress-related, transcription regulatory genes, protein synthesis genes, phytohormone-related, and primary and secondary metabolism-related. In contrast, downregulated genes were mainly associated with plant growth and development, indicating a balance of growth and defense response and utilization of a highly evolved C-diversion response were noticed. Maize plants showed better tolerance against herbivory and maintained its fitness using a combinatorial strategy. This peculiar response of Zea mays against S. litura offers an excellent possibility of managing polyphagous pests by spicing up the plant's defensive response with tolerance mechanism.
Collapse
Affiliation(s)
- Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi-110007, India.
| | - Sujata Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, Delhi-110019, India
| | - Ragini Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi-110007, India
| | - Sumit Kumar
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, Delhi-110019, India
| | - Sanjay Kumar Singh
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, Delhi-110019, India. .,DBC i4 Centre, Deshbandhu College, University of Delhi, Kalkaji, Delhi-110019, India.
| |
Collapse
|
2
|
Divya D, Sahu N, Nair S, Bentur JS. Map-based cloning and validation of a gall midge resistance gene, Gm8, encoding a proline-rich protein in the rice variety Aganni. Mol Biol Rep 2018; 45:2075-2086. [DOI: 10.1007/s11033-018-4364-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/05/2018] [Indexed: 11/30/2022]
|
3
|
Johnson ET, Skory C, Dowd PF. Identification of a bioactive Bowman-Birk inhibitor from an insect-resistant early maize inbred. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5458-5465. [PMID: 24869634 DOI: 10.1021/jf501396q] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Breeding of maize, Zea mays, has improved insect resistance, but the genetic and biochemical basis of many of these improvements is unknown. Maize oligonucleotide microarrays were utilized to identify differentially expressed genes in leaves of three maize inbreds, parents Oh40B and W8 and progeny Oh43, developed in the 1940s. Oh43 had enhanced leaf resistance to corn earworm larvae, Helicoverpa zea, and fall armyworm larvae, Spodoptera frugiperda, compared to one or both parents. Among ca. 100 significantly differentially expressed genes, expression of a Bowman-Birk trypsin inhibitor (BBI) gene was at least ca. 8-fold higher in Oh43 than in either parent. The Oh43 BBI gene was expressed as a recombinant protein. Purified BBI inhibited trypsin and the growth of fall armyworm larvae when added to insect diet. These experiments indicate that comparative gene expression analysis combined with insect resistance measurements of early inbreds can identify previously unrecognized resistance genes.
Collapse
Affiliation(s)
- Eric T Johnson
- Crop Bioprotection Research Unit and ‡Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture , 1815 North University Street, Peoria, Illinois 61604, United States
| | | | | |
Collapse
|
4
|
Singh NK, Kumar KRR, Kumar D, Shukla P, Kirti PB. Characterization of a pathogen induced thaumatin-like protein gene AdTLP from Arachis diogoi, a wild peanut. PLoS One 2013; 8:e83963. [PMID: 24367621 PMCID: PMC3868660 DOI: 10.1371/journal.pone.0083963] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/11/2013] [Indexed: 01/06/2023] Open
Abstract
Peanut (Arachis hypogaea L) is one of the widely cultivated and leading oilseed crops of the world and its yields are greatly affected by various biotic and abiotic stresses. Arachis diogoi, a wild relative of peanut, is an important source of genes for resistance against various stresses that affect peanut. In our previous study a thaumatin-like protein gene was found to be upregulated in a differential expression reverse transcription PCR (DDRT-PCR) study using the conidial spray of the late leaf spot pathogen, Phaeoisariopsis personata. In the present study, the corresponding full length cDNA was cloned using RACE-PCR and has been designated as AdTLP. It carried an open reading frame of 726 bp potentially capable of encoding a polypeptide of 241 amino acids with 16 conserved cysteine residues. The semi-quantitative RT-PCR analysis showed that the transcript level of AdTLP increased upon treatment with the late leaf spot pathogen of peanut, P. personata and various hormone treatments indicating its involvement in both, biotic and abiotic stresses. The antifungal activity of the purified recombinant protein was checked against different fungal pathogens, which showed enhanced anti-fungal activity compared to many other reported TLP proteins. The recombinant AdTLP-GFP fusion protein was found to be predominantly localized to extracellular spaces. Transgenic tobacco plants ectopically expressing AdTLP showed enhanced resistance to fungal pathogen, Rhizoctonia solani. The seedling assays showed enhanced tolerance of AdTLP transgenic plants against salt and oxidative stress. The transcript analysis of various defense related genes highlighted constitutively higher level expression of PR1a, PI-I and PI-II genes in transgenic plants. These results suggest that the AdTLP is a good candidate gene for enhancing stress resistance in crop plants.
Collapse
Affiliation(s)
| | | | - Dilip Kumar
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Pawan Shukla
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - P. B. Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
5
|
Suzuki H, Dowd PF, Johnson ET, Hum-Musser SM, Musser RO. Effects of elevated peroxidase levels and corn earworm feeding on gene expression in tomato. J Chem Ecol 2012; 38:1247-63. [PMID: 23135603 DOI: 10.1007/s10886-012-0205-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 05/15/2012] [Accepted: 05/24/2012] [Indexed: 01/04/2023]
Abstract
Microarray analysis was used to measure the impact of herbivory by Helicoverpa zea, (corn earworm caterpillar) on wild-type and transgenic tomato, Solanum lycopersicum, plants that over-express peroxidase. Caterpillar herbivory had by far the greatest affect on gene expression, but the peroxidase transgene also altered the expression of a substantial number of tomato genes. Particularly high peroxidase activity resulted in the up-regulation of genes encoding proteinase inhibitors, pathogenesis-related (PR) proteins, as well as proteins associated with iron and calcium transport, and flowering. In a separate experiment conducted under similar conditions, real-time quantitative polymerase chain reaction (qPCR) analysis confirmed our microarray results for many genes. There was some indication that multiple regulatory interactions occurred due to the interaction of the different treatments. While herbivory had the greatest impact on tomato gene expression, our results suggest that levels of expression of a multifunctional gene, such as peroxidase and its products, can influence other gene expression systems distinct from conventional signaling pathways, further indicating the complexity of plant defensive responses to insects.
Collapse
Affiliation(s)
- Hideaki Suzuki
- Department of Biological Sciences, Western Illinois University, Macomb, IL 61455, USA
| | | | | | | | | |
Collapse
|