1
|
Yi A, Chen L, Wei J, Zhang ZS, Li W, Shi Y, Wang B, Wang X, Cui ZN. Synthesis and Biological Evaluation of Disulfides Based on Garlic Extract as Type III Secretion System Inhibitors against Erwinia amylovora. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40372403 DOI: 10.1021/acs.jafc.5c01631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Fire blight, caused by Erwinia amylovora, poses a significant threat to rosaceous plants, such as pears, apples, and hawthorns. The type III secretion system (T3SS) is a critical pathogenicity factor in the pathogenesis of E. amylovora. Disulfide compounds, including those derived from garlic extract, exhibit good bioactivity against both bacteria and fungi. In this study, we synthesized 39 disulfide compounds based on garlic extract and developed a high-throughput screening system incorporating the bacterial luciferase lux reporter gene. Compound 5c was identified as the most effective inhibitor, significantly suppressing the promoter expression of T3SS-related genes, such as hrpA and hrpL, in E. amylovora CFBP1430. Furthermore, compound 5c inhibited the hypersensitive response (HR) triggered by E. amylovora CFBP1430 in tobacco without affecting bacterial growth. Compound 5c also reduced the level of secretion of the pathogenic protein HrpN and diminished the pathogenicity of E. amylovora CFBP1430 in pear infection assays. These findings offer a theoretical foundation for the development of novel T3SS inhibitors aimed at the prevention and control of fire blight disease.
Collapse
Affiliation(s)
- Aoyun Yi
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Liangye Chen
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Junjie Wei
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhao-Sheng Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology Normal University, Nanchang 330013, China
| | - Wanjun Li
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yu Shi
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Bo Wang
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiangyun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zi-Ning Cui
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Schachterle JK, Gdanetz K, Pandya I, Sundin GW. Identification of novel virulence factors in Erwinia amylovora through temporal transcriptomic analysis of infected apple flowers under field conditions. MOLECULAR PLANT PATHOLOGY 2022; 23:855-869. [PMID: 35246928 PMCID: PMC9104256 DOI: 10.1111/mpp.13199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
The enterobacterial pathogen Erwinia amylovora uses multiple virulence-associated traits to cause fire blight, a devastating disease of apple and pear trees. Many virulence-associated phenotypes have been studied that are critical for virulence and pathogenicity. Despite the in vitro testing that has revealed how these systems are transcriptionally regulated, information on when and where in infected tissues these genes are being expressed is lacking. Here, we used a high-throughput sequencing approach to characterize the transcriptome of E. amylovora during disease progression on apple flowers under field infection conditions. We report that type III secretion system genes and flagellar genes are strongly co-expressed. Likewise, genes involved in biosynthesis of the exopolysaccharide amylovoran and sorbitol utilization had similar expression patterns. We further identified a group of 16 genes whose expression is increased and maintained at high levels throughout disease progression across time and tissues. We chose five of these genes for mutational analysis and observed that deletion mutants lacking these genes all display reduced symptom development on apple shoots. Furthermore, these induced genes were over-represented for genes involved in sulphur metabolism and cycling, suggesting the possibility of an important role for maintenance of oxidative homeostasis during apple flower infection.
Collapse
Affiliation(s)
- Jeffrey K. Schachterle
- Genetics and Genome Sciences ProgramMichigan State UniversityEast LansingMIUSA
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMIUSA
- Present address:
USDAARS, Cereal Crops Research UnitFargoNDUSA
| | - Kristi Gdanetz
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMIUSA
| | - Ishani Pandya
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMIUSA
| | - George W. Sundin
- Genetics and Genome Sciences ProgramMichigan State UniversityEast LansingMIUSA
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMIUSA
| |
Collapse
|
3
|
Cui Z, Huntley RB, Schultes NP, Kakar KU, Yang CH, Zeng Q. Expression of the Type III Secretion System Genes in Epiphytic Erwinia amylovora Cells on Apple Stigmas Benefits Endophytic Infection at the Hypanthium. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1119-1127. [PMID: 34698527 DOI: 10.1094/mpmi-06-21-0152-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Erwinia amylovora causes fire blight on rosaceous plants. One of the major entry points of E. amylovora into hosts is flowers, where E. amylovora proliferates epiphytically on stigmatic and hypanthium surfaces and, subsequently, causes endophytic infection at the hypanthium. The type III secretion system (T3SS) is an important virulence factor in E. amylovora. Although the role of T3SS during endophytic infection is well characterized, its expression during epiphytic colonization and role in the subsequent infection is less understood. Here, we investigated T3SS gene expression in epiphytic E. amylovora on stigma and hypanthium of apple flowers under different relative humidities (RH). On stigma surfaces, T3SS was expressed in a high percentage of E. amylovora cells, and its expression promoted epiphytic growth. On hypanthium surfaces, however, T3SS was expressed in fewer E. amylovora cells than on the stigma, and displayed no correlation with epiphytic growth, even though T3SS expression is essential for infection. E. amylovora cells grown on stigmatic surfaces and then flushed down to the hypanthium displayed a higher level of T3SS expression than cells grown on the hypanthium surface alone. Furthermore, E. amylovora cells precultured on stigma had a higher potential to infect flowers than E. amylovora cells precultured in a T3SS-repressive medium. This suggests that T3SS induction during the stigmatic epiphytic colonization may be beneficial for subsequent infection. Finally, epiphytic expression of T3SS was influenced by RH. Higher percentage of stigmatic E. amylovora cells expressed T3SS under high RH than under low RH.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhouqi Cui
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, U.S.A
| | - Regan B Huntley
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, U.S.A
| | - Neil P Schultes
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, U.S.A
| | - Kaleem U Kakar
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, 87300, Pakistan
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, U.S.A
| |
Collapse
|
4
|
Kharadi RR, Schachterle JK, Yuan X, Castiblanco LF, Peng J, Slack SM, Zeng Q, Sundin GW. Genetic Dissection of the Erwinia amylovora Disease Cycle. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:191-212. [PMID: 33945696 DOI: 10.1146/annurev-phyto-020620-095540] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fire blight, caused by the bacterial phytopathogen Erwinia amylovora, is an economically important and mechanistically complex disease that affects apple and pear production in most geographic production hubs worldwide. We compile, assess, and present a genetic outlook on the progression of an E. amylovora infection in the host. We discuss the key aspects of type III secretion-mediated infection and systemic movement, biofilm formation in xylem, and pathogen dispersal via ooze droplets, a concentrated suspension of bacteria and exopolysaccharide components. We present an overall outlook on the genetic elements contributing to E. amylovora pathogenesis, including an exploration of the impact of floral microbiomes on E. amylovora colonization, and summarize the current knowledge of host responses to an incursion and how this response stimulates further infection and systemic spread. We hope to facilitate the identification of new, unexplored areas of research in this pathosystem that can help identify evolutionarily susceptible genetic targets to ultimately aid in the design of sustainable strategies for fire blight disease mitigation.
Collapse
Affiliation(s)
- Roshni R Kharadi
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Jeffrey K Schachterle
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
- Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, Beltsville, Maryland 20705, USA
| | - Xiaochen Yuan
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Luisa F Castiblanco
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Jingyu Peng
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Suzanne M Slack
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA
| | - George W Sundin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| |
Collapse
|
5
|
Liu W, Triplett L, Chen XL. Emerging Roles of Posttranslational Modifications in Plant-Pathogenic Fungi and Bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:99-124. [PMID: 33909479 DOI: 10.1146/annurev-phyto-021320-010948] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Posttranslational modifications (PTMs) play crucial roles in regulating protein function and thereby control many cellular processes and biological phenotypes in both eukaryotes and prokaryotes. Several recent studies illustrate how plant fungal and bacterial pathogens use these PTMs to facilitate development, stress response, and host infection. In this review, we discuss PTMs that have key roles in the biological and infection processes of plant-pathogenic fungi and bacteria. The emerging roles of PTMs during pathogen-plant interactions are highlighted. We also summarize traditional tools and emerging proteomics approaches for PTM research. These discoveries open new avenues for investigating the fundamental infection mechanisms of plant pathogens and the discovery of novel strategies for plant disease control.
Collapse
Affiliation(s)
- Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Lindsay Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA;
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
6
|
Ji X, Lu P, Xue J, Zhao N, Zhang Y, Dong L, Zhang X, Li P, Hu Y, Wang J, Zhang B, Liu J, Lv H, Wang S. The lipoprotein NlpD in Cronobacter sakazakii responds to acid stress and regulates macrophage resistance and virulence by maintaining membrane integrity. Virulence 2021; 12:415-429. [PMID: 33459158 PMCID: PMC7834084 DOI: 10.1080/21505594.2020.1870336] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cronobacter sakazakii, an emerging opportunistic pathogen, is implicated in severe foodborne outbreak infections in premature and full-term infants. Generally, acid tolerance is vital for the pathogenesis of foodborne pathogens; however, its role in C. sakazakii virulence remains largely unknown. To screen out acid-tolerance determinants from transposon mutants, anovel counterselection method using gentamicin and acid was developed. Using the counterselection method and growth assay, we screened several acid-sensitive mutants and found that nlpD encodes an acid-resistance factor in C. sakazakii. Compared to the wild-type strain, the nlpD mutant exhibited attenuated virulence in a rat model. Using macrophage THP-1 cells and a pH probe, we verified that nlpD enables bacteria to resist macrophages by resisting acidification. Finally, we confirmed that nlpD maintains C. sakazakii membrane integrity in acid using propidium iodide permeabilization assays via flow cytometry. Our results confirm that nlpD is a novel virulence factor that permits C. sakazakii to survive under acid stress conditions. Considering that NlpD is a conserved lipoprotein located in the bacterial outer membrane, NlpD could be used as a target for drug development.
Collapse
Affiliation(s)
- Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University , Tianjin, China
| | - Ping Lu
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage , Tianjin, China
| | - Juan Xue
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine , Shiyan, China
| | - Ning Zhao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University , Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University , Tianjin, China
| | - Lu Dong
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University , Tianjin, China
| | - Xuejiao Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University , Tianjin, China
| | - Ping Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology , Tianjin, China
| | - Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University , Tianjin, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University , Tianjin, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University , Tianjin, China
| | - Jingmin Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University , Tianjin, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University , Tianjin, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University , Tianjin, China
| |
Collapse
|
7
|
Lee JH, Ancona V, Chatnaparat T, Yang HW, Zhao Y. The RNA-Binding Protein CsrA Controls Virulence in Erwinia amylovora by Regulating RelA, RcsB, and FlhD at the Posttranscriptional Level. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1448-1459. [PMID: 31140921 DOI: 10.1094/mpmi-03-19-0077-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
CsrA, an RNA-binding protein, binds to target transcripts and alters their translation or stability. In Erwinia amylovora, CsrA positively regulates the expression of type III secretion system (T3SS), exopolysaccharide amylovoran, and motility. In this study, the global effect of CsrA and its noncoding small RNA (ncsRNA) csrB in E. amylovora was determined by RNA-seq, and potential molecular mechanisms of CsrA-dependent virulence regulation were examined. Transcriptomic analyses under the T3SS-inducing condition revealed that mutation in the csrA gene led to differential expression of more than 20% of genes in the genome. Among them, T3SS genes and those required for cell growth and viability were significantly downregulated. On the other hand, the csrB mutant exhibited significant upregulation of most major virulence genes, suggesting an antagonistic effect of csrB on CsrA targets. Direct interaction between CsrA protein and csrB was further confirmed through the RNA electrophoretic mobility shift assay (REMSA). However, no direct interaction between CsrA and hrpL and hrpS transcripts was detected, suggesting that HrpL and HrpS are not targets of CsrA, whereas three CsrA targets (relA, rcsB, and flhD) were identified and confirmed by REMSA, site-directed mutagenesis, and LacZ reporter gene assays. These findings might partially explain how CsrA positively controls E. amylovora virulence by targeting major regulators at the posttranscriptional level.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Veronica Ancona
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Tiyakhon Chatnaparat
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Ho-Wen Yang
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| |
Collapse
|
8
|
Xie Y, Shao X, Deng X. Regulation of type III secretion system inPseudomonas syringae. Environ Microbiol 2019; 21:4465-4477. [DOI: 10.1111/1462-2920.14779] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/10/2019] [Accepted: 08/11/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Yingpeng Xie
- Department of Biomedical SciencesCity University of Hong Kong Kowloon Tong Hong Kong SAR 999077 China
| | - Xiaolong Shao
- Department of Biomedical SciencesCity University of Hong Kong Kowloon Tong Hong Kong SAR 999077 China
| | - Xin Deng
- Department of Biomedical SciencesCity University of Hong Kong Kowloon Tong Hong Kong SAR 999077 China
- Shenzhen Research InstituteCity University of Hong Kong Shenzhen 518057 China
| |
Collapse
|
9
|
The Leucine-Responsive Regulatory Protein Lrp Participates in Virulence Regulation Downstream of Small RNA ArcZ in Erwinia amylovora. mBio 2019; 10:mBio.00757-19. [PMID: 31138749 PMCID: PMC6538786 DOI: 10.1128/mbio.00757-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fire blight disease continues to plague the commercial production of apples and pears despite more than a century of research into disease epidemiology and disease control. The causative agent of fire blight, Erwinia amylovora coordinates turning on or off specific virulence-associated traits at the appropriate time during disease development. The development of novel control strategies requires an in-depth understanding of E. amylovora regulatory mechanisms, including regulatory control of virulence-associated traits. This study investigates how the small RNA ArcZ regulates motility at the transcriptional level and identifies the transcription factor Lrp as a novel participant in the regulation of several virulence-associated traits. We report that ArcZ and Lrp together affect key virulence-associated traits through integration of transcriptional and posttranscriptional mechanisms. Further understanding of the topology of virulence regulatory networks can uncover weak points that can subsequently be exploited to control E. amylovora. Erwinia amylovora causes the devastating fire blight disease of apple and pear trees. During systemic infection of host trees, pathogen cells must rapidly respond to changes in their environment as they move through different host tissues that present distinct challenges and sources of nutrition. Growing evidence indicates that small RNAs (sRNAs) play an important role in disease progression as posttranscriptional regulators. The sRNA ArcZ positively regulates the motility phenotype and transcription of flagellar genes in E. amylovora Ea1189 yet is a direct repressor of translation of the flagellar master regulator, FlhD. We utilized transposon mutagenesis to conduct a forward genetic screen and identified suppressor mutations that increase motility in the Ea1189ΔarcZ mutant background. This enabled us to determine that the mechanism of transcriptional activation of the flhDC mRNA by ArcZ is mediated by the leucine-responsive regulatory protein, Lrp. We show that Lrp contributes to expression of virulence and several virulence-associated traits, including production of the exopolysaccharide amylovoran, levansucrase activity, and biofilm formation. We further show that Lrp is regulated posttranscriptionally by ArcZ through destabilization of lrp mRNA. Thus, ArcZ regulation of FlhDC directly and indirectly through Lrp forms an incoherent feed-forward loop that regulates levansucrase activity and motility as outputs. This work identifies Lrp as a novel participant in virulence regulation in E. amylovora and places it in the context of a virulence-associated regulatory network.
Collapse
|
10
|
Caby M, Bontemps-Gallo S, Gruau P, Delrue B, Madec E, Lacroix JM. The EnvZ-OmpR Two-Component Signaling System Is Inactivated in a Mutant Devoid of Osmoregulated Periplasmic Glucans in Dickeya dadantii. Front Microbiol 2018; 9:2459. [PMID: 30425688 PMCID: PMC6218677 DOI: 10.3389/fmicb.2018.02459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/25/2018] [Indexed: 12/04/2022] Open
Abstract
Osmoregulated periplasmic glucans (OPGs) are general constituents of alpha-, beta-, and gamma-Proteobacteria. This polymer of glucose is required for full virulence of many pathogens including Dickeya dadantii (D. dadantii). The phytopathogenic enterobacterium D. dadantii causes soft-rot disease in a wide range of plants. An OPG-defective mutant is impaired in environment sensing. We previously demonstrated that (i) fluctuation of OPG concentration controlled the activation level of the RcsCDB system, and (ii) RcsCDB along with EnvZ/OmpR controlled the mechanism of OPG succinylation. These previous data lead us to explore whether OPGs are required for other two-component systems. In this study, we demonstrate that inactivation of the EnvZ/OmpR system in an OPG-defective mutant restores full synthesis of pectinase but only partial virulence. Unlike for the RcsCDB system, the EnvZ-OmpR system is not controlled by OPG concentration but requires OPGs for proper activation.
Collapse
Affiliation(s)
- Marine Caby
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| | - Sébastien Bontemps-Gallo
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| | - Peggy Gruau
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| | | | - Edwige Madec
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| | - Jean-Marie Lacroix
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| |
Collapse
|
11
|
The OmpR Regulator of Burkholderia multivorans Controls Mucoid-to-Nonmucoid Transition and Other Cell Envelope Properties Associated with Persistence in the Cystic Fibrosis Lung. J Bacteriol 2018; 200:JB.00216-18. [PMID: 29914989 DOI: 10.1128/jb.00216-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022] Open
Abstract
Bacteria from the Burkholderia cepacia complex grow in different natural and man-made environments and are feared opportunistic pathogens that cause chronic respiratory infections in cystic fibrosis patients. Previous studies showed that Burkholderia mucoid clinical isolates grown under stress conditions give rise to nonmucoid variants devoid of the exopolysaccharide cepacian. Here, we determined that a major cause of the nonmucoid morphotype involves nonsynonymous mutations and small indels in the ompR gene encoding a response regulator of a two-component regulatory system. In trans complementation of nonmucoid variants (NMVs) with the native gene restored exopolysaccharide production. The loss of functional Burkholderia multivorans OmpR had positive effects on growth, adhesion to lung epithelial cells, and biofilm formation in high-osmolarity medium, as well as an increase in swimming and swarming motilities. In contrast, phenotypes such as antibiotic resistance, biofilm formation at low osmolarity, and virulence in Galleria mellonella were compromised by the absence of functional OmpR. Transcriptomic studies indicated that loss of the ompR gene affects the expression of 701 genes, many associated with outer membrane composition, motility, stress response, iron acquisition, and the uptake of nutrients, consistent with starvation tolerance. Since the stresses here imposed on B. multivorans may strongly resemble the ones found in the cystic fibrosis (CF) airways and mutations in the ompR gene from longitudinally collected CF isolates have been found, this regulator might be important for the production of NMVs in the CF environment.IMPORTANCE Within the cystic fibrosis (CF) lung, bacteria experience high-osmolarity conditions due to an ion unbalance resulting from defects in CF transmembrane conductance regulator (CFTR) protein activity in epithelial cells. Understanding how bacterial CF pathogens thrive in this environment might help the development of new therapeutic interventions to prevent chronic respiratory infections. Here, we show that the OmpR response regulator of one of the species found in CF respiratory infections, Burkholderia multivorans, is involved in the emergence of nonmucoid colony variants and is important for osmoadaptation by regulating several cell envelope components. Specifically, genetic, phenotypic, genomic, and transcriptomic approaches uncover OmpR as a regulator of cell wall remodeling under stress conditions, with implications in several phenotypes such as exopolysaccharide production, motility, antibiotic resistance, adhesion, and virulence.
Collapse
|
12
|
Lee JH, Ancona V, Zhao Y. Lon protease modulates virulence traits in Erwinia amylovora by direct monitoring of major regulators and indirectly through the Rcs and Gac-Csr regulatory systems. MOLECULAR PLANT PATHOLOGY 2018; 19:827-840. [PMID: 28509355 PMCID: PMC6638003 DOI: 10.1111/mpp.12566] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 05/10/2023]
Abstract
Lon, an ATP-dependent protease in bacteria, influences diverse cellular processes by degrading damaged, misfolded and short-lived regulatory proteins. In this study, we characterized the effects of lon mutation and determined the molecular mechanisms underlying Lon-mediated virulence regulation in Erwinia amylovora, an enterobacterial pathogen of apple. Erwinia amylovora depends on the type III secretion system (T3SS) and the exopolysaccharide (EPS) amylovoran to cause disease. Our results showed that mutation of the lon gene led to the overproduction of amylovoran, increased T3SS gene expression and the non-motile phenotype. Western blot analyses showed that mutation in lon directly affected the accumulation and stability of HrpS/HrpA and RcsA. Mutation in lon also indirectly influenced the expression of flhD, hrpS and csrB through the accumulation of the RcsA/RcsB proteins, which bind to the promoter of these genes. In addition, lon expression is under the control of CsrA, possibly at both the transcriptional and post-transcriptional levels. Although mutation in csrA abolished both T3SS and amylovoran production, deletion of the lon gene in the csrA mutant only rescued amylovoran production, but not T3SS. These results suggest that CsrA might positively control both T3SS and amylovoran production partly by suppressing Lon, whereas CsrA may also play a critical role in T3SS by affecting unknown targets.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL 61801USA
| | - Veronica Ancona
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL 61801USA
- Present address:
Texas A&M University‐Kingsville, Citrus CenterWeslacoTX 78596USA
| | | |
Collapse
|
13
|
Lee JH, Zhao Y. ClpXP-Dependent RpoS Degradation Enables Full Activation of Type III Secretion System, Amylovoran Production, and Motility in Erwinia amylovora. PHYTOPATHOLOGY 2017; 107:1346-1352. [PMID: 28691868 DOI: 10.1094/phyto-06-17-0198-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Erwinia amylovora, the causal agent of fire blight disease of apple and pear, employs intracellular proteases, including Lon and ClpXP, for posttranslational regulation of various cellular proteins. It has been shown that Lon plays a critical role in E. amylovora virulence by directly targeting type III secretion system (T3SS) proteins and the Rcs phosphorelay system. In this study, we genetically examined the role of ClpXP and its potential interaction with Lon in E. amylovora. Mutation in clpXP diminished the expression of the T3SS, reduced exopolysaccharide amylovoran production and motility, and resulted in delayed disease progress. Western blot analyses showed highly accumulated RpoS proteins in the clpXP mutant. Moreover, mutation of rpoS in the clpXP mutant background rescued the expression of the T3SS and amylovoran production, suggesting that ClpXP-dependent RpoS degradation positively affects virulence traits. Interestingly, lack of both ClpXP and Lon resulted in significantly reduced virulence but increased expression of the T3SS and amylovoran production. However, this phenomenon was independent of RpoS accumulation, suggesting that ClpXP and Lon are indispensable for full virulence in E. amylovora.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana 61801
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana 61801
| |
Collapse
|
14
|
Lee JH, Zhao Y. Integration of multiple stimuli-sensing systems to regulate HrpS and type III secretion system in Erwinia amylovora. Mol Genet Genomics 2017; 293:187-196. [PMID: 28965178 DOI: 10.1007/s00438-017-1376-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/20/2017] [Indexed: 12/13/2022]
Abstract
The bacterial enhancer binding protein (bEBP) HrpS is essential for Erwinia amylovora virulence by activating the type III secretion system (T3SS). However, how the hrpS gene is regulated remains poorly understood in E. amylovora. In this study, 5' rapid amplification of cDNA ends and promoter deletion analyses showed that the hrpS gene contains two promoters driven by HrpX/HrpY and the Rcs phosphorelay system, respectively. Electrophoretic mobility shift and gene expression assays demonstrated that integration host factor IHF positively regulates hrpS expression through directly binding the hrpX promoter and positively regulating hrpX/hrpY expression. Moreover, hrpX expression was down-regulated in the relA/spoT ((p)ppGpp-deficient) mutant and the dksA mutant, but up-regulated when the wild-type strain was treated with serine hydroxamate, which induced (p)ppGpp-mediated stringent response. Furthermore, the csrA mutant showed significantly reduced transcripts of major hrpS activators, including the hrpX/hrpY, rcsA and rcsB genes, indicating that CsrA is required for full hrpS expression. On the other hand, the csrB mutant exhibited up-regulation of the rcsA and rcsB genes, and hrpS expression was largely diminished in the csrB/rcsB mutant, indicating that the Rcs system is mainly responsible for the increased hrpS expression in the csrB mutant. These findings suggest that E. amylovora recruits multiple stimuli-sensing systems, including HrpX/HrpY, the Rcs phosphorelay system and the Gac-Csr system, to regulate hrpS and T3SS gene expression.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA.
| |
Collapse
|
15
|
Ancona V, Lee JH, Zhao Y. The RNA-binding protein CsrA plays a central role in positively regulating virulence factors in Erwinia amylovora. Sci Rep 2016; 6:37195. [PMID: 27845410 PMCID: PMC5109040 DOI: 10.1038/srep37195] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/25/2016] [Indexed: 11/09/2022] Open
Abstract
The GacS/GacA two-component system (also called GrrS/GrrA) is a global regulatory system which is highly conserved among gamma-proteobacteria. This system positively regulates non-coding small regulatory RNA csrB, which in turn binds to the RNA-binding protein CsrA. However, how GacS/GacA-Csr system regulates virulence traits in E. amylovora remains unknown. Results from mutant characterization showed that the csrB mutant was hypermotile, produced higher amount of exopolysaccharide amylovoran, and had increased expression of type III secretion (T3SS) genes in vitro. In contrast, the csrA mutant exhibited complete opposite phenotypes, including non-motile, reduced amylovoran production and expression of T3SS genes. Furthermore, the csrA mutant did not induce hypersensitive response on tobacco or cause disease on immature pear fruits, indicating that CsrA is a positive regulator of virulence factors. These findings demonstrated that CsrA plays a critical role in E. amylovora virulence and suggested that negative regulation of virulence by GacS/GacA acts through csrB sRNA, which binds to CsrA and neutralizes its positive effect on T3SS gene expression, flagellar formation and amylovoran production. Future research will be focused on determining the molecular mechanism underlying the positive regulation of virulence traits by CsrA.
Collapse
Affiliation(s)
- Veronica Ancona
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urban 61801, USA
| | - Jae Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urban 61801, USA
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urban 61801, USA
| |
Collapse
|
16
|
Lee JH, Zhao Y. Integration Host Factor Is Required for RpoN-Dependent hrpL Gene Expression and Controls Motility by Positively Regulating rsmB sRNA in Erwinia amylovora. PHYTOPATHOLOGY 2016; 106:29-36. [PMID: 26368515 DOI: 10.1094/phyto-07-15-0170-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Erwinia amylovora requires an hrp-type III secretion system (T3SS) to cause disease. It has been reported that HrpL, the master regulator of T3SS, is transcriptionally regulated by sigma factor 54 (RpoN), YhbH, and HrpS. In this study, the role of integration host factor (IHF) in regulating hrpL and T3SS gene expression was investigated. IHF is a nucleoid-associated protein that regulates gene expression by influencing nucleoid structure and DNA bending. Our results showed that both ihfA and ihfB mutants of E. amylovora did not induce necrotic lesions on pear fruits. Growth of both mutants was greatly reduced, and expression of the hrpL and T3SS genes was significantly down-regulated as compared with those of the wild type. In addition, expression of the ihfA, but not the ihfB gene, was under auto-suppression by IHF. Furthermore, both ihfA and ihfB mutants were hypermotile, due to significantly reduced expression of small RNA (sRNA) rsmB. Electrophoresis mobility shift assay further confirmed that IHF binds to the promoters of the hrpL and ihfA genes, as well as the rsmB sRNA gene. These results indicate that IHF is required for RpoN-dependent hrpL gene expression and virulence, and controls motility by positively regulating the rsmB sRNA in E. amylovora.
Collapse
Affiliation(s)
- Jae Hoon Lee
- First and second authors: Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Youfu Zhao
- First and second authors: Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
17
|
The bacterial alarmone (p)ppGpp activates the type III secretion system in Erwinia amylovora. J Bacteriol 2015; 197:1433-43. [PMID: 25666138 DOI: 10.1128/jb.02551-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED The hypersensitive response and pathogenicity (hrp) type III secretion system (T3SS) is a key pathogenicity factor in Erwinia amylovora. Previous studies have demonstrated that the T3SS in E. amylovora is transcriptionally regulated by a sigma factor cascade. In this study, the role of the bacterial alarmone ppGpp in activating the T3SS and virulence of E. amylovora was investigated using ppGpp mutants generated by Red recombinase cloning. The virulence of a ppGpp-deficient mutant (ppGpp(0)) as well as a dksA mutant of E. amylovora was completely impaired, and bacterial growth was significantly reduced, suggesting that ppGpp is required for full virulence of E. amylovora. Expression of T3SS genes was greatly downregulated in the ppGpp(0) and dksA mutants. Western blotting showed that accumulations of the HrpA protein in the ppGpp(0) and dksA mutants were about 10 and 4%, respectively, of that in the wild-type strain. Furthermore, higher levels of ppGpp resulted in a reduced cell size of E. amylovora. Moreover, serine hydroxamate and α-methylglucoside, which induce amino acid and carbon starvation, respectively, activated hrpA and hrpL promoter activities in hrp-inducing minimal medium. These results demonstrated that ppGpp and DksA play central roles in E. amylovora virulence and indicated that E. amylovora utilizes ppGpp as an internal messenger to sense environmental/nutritional stimuli for regulation of the T3SS and virulence. IMPORTANCE The type III secretion system (T3SS) is a key pathogenicity factor in Gram-negative bacteria. Fully elucidating how the T3SS is activated is crucial for comprehensively understanding the function of the T3SS, bacterial pathogenesis, and survival under stress conditions. In this study, we present the first evidence that the bacterial alarmone ppGpp-mediated stringent response activates the T3SS through a sigma factor cascade, indicating that ppGpp acts as an internal messenger to sense environmental/nutritional stimuli for the regulation of the T3SS and virulence in plant-pathogenic bacteria. Furthermore, the recovery of an spoT null mutant, which displayed very unique phenotypes, suggested that small proteins containing a single ppGpp hydrolase domain are functional.
Collapse
|
18
|
Ancona V, Chatnaparat T, Zhao Y. Conserved aspartate and lysine residues of RcsB are required for amylovoran biosynthesis, virulence, and DNA binding in Erwinia amylovora. Mol Genet Genomics 2015; 290:1265-76. [PMID: 25577258 DOI: 10.1007/s00438-015-0988-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/05/2015] [Indexed: 11/25/2022]
Abstract
In Erwinia amylovora, the Rcs phosphorelay system is essential for amylovoran production and virulence. To further understand the role of conserved aspartate residue (D56) in the phosphor receiver (PR) domain and lysine (K180) residue in the function domain of RcsB, amino acid substitutions of RcsB mutant alleles were generated by site-directed mutagenesis and complementation of various rcs mutants were performed. A D56E substitution of RcsB, which mimics the phosphorylation state of RcsB, complemented the rcsB mutant, resulting in increased amylovoran production and gene expression, reduced swarming motility, and restored pathogenicity. In contrast, D56N and K180A or K180Q substitutions of RcsB did not complement the rcsB mutant. Electrophoresis mobility shift assays showed that D56E, but not D56N, K180Q and K180A substitutions of RcsB bound to promoters of amsG and flhD, indicating that both D56 and K180 are required for DNA binding. Interestingly, the RcsBD56E allele could also complement rcsAB, rcsBC and rcsABCD mutants with restored virulence and increased amylovoran production, indicating that RcsB phosphorylation is essential for virulence of E. amylovora. In addition, mutations of T904 and A905, but not phosphorylation mimic mutation of D876 in the PR domain of RcsC, constitutively activate the Rcs system, suggesting that phosphor transfer is required for activating the Rcs system and indicating both A905 and T904 are required for the phosphatase activity of RcsC. Our results demonstrated that RcsB phosphorylation and dephosphorylation, phosphor transfer from RcsC are essential for the function of the Rcs system, and also suggested that constitutive activation of the Rcs system could reduce the fitness of E. amylovora.
Collapse
Affiliation(s)
- Veronica Ancona
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr, Urbana, IL, 61801, USA
| | | | | |
Collapse
|