1
|
Full-Length Transcriptome Characterization and Functional Analysis of Pathogenesis-Related Proteins in Lilium Oriental Hybrid 'Sorbonne' Infected with Botrytis elliptica. Int J Mol Sci 2022; 24:ijms24010425. [PMID: 36613869 PMCID: PMC9820132 DOI: 10.3390/ijms24010425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Gray mold (Botrytis elliptica) causes a deleterious fungal disease that decreases the ornamental value and yield of lilies. Lilium oriental hybrid 'Sorbonne' is a variety that is resistant to gray mold. Understanding the mechanism of resistance against B. elliptica infection in 'Sorbonne' can provide a basis for the genetic improvement in lily plants. In this study, a PacBio Sequel II system was used to sequence the full-length transcriptome of Lilium 'Sorbonne' after inoculation with B. elliptica. A total of 46.64 Gb subreads and 19,102 isoforms with an average length of 1598 bp were obtained. A prediction analysis revealed 263 lncRNAs, and 805 transcription factors, 4478 simple sequence repeats, and 17,752 coding sequences were identified. Pathogenesis-related proteins (PR), which may play important roles in resistance against B. elliptica infection, were identified based on the full-length transcriptome data and previously obtained second-generation transcriptome data. Nine non-redundant potential LhSorPR proteins were identified and assigned to two groups that were composed of two LhSorPR4 and seven LhSorPR10 proteins based on their genetic relatedness. The real-time quantitative reverse transcription PCR (qRT-PCR) results showed that the patterns of expression of nine differentially expressed PR genes under B. elliptica stress were basically consistent with the results of transcriptome sequencing. The pattern of expression of LhSorPR4s and LhSorPR10s genes in different tissues was analyzed, and the expression of each gene varied. Furthermore, we verified the function of LhSorPR4-2 gene in Lilium. The expression of LhSorPR4-2 was induced by phytohormones such as methyl jasmonate, salicylic acid, and ethephon. Moreover, the promoter region of LhSorPR4-2 was characterized by several functional domains associated with phytohormones and stress response. The overexpression of LhSorPR4-2 gene in 'Sorbonne' increased the resistance of the lily plant to B. elliptica and correlated with high chitinase activity. This study provides a full-length transcript database and functionally analyzed the resistance of PR gene to B. elliptica in Lilium, thereby introducing the candidate gene LhSorPR4-2 to breed resistance in Lilium.
Collapse
|
2
|
Wang Y, Zhou Y, Wang R, Xu F, Tong S, Song C, Shao Y, Yi M, He J. Ethylene Response Factor LlERF110 Mediates Heat Stress Response via Regulation of LlHsfA3A Expression and Interaction with LlHsfA2 in Lilies ( Lilium longiflorum). Int J Mol Sci 2022; 23:16135. [PMID: 36555777 PMCID: PMC9781036 DOI: 10.3390/ijms232416135] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Heat stress seriously affects the quality of cut lily flowers. The ethylene response factors (ERFs) participate in heat stress response in many plants. In this study, heat treatment increased the production of ethylene in lily leaves, and exogenous ethylene treatment enhanced the heat resistance of lilies. LlERF110, an important transcription factor in the ethylene signaling pathway, was found in the high-temperature transcriptome. The coding region of LlERF110 (969 bp) encodes 322 amino acids and LlERF110 contains an AP2/ERF typical domain belonging to the ERF subfamily group X. LlERF110 was induced by ethylene and was expressed constitutively in all tissues. LlERF110 is localized in the nucleus and has transactivation activity. Virus-induced gene silencing of LlERF110 in lilies reduced the basal thermotolerance phenotypes and significantly decreased the expression of genes involved in the HSF-HSP pathway, such as LlHsfA2, LlHsfA3A, and LlHsfA5, which may activate other heat stress response genes; and LlHsp17.6 and LlHsp22, which may protect proteins under heat stress. LlERF110 could directly bind to the promoter of LlHsfA3A and activate its expression according to the yeast one hybrid and dual-luciferase reporter assays. LlERF110 interacts with LlHsfA2 in the nucleus according to BiFC and the yeast two-hybrid assays. In conclusion, these results indicate that LlERF110 plays an important role in the basal thermotolerance of lilies via regulation of the HSF-HSP pathway, which could be the junction of the heat stress response pathway and the ethylene signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Junna He
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Ren Z, Zhang D, Jiao C, Li D, Wu Y, Wang X, Gao C, Lin Y, Ruan Y, Xia Y. Comparative transcriptome and metabolome analyses identified the mode of sucrose degradation as a metabolic marker for early vegetative propagation in bulbs of Lycoris. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:115-134. [PMID: 35942603 PMCID: PMC9826282 DOI: 10.1111/tpj.15935] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/26/2022] [Accepted: 08/07/2022] [Indexed: 06/01/2023]
Abstract
Vegetative propagation (VP) is an important practice for production in many horticultural plants. Sugar supply constitutes the basis of VP in bulb flowers, but the underlying molecular basis remains elusive. By performing a combined sequencing technologies coupled with ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry approach for metabolic analyses, we compared two Lycoris species with contrasting regeneration rates: high-regeneration Lycoris sprengeri and low-regeneration Lycoris aurea. A comprehensive multi-omics analyses identified both expected processes involving carbohydrate metabolism and transcription factor networks, as well as the metabolic characteristics for each developmental stage. A higher abundance of the differentially expressed genes including those encoding ethylene responsive factors was detected at bulblet initiation stage compared to the late stage of bulblet development. High hexose-to-sucrose ratio correlated to bulblet formation across all the species examined, indicating its role in the VP process in Lycoris bulb. Importantly, a clear difference between cell wall invertase (CWIN)-catalyzed sucrose unloading in high-regeneration species and the sucrose synthase-catalyzed pathway in low-regeneration species was observed at the bulblet initiation stage, which was supported by findings from carboxyfluorescein tracing and quantitative real-time PCR analyses. Collectively, the findings indicate a sugar-mediated model of the regulation of VP in which high CWIN expression or activity may promote bulblet initiation via enhancing apoplasmic unloading of sucrose or sugar signals, whereas the subsequent high ratio of hexose-to-sucrose likely supports cell division characterized in the next phase of bulblet formation.
Collapse
Affiliation(s)
- Zi‐Ming Ren
- Department of Landscape Architecture, School of Civil Engineering and ArchitectureZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Dong Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| | - Chen Jiao
- Key Lab of Molecular Biology of Crop Pathogens and InsectsInstitute of Biotechnology, Zhejiang UniversityHangzhou310058China
| | - Dan‐Qing Li
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| | - Yun Wu
- Department of Landscape Architecture, School of Civil Engineering and ArchitectureZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Xiu‐Yun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| | - Cong Gao
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| | - Ye‐Fan Lin
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| | - Yong‐Ling Ruan
- Division of Plant Sciences, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Yazhou Bay LaboratorySanya572024China
| | - Yi‐Ping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| |
Collapse
|
4
|
The Heat Stress Transcription Factor LlHsfA4 Enhanced Basic Thermotolerance through Regulating ROS Metabolism in Lilies ( Lilium Longiflorum). Int J Mol Sci 2022; 23:ijms23010572. [PMID: 35009000 PMCID: PMC8745440 DOI: 10.3390/ijms23010572] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023] Open
Abstract
Heat stress severely affects the annual agricultural production. Heat stress transcription factors (HSFs) represent a critical regulatory juncture in the heat stress response (HSR) of plants. The HsfA1-dependent pathway has been explored well, but the regulatory mechanism of the HsfA1-independent pathway is still under-investigated. In the present research, HsfA4, an important gene of the HsfA1-independent pathway, was isolated from lilies (Lilium longiflorum) using the RACE method, which encodes 435 amino acids. LlHsfA4 contains a typical domain of HSFs and belongs to the HSF A4 family, according to homology comparisons and phylogenetic analysis. LlHsfA4 was mainly expressed in leaves and was induced by heat stress and H2O2 using qRT-PCR and GUS staining in transgenic Arabidopsis. LlHsfA4 had transactivation activity and was located in the nucleus and cytoplasm through a yeast one hybrid system and through transient expression in lily protoplasts. Over expressing LlHsfA4 in Arabidopsis enhanced its basic thermotolerance, but acquired thermotolerance was not achieved. Further research found that heat stress could increase H2O2 content in lily leaves and reduced H2O2 accumulation in transgenic plants, which was consistent with the up-regulation of HSR downstream genes such as Heat stress proteins (HSPs), Galactinol synthase1 (GolS1), WRKY DNA binding protein 30 (WRKY30), Zinc finger of Arabidopsis thaliana 6 (ZAT6) and the ROS-scavenging enzyme Ascorbate peroxidase 2 (APX2). In conclusion, these results indicate that LlHsfA4 plays important roles in heat stress response through regulating the ROS metabolism in lilies.
Collapse
|
5
|
Chai N, Xu J, Zuo R, Sun Z, Cheng Y, Sui S, Li M, Liu D. Metabolic and Transcriptomic Profiling of Lilium Leaves Infected With Botrytis elliptica Reveals Different Stages of Plant Defense Mechanisms. FRONTIERS IN PLANT SCIENCE 2021; 12:730620. [PMID: 34630478 PMCID: PMC8493297 DOI: 10.3389/fpls.2021.730620] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/27/2021] [Indexed: 05/17/2023]
Abstract
Botrytis elliptica, the causal agent of gray mold disease, poses a major threat to commercial Lilium production, limiting its ornamental value and yield. The molecular and metabolic regulation mechanisms of Lilium's defense response to B. elliptica infection have not been completely elucidated. Here, we performed transcriptomic and metabolomic analyses of B. elliptica resistant Lilium oriental hybrid "Sorbonne" to understand the molecular basis of gray mold disease resistance in gray mold disease. A total of 115 differentially accumulated metabolites (DAMs) were detected by comparing the different temporal stages of pathogen infection. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed the differentially expressed genes (DEGs) and DAMs were enriched in the phenylpropanoid and flavonoid pathways at all stages of infection, demonstrating the prominence of these pathways in the defense response of "Sorbonne" to B. elliptica. Network analysis revealed high interconnectivity of the induced defense response. Furthermore, time-course analysis of the transcriptome and a weighted gene coexpression network analysis (WGCNA) led to the identification of a number of hub genes at different stages, revealing that jasmonic acid (JA), salicylic acid (SA), brassinolide (BR), and calcium ions (Ca2+) play a crucial role in the response of "Sorbonne" to fungal infection. Our work provides a comprehensive perspective on the defense response of Lilium to B. elliptica infection, along with a potential transcriptional regulatory network underlying the defense response, thereby offering gene candidates for resistance breeding and metabolic engineering of Lilium.
Collapse
Affiliation(s)
- Nan Chai
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Jie Xu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Rumeng Zuo
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Zhengqiong Sun
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Shunzhao Sui
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Mingyang Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Daofeng Liu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Jiang X, Chi X, Zhou R, Li Y, Li W, Liu Q, Wang K, Liu Q. Transcriptome profiling to identify tepal cell enlargement and pigmentation genes and the function of LtEXLB1 in Lilium tsingtauense. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:241-256. [PMID: 33059816 DOI: 10.1071/fp20253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
To understand the molecular mechanism underlying tepal development and pigmentation in Lilium tsingtauense Gilg, we performed whole-transcriptome profiles from closed buds at the greenish tepal stage (CBS), the full-bloom with un-horizontal tepal stage (UFS), and the completely opened bud with reflected tepal stage (RFS) of L. tsingtauense. More than 95699 transcripts were generated using a de novo assembly approach. Gene ontology and pathway analysis of the assembled transcripts revealed carbon metabolism is involved in tepal development and pigmentation. In total, 8171 differentially expression genes (DEGs) in three tepal stages were identified. Among these DEGs, ~994 genes putatively encoded transcription factors (TFs), whereas 693 putatively encoded protein kinases. Regarding hormone pathways, 51 DEGs involved in auxin biosynthesis and signalling and 10 DEGs involved in ethylene biosynthesis and signalling. We also isolated seven LtEXPANSINs, including four EXPAs, one EXPB, one EXLA and one EXLB. LtEXLB1 (GenBank: MN856627) was expressed at higher levels in UFS and RFS, compared with CBS. Silencing LtEXLB1 in leaf discs and tepals by virus-induced gene silencing significantly decreased cell expansion under rehydration conditions. Further analysis revealed that more cell numbers were existed in the abaxial and adaxial subepidermis in the silenced LtEXLB1 samples. As the first transcriptome of L. tsingtauense, the unigenes are a valuable resource for future studies on tepal development, and LtEXLB1 functions in cell expansion.
Collapse
Affiliation(s)
- Xinqiang Jiang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, 700 Changcheng Road, ChengYang District, Qingdao 266109, PR China
| | - Xiufeng Chi
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, 700 Changcheng Road, ChengYang District, Qingdao 266109, PR China
| | - Rui Zhou
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, 700 Changcheng Road, ChengYang District, Qingdao 266109, PR China
| | - Yanshuo Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, 700 Changcheng Road, ChengYang District, Qingdao 266109, PR China
| | - Wei Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, 700 Changcheng Road, ChengYang District, Qingdao 266109, PR China
| | - Qingchao Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, 700 Changcheng Road, ChengYang District, Qingdao 266109, PR China
| | - Kuiling Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, 700 Changcheng Road, ChengYang District, Qingdao 266109, PR China
| | - Qinghua Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, 700 Changcheng Road, ChengYang District, Qingdao 266109, PR China; and Corresponding author.
| |
Collapse
|
7
|
Wu Y, Ren Z, Gao C, Sun M, Li S, Min R, Wu J, Li D, Wang X, Wei Y, Xia Y. Change in Sucrose Cleavage Pattern and Rapid Starch Accumulation Govern Lily Shoot-to-Bulblet Transition in vitro. FRONTIERS IN PLANT SCIENCE 2021; 11:564713. [PMID: 33519832 PMCID: PMC7840508 DOI: 10.3389/fpls.2020.564713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/30/2020] [Indexed: 05/11/2023]
Abstract
In bulb crops, bulbing is a key progress in micropropagation and is the feature that most distinguishes bulbous crops from other plants. Generally, bulbing involves a shoot-to-bulblet transition; however, the underlying mechanism remains elusive. We explored this process by tracking the shoot-to-bulblet transition under different culture conditions. Rapid starch accumulation occurred at 15 days after transplanting (DAT) in the bulblet-inducing treatments as confirmed via histological observations and the significant elevation of starch synthesis related-gene transcription, including LohAGPS, LohAGPL, LohGBSS, LohSS, and LohSBE. However, for shoots that did not transition to bulblets and maintained the shoot status, much higher soluble sugars were detected. Interestingly, we observed a clear shift from invertase-catalyzed to sucrose synthase-catalyzed sucrose cleavage pattern based on the differential expression of LohCWIN and LohSuSy during the key transition stage (prior to and after bulbing at 0-15 DAT). Shoots that transitioned into bulblets showed significantly higher LohSuSy expression, especially LohSuSy4 expression, than shoots that did not transition. A symplastic phloem unloading pathway at the bulblet emergence stage (15 DAT) was verified via the 6(5)-carboxyfluorescein diacetate fluorescent tracer. We propose that starch is the fundamental compound in the shoot-to-bulblet transition and that starch synthesis is likely triggered by the switch from apoplastic to symplastic sucrose unloading, which may be related to sucrose depletion. Furthermore, this study is the first to provide a complete inventory of the genes involved in starch metabolism based on our transcriptome data. Two of these genes, LohAGPS1.2b and LohSSIIId, were verified by rapid amplification of cDNA ends cloning, and these data will provide additional support for Lilium research since whole genome is currently lacking.
Collapse
Affiliation(s)
- Yun Wu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ziming Ren
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Cong Gao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Minyi Sun
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shiqi Li
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ruihan Min
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Danqing Li
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiuyun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yanping Wei
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Yin X, Wang T, Zhang M, Zhang Y, Irfan M, Chen L, Zhang L. Role of core structural genes for flavonoid biosynthesis and transcriptional factors in flower color of plants. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1960605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Xiaojuan Yin
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning, PR China
- Key Laboratory of Protected Horticulture (Ministry of Education), College of Horticulture, Shenyang Agricultural University, Liaoning, PR China
| | - Tiantian Wang
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning, PR China
| | - Min Zhang
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning, PR China
| | - Yibing Zhang
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning, PR China
| | - Muhammad Irfan
- Department of Biotechnology, Faculty of Science, University of Sargodha, Sargodha, Pakistan
| | - Lijing Chen
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning, PR China
- Key Laboratory of Protected Horticulture (Ministry of Education), College of Horticulture, Shenyang Agricultural University, Liaoning, PR China
| | - Li Zhang
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning, PR China
| |
Collapse
|
9
|
Chen C, Shi X, Zhou T, Li W, Li S, Bai G. Full-length transcriptome analysis and identification of genes involved in asarinin and aristolochic acid biosynthesis in medicinal plant Asarum sieboldii. Genome 2020; 64:639-653. [PMID: 33320770 DOI: 10.1139/gen-2020-0095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Asarum sieboldii, a well-known traditional Chinese medicinal herb, is used for curing inflammation and ache. It contains both the bioactive ingredient asarinin and the toxic compound aristolochic acid. To address further breeding demand, genes involved in the biosynthetic pathways of asarinin and aristolochic acid should be explored. Therefore, the full-length transcriptome of A. sieboldii was sequenced using PacBio Iso-Seq to determine the candidate transcripts that encode the biosynthetic enzymes of asarinin and aristolochic acid. In this study, 63 023 full-length transcripts were generated with an average length of 1371 bp from roots, stems, and leaves, of which 49 593 transcripts (78.69%) were annotated against public databases. Furthermore, 555 alternative splicing (AS) events, 10 869 long noncoding RNAs (lncRNAs) as well as their 11 291 target genes, and 17 909 simple sequence repeats (SSRs) were identified. The data also revealed 97 candidate transcripts related to asarinin metabolism, of which six novel genes that encoded enzymes involved in asarinin biosynthesis were initially reported. In addition, 56 transcripts related to aristolochic acid biosynthesis were also identified, including CYP81B. In summary, these transcriptome data provide a useful resource to study gene function and genetic engineering in A. sieboldii.
Collapse
Affiliation(s)
- Chen Chen
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, 710061, Xi'an City, Shaanxi Province, China
| | - Xinwei Shi
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, 710061, Xi'an City, Shaanxi Province, China
| | - Tao Zhou
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, 710061, Xi'an City, Shaanxi Province, China
| | - Weimin Li
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, 710061, Xi'an City, Shaanxi Province, China
| | - Sifeng Li
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, 710061, Xi'an City, Shaanxi Province, China
| | - Guoqing Bai
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, 710061, Xi'an City, Shaanxi Province, China
| |
Collapse
|
10
|
Cuadra P, Guajardo J, Carrasco-Orellana C, Stappung Y, Fajardo V, Herrera R. Differential expression after UV-B radiation and characterization of chalcone synthase from the Patagonian hairgrass Deschampsia antarctica. PHYTOCHEMISTRY 2020; 169:112179. [PMID: 31669976 DOI: 10.1016/j.phytochem.2019.112179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Deschampsiaantarctica inhabits the maritime territory of Antarctica and South Patagonia. It grows under very harsh environmental conditions. The survival of this species in low freezing temperatures and under high levels of UV-B radiation may constitute some of the most remarkable adaptive plant responses and suggests that this plant possesses genes associated with cold and UV tolerance. Frequently, increased levels of flavonoids have been linked to highly UV-B irradiated plants. Studies examining the biosynthesis of flavonoids in D. antarctica may provide clues to its success in this extreme environment. In this study, we characterized the family of genes encoding chalcone synthase, a key enzyme of the flavonoid biosynthetic pathway. DaCHS was cloned, sequenced and characterized by using software tools. CHS contains two domains, the N-terminal domain ranges from amino acid 8 to 231 and the C-terminal domain ranges from amino acid 241 to 391. Sequence analysis of the three family members revealed a high degree of identity after comparison with other monocotyledons such as Oryza sativa L., Zea mays L. and Hordeum vulgare L. According to these results, DaCHS can be grouped together with H. vulgare CHS1 in the same branch. The phylogenetic tree was built using MEGA software and the neighbour join method with 1000 bootstrap replicates. A model of DaCHS was constructed by way of structural tools and key amino acid residues were identified at the active motif site.
Collapse
Affiliation(s)
- Pedro Cuadra
- Universidad de Magallanes, Laboratorio de Productos Naturales, P.O. Box 113-D, Punta Arenas, Chile.
| | - Joselin Guajardo
- Universidad de Talca, Instituto de Ciencias Biológicas, 2 norte 685, P.O. Box 747, Talca, Chile
| | | | - Yazmina Stappung
- Universidad de Talca, Instituto de Ciencias Biológicas, 2 norte 685, P.O. Box 747, Talca, Chile
| | - Víctor Fajardo
- Universidad de Magallanes, Laboratorio de Productos Naturales, P.O. Box 113-D, Punta Arenas, Chile
| | - Raúl Herrera
- Universidad de Talca, Instituto de Ciencias Biológicas, 2 norte 685, P.O. Box 747, Talca, Chile.
| |
Collapse
|
11
|
He X, Li W, Zhang W, Jin X, Shenkute AG, Aynalem T, Xu S, Wang W. Transcriptome Sequencing Analysis Provides Insights Into the Response to Fusarium oxysporum in Lilium pumilum. Evol Bioinform Online 2019; 15:1176934319838818. [PMID: 31223231 PMCID: PMC6563521 DOI: 10.1177/1176934319838818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023] Open
Abstract
Lily basal rot, caused by Fusarium oxysporum f. sp. lilii, is one of the most serious diseases of lily. Although the lily germplasm which is resistant to F. oxysporum has been used in disease-resistant breeding, few studies on its molecular mechanism of disease resistance have been reported. To comprehensively study the mechanism of resistance to F. oxysporum, transcriptome sequencings of root tissues from Lilium pumilum inoculated with F. oxysporum or sterile water for 6, 12, or 24 h were performed. A total of 50 GB of data were obtained from the transcriptome sequencings of the 6 L. pumilum samples, and 217 098 Unigenes were obtained after the de novo assembly, of which 38.36% Unigenes were annotated. The sequencing results showed that the numbers of differentially expressed genes at 6, 12, and 24 h after inoculation compared with the control were 111, 254, and 2500, respectively. The functional enrichment analysis of the differentially expressed genes showed that several pathways were involved in responses of L. pumilum, mainly including starch and sucrose metabolism, glycolysis/gluconeogenesis, phenylpropanoid biosynthesis, plant hormone signal transduction, flavonoid biosynthesis, vitamin B6 (VB6) biosynthesis, acid biosynthesis, proteasome, and ribosome. Transcription factor analysis revealed that the WRKY and ERF families played important roles in responses of L. pumilum to F. oxysporum. The results of this study elucidate the molecular responses to F. oxysporum in lily and lay a theoretical foundation for improving lily breeding and strategies for lily basal rot resistance.
Collapse
Affiliation(s)
- Xiangfeng He
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China.,Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Wanyue Li
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Wenzhu Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Xiaotong Jin
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Awraris Getachew Shenkute
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tessema Aynalem
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Agriculture and Environmental Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Shufa Xu
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenhe Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China.,Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| |
Collapse
|
12
|
Yan J, Yu L, He L, Zhu L, Xu S, Wan Y, Wang H, Wang Y, Zhu W. Comparative Transcriptome Analysis of Celery Leaf Blades Identified an R2R3-MYB Transcription Factor that Regulates Apigenin Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5265-5277. [PMID: 30969771 DOI: 10.1021/acs.jafc.9b01052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Apigenin has been proven to possess many pharmacological properties, but the mechanism of regulation of apigenin biosynthesis in plants remains unclear. Apigenin is the main flavonoid in celery and is mainly accumulated in the middle stage of leaf blade development. In this study, comparative transcriptomic analysis revealed a large number of structural genes and transcription factor genes that may be involved in the apigenin metabolic pathway. On the basis of the apigenin content in different celery accessions, an R2R3-MYB transcription factor gene, named AgMYB1, was isolated from the high apigenin celery accession C014. Bioinformatics analysis indicated that AgMYB1 may be involved in flavonoid metabolism. AgMYB1 expression showed a positive relation with the expression of the apigenin accumulation marker gene FNSI and with the apigenin content in different celery tissues. Moreover, overexpression and antisense expression of AgMYB1 in transgenic celery plants significantly increased and reduced the expression of apigenin biosynthetic genes and the apigenin content, respectively. These findings suggest that AgMYB1 is involved in positive regulation of apigenin metabolism in celery.
Collapse
Affiliation(s)
- Jun Yan
- Horticulture Research Institute , Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology , No. 1000 Jin Qi Road , Fengxian District, Shanghai , China
| | - Li Yu
- Horticulture Research Institute , Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology , No. 1000 Jin Qi Road , Fengxian District, Shanghai , China
| | - Lizhoung He
- Horticulture Research Institute , Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology , No. 1000 Jin Qi Road , Fengxian District, Shanghai , China
| | - Longying Zhu
- Horticulture Research Institute , Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology , No. 1000 Jin Qi Road , Fengxian District, Shanghai , China
| | - Shuang Xu
- Horticulture Research Institute , Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology , No. 1000 Jin Qi Road , Fengxian District, Shanghai , China
| | - Yanhui Wan
- Horticulture Research Institute , Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology , No. 1000 Jin Qi Road , Fengxian District, Shanghai , China
| | - Hong Wang
- Horticulture Research Institute , Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology , No. 1000 Jin Qi Road , Fengxian District, Shanghai , China
| | - Ying Wang
- Horticulture Research Institute , Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology , No. 1000 Jin Qi Road , Fengxian District, Shanghai , China
| | - Weimin Zhu
- Horticulture Research Institute , Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology , No. 1000 Jin Qi Road , Fengxian District, Shanghai , China
| |
Collapse
|
13
|
Li J, Chai M, Zhu X, Zhang X, Li H, Wang D, Xing Q, Zhang J, Sun M, Shi L. Cloning and expression analysis of LoCCD8 during IAA-induced bulbils outgrowth in lily (Oriental Hybrid 'Sorbonne'). JOURNAL OF PLANT PHYSIOLOGY 2019; 236:39-50. [PMID: 30878012 DOI: 10.1016/j.jplph.2019.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/03/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
Aerial bulbils, which resemble tiny bulbs, develop from axillary buds and facilitate rapid propagation of Lilium. In most species of lily, bulbils are perpetually dormant and little is known about induction of these vegetative structures. Herein, we proposed that strigolactones (SLs) may regulate the induction of bulbils in Lilium. We tested this hypothesis by isolating and investigating the expression patterns of 2 copies of the carotenoid cleavage dioxygenase8 (CCD8) gene in lily-LoCCD8a and LoCCD8b-with regard to biosynthesis of SLs. Expression analyses revealed that LoCCD8a principally is expressed during vegetative growth, whereas LoCCD8b mainly is expressed during reproductive growth. The maximum quantity of LoCCD8a transcripts was observed in the basal plate in most developmental stages, which suggests that SLs may originate from underground parts, especially the basal plate, and move upward. The effects of treatments with indole-3-acetic acid or SL analog (GR24) on outgrowth of bulbils and expression of LoCCD8 genes suggested that SLs function downstream of auxin to inhibit the outgrowth of bulbil. The expression patterns of LoCCD8a and LoCCD8b at sprouting and bulblet weighting stages also implied that SLs may function in nutrient redistribution. Our findings are expected to promote the utilization of bulbils as vegetative propagules for commercial practice.
Collapse
Affiliation(s)
- Jingrui Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Chai
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaopei Zhu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xuhong Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hui Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Di Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Quan Xing
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinzheng Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Meiyu Sun
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
14
|
Yue Y, Liu J, Shi T, Chen M, Li Y, Du J, Jiang H, Yang X, Hu H, Wang L. Integrating Transcriptomic and GC-MS Metabolomic Analysis to Characterize Color and Aroma Formation during Tepal Development in Lycoris longituba. PLANTS 2019; 8:plants8030053. [PMID: 30823447 PMCID: PMC6473938 DOI: 10.3390/plants8030053] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 01/18/2023]
Abstract
Lycoris longituba, belonging to the Amaryllidaceae family, is a perennial bulb bearing flowers with diverse colors and fragrance. Selection of cultivars with excellent colored and scented flowers has always been the breeding aim for ornamental plants. However, the molecular mechanisms underlying color fading and aroma production during flower expansion in L. longituba remain unclear. Therefore, to systematically investigate these important biological phenomena, the tepals of L. longituba from different developmental stages were used to screen and analyze the metabolic components and relevant genes. Utilizing the Illumina platform, a total of 144,922 unigenes were obtained from the RNA-Seq libraries. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the phenylpropanoid biosynthesis and flavonoid biosynthesis pathways might play important roles during color and aroma changes. Metabolomic analysis identified 29 volatile organic components (VOCs) from different developmental stages of L. longituba tepals, and orthogonal partial least-squares discriminate analysis (OPLS-DA) revealed that trans-β-ocimene—a terpene—was the most important aroma compound. Meanwhile, we found the content of anthocyanin was significantly reduced during the tepal color fading process. Then, we identified two dihydroflavonol-4-reductase (DFR) and three terpene synthase (TPS) genes, for which expression changes coincided with the production patterns of anthocyanins and trans-β-ocimene, respectively. Furthermore, a number of MYB and bHLH transcription factors (TFs) which might be involved in color- and aroma-formation were also identified in L. longituba tepal transcriptomes. Taken together, this is the first comprehensive report of the color and fragrance in tepals of L. longituba and these results could be helpful in understanding these characteristics and their regulation networks.
Collapse
Affiliation(s)
- Yuanzheng Yue
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China.
| | - Jiawei Liu
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China.
| | - Tingting Shi
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China.
| | - Min Chen
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China.
| | - Ya Li
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China.
| | - Juhua Du
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China.
| | - Haiyan Jiang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiulian Yang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China.
| | - Huirong Hu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lianggui Wang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
15
|
Sui J, Qu C, Yang J, Zhang W, Ji Y. Transcriptome changes in the phenylpropanoid pathway in senescing leaves of Toona sinensis. ACTA PHYSIOLOGIAE PLANTARUM 2019; 41:126. [PMID: 32214546 PMCID: PMC7088779 DOI: 10.1007/s11738-019-2915-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 05/27/2019] [Accepted: 06/03/2019] [Indexed: 05/04/2023]
Abstract
Toona sinensis is a deciduous tree native to eastern and southeastern Asia that has important culinary and cultural values. To expand current knowledge of the transcriptome and functional genomics in this species, a de novo transcriptome sequence analysis of young and mature leaf tissues of T. sinensis was performed using the Illumina platform. Over 8.1 Gb of data were generated, assembled into 64,541 unigenes, and annotated with known biological functions. Proteins involved in primary metabolite biosynthesis were identified based on similarities to known proteins, including some related to biosynthesis of carbohydrates, amino acids, lipids, and energy. Analysis of unigenes differentially expressed between young and mature leaves (transcriptomic libraries 'YL' and 'ML', respectively) showed that the KEGG pathways of phenylpropanoid, naringenin, lignin, cutin, suberin, and wax biosynthesis were significantly enriched in mature leaves. These results not only expand knowledge of transcriptome characteristics for this valuable species, but also provide a useful transcriptomic dataset to accelerate the researches on its metabolic mechanisms and functional genomics. This study can also further the understanding of unique aromatic metabolism and Chinese medicinal properties of T. sinensis.
Collapse
Affiliation(s)
- Juanjuan Sui
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine, Fuyang Normal University, Fuyang, 236037 Anhui China
| | - Changqing Qu
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine, Fuyang Normal University, Fuyang, 236037 Anhui China
| | - Jingxia Yang
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine, Fuyang Normal University, Fuyang, 236037 Anhui China
| | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Yuntao Ji
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine, Fuyang Normal University, Fuyang, 236037 Anhui China
| |
Collapse
|
16
|
Yao X, Wu K, Yao Y, Bai Y, Ye J, Chi D. Construction of a high-density genetic map: genotyping by sequencing (GBS) to map purple seed coat color ( Psc) in hulless barley. Hereditas 2018; 155:37. [PMID: 30473656 PMCID: PMC6240233 DOI: 10.1186/s41065-018-0072-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/18/2018] [Indexed: 01/24/2023] Open
Abstract
Background Colored hulless barley are more suitable in food processing compared to normal (yellow) varieties because it is rich in bioactive compounds and produces higher extraction pearling fractions. Therefore, seed coat color is an important agronomic trait for the breeding and study of hulless barley. Results Genotyping-by-sequencing single-nucleotide polymorphism (GBS-SNP) analysis of a doubled haploid (DH) mapping population (Nierumuzha × Kunlun10) was conducted to map the purple seed coat color genes (Psc). A high-density genetic map of hulless barley was constructed, which contains 3662 efficient SNP markers with 1129 bin markers. Seven linkage groups were resolved, which had a total length of 645.56 cM. Chromosome length ranged from 60.21 cM to 127.21 cM, with average marker density of 0.57 cM. A total of five loci accounting for 3.79% to 23.86% of the observed phenotypic variation for Psc were detected using this high-density map. Five structural candidate genes (F3’M, HID, UF3GT, UFGT and 5MAT) and one regulatory factor (Ant1) related to flavonoid or anthocyanin biosynthesis were identified.. Conclusions Five structural candidate genes and one regulatory factor related to flavonoid or anthocyanin biosynthesis have been identified using a high-density genetic map of hulless barley. This study lays the foundation for map-based cloning of Psc but provides a valuable tool for studying marker-trait associations and its application to marker-assisted breeding of hulless barley. Electronic supplementary material The online version of this article (10.1186/s41065-018-0072-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaohua Yao
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China.,2Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016 China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016 China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016 China
| | - Kunlun Wu
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China.,2Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016 China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016 China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016 China
| | - Youhua Yao
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China.,2Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016 China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016 China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016 China
| | - Yixiong Bai
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China.,2Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016 China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016 China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016 China
| | - Jingxiu Ye
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China.,2Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016 China
| | - Dezhao Chi
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China.,2Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016 China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016 China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016 China
| |
Collapse
|
17
|
Ye W, Zhang W, Liu T, Huang Z, Zhu M, Chen Y, Li H, Li S. De Novo Transcriptome Sequencing of the Deep-Sea-Derived Fungus Dichotomomyces cejpii and Analysis of Gliotoxin Biosynthesis Genes. Int J Mol Sci 2018; 19:E1910. [PMID: 29966253 PMCID: PMC6073683 DOI: 10.3390/ijms19071910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/17/2018] [Accepted: 06/26/2018] [Indexed: 12/03/2022] Open
Abstract
Gliotoxin, produced by fungi, is an epipolythiodioxopiperazine (ETP) toxin with bioactivities such as anti-liver fibrosis, antitumor, antifungus, antivirus, antioxidation, and immunoregulation. Recently, cytotoxic gliotoxins were isolated from a deep-sea-derived fungus, Dichotomomyces cejpii. However, the biosynthetic pathway for gliotoxins in D. cejpii remains unclear. In this study, the transcriptome of D. cejpii was sequenced using an Illumina Hiseq 2000. A total of 19,125 unigenes for D. cejpii were obtained from 9.73 GB of clean reads. Ten genes related to gliotoxin biosynthesis were annotated. The expression levels of gliotoxin-related genes were detected through quantitative real-time polymerase chain reaction (qRT-PCR). The GliG gene, encoding a glutathione S-transferase (DC-GST); GliI, encoding an aminotransferase (DC-AI); and GliO, encoding an aldehyde reductase (DC-AR), were cloned and expressed, purified, and characterized. The results suggested the important roles of DC-GST, DC-AT, and DC-AR in the biosynthesis of gliotoxins. Our study on the genes related to gliotoxin biosynthesis establishes a molecular foundation for the wider application of gliotoxins from D. cejpii in the biomedical industry in the future.
Collapse
Affiliation(s)
- Wei Ye
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Yuexiu District, Guangzhou 510070, China.
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Yuexiu District, Guangzhou 510070, China.
| | - Taomei Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Yuexiu District, Guangzhou 510070, China.
| | - Zilei Huang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Yuexiu District, Guangzhou 510070, China.
| | - Muzi Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Yuexiu District, Guangzhou 510070, China.
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Yuexiu District, Guangzhou 510070, China.
| | - Haohua Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Yuexiu District, Guangzhou 510070, China.
| | - Saini Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Yuexiu District, Guangzhou 510070, China.
| |
Collapse
|
18
|
Shi S, Duan G, Li D, Wu J, Liu X, Hong B, Yi M, Zhang Z. Two-dimensional analysis provides molecular insight into flower scent of Lilium 'Siberia'. Sci Rep 2018; 8:5352. [PMID: 29599431 PMCID: PMC5876372 DOI: 10.1038/s41598-018-23588-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/16/2018] [Indexed: 11/10/2022] Open
Abstract
Lily is a popular flower around the world not only because of its elegant appearance, but also due to its appealing scent. Little is known about the regulation of the volatile compound biosynthesis in lily flower scent. Here, we conducted an approach combining two-dimensional analysis and weighted gene co-expression network analysis (WGCNA) to explore candidate genes regulating flower scent production. In the approach, changes of flower volatile emissions and corresponding gene expression profiles at four flower developmental stages and four circadian times were both captured by GC-MS and RNA-seq methods. By overlapping differentially-expressed genes (DEGs) that responded to flower scent changes in flower development and circadian rhythm, 3,426 DEGs were initially identified to be candidates for flower scent production, of which 1,270 were predicted as transcriptional factors (TFs). The DEGs were further correlated to individual flower volatiles by WGCNA. Finally, 37, 41 and 90 genes were identified as candidate TFs likely regulating terpenoids, phenylpropanoids and fatty acid derivatives productions, respectively. Moreover, by WGCNA several genes related to auxin, gibberellins and ABC transporter were revealed to be responsible for flower scent production. Thus, this strategy provides an important foundation for future studies on the molecular mechanisms involved in floral scent production.
Collapse
Affiliation(s)
- Shaochuan Shi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Guangyou Duan
- Energy Plant Research Center, School of Life Sciences, Qilu Normal University, Jinan, China
| | - Dandan Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Jie Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Bo Hong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China.
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
19
|
Du F, Fan J, Wang T, Wu Y, Grierson D, Gao Z, Xia Y. Identification of differentially expressed genes in flower, leaf and bulb scale of Lilium oriental hybrid 'Sorbonne' and putative control network for scent genes. BMC Genomics 2017; 18:899. [PMID: 29166855 PMCID: PMC5700745 DOI: 10.1186/s12864-017-4303-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/14/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Lily is an economically important plant, with leaves and bulbs consisting of overlapping scales, large ornamental flowers and a very large genome. Although it is recognized that flowers and bulb scales are modified leaves, very little is known about the genetic control and biochemical differentiation underlying lily organogenesis and development. Here we examined the differentially expressed genes in flower, leaf and scale of lily, using RNA-sequencing, and identified organ-specific genes, including transcription factors, genes involved in photosynthesis in leaves, carbohydrate metabolism in bulb scales and scent and color production in flowers. RESULTS Over 11Gb data were obtained and 2685, 2296, and 1709 differentially expressed genes were identified in the three organs, with 581, 662 and 977 unique DEGs in F-vs-S, L-vs-S and L-vs-F comparisons. By functional enrichment analysis, genes likely to be involved in biosynthetic pathways leading to floral scent production, such as 1-deoxy-D-xylulose-5-phosphate synthase (DXS), 3-ketoacyl-CoA thiolase (KAT), hydroperoxide lyase (HPL), geranylgeranyl pyrophosphate (GGPP) 4-hydroxy-3-methylbut-2-en-1-yl diphosphate (HDS) and terpene synthase (TPS), and floral color genes, such as dihydroflavonol 4-reductase (DFR), chalcone synthase (CHS), chalcone isomerase (CHI), flavonol synthase (FLS) were identified. Distinct groups of genes that participate in starch and sucrose metabolism, such as sucrose synthase (SS), invertase (INV), sucrose phosphate synthase (SPS), starch synthase (SSS), starch branching enzyme (SBE), ADP-glucose pyrophosphorylase (AGP) andβ-amylase (BAM) and photosynthesis genes (Psa, Psb, Pet and ATP) were also identified. The expression of six floral fragrance-related DGEs showed agreement between qRT-PCR results and RPKM values, confirming the value of the data obtained by RNA-seq. We obtained the open reading frame of the terpene synthase gene from Lilium 'Sorbonne', designated LsTPS, which had 99.55% homology to transcript CL4520.Contig5_All. In addition, 54, 48 and 50 differently expressed transcription factor were identified by pairwise comparisons between the three organs and a regulatory network for monoterpene biosynthesis was constructed. CONCLUSIONS Analysis of differentially expressed genes in flower, leaf and bulb scale of lily, using second generation sequencing technology, yielded detailed information on lily metabolic differentiation in three organs. Analysis of the expression of flower scent biosynthesis genes has provided a model for the regulation of the pathway and identified a candidate gene encoding an enzyme catalyzing the final step in scent production. These digital gene expression profiles provide a valuable and informative database for the further identification and analysis of structural genes and transcription factors in different lily organs and elucidation of their function.
Collapse
Affiliation(s)
- Fang Du
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801 China
- Department of Horticulture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Junmiao Fan
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801 China
| | - Ting Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801 China
| | - Yun Wu
- Department of Horticulture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Donald Grierson
- Department of Horticulture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058 China
- Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Zhongshan Gao
- Department of Horticulture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Yiping Xia
- Department of Horticulture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
20
|
Xu L, Yang P, Feng Y, Xu H, Cao Y, Tang Y, Yuan S, Liu X, Ming J. Spatiotemporal Transcriptome Analysis Provides Insights into Bicolor Tepal Development in Lilium "Tiny Padhye". FRONTIERS IN PLANT SCIENCE 2017; 8:398. [PMID: 28392796 PMCID: PMC5364178 DOI: 10.3389/fpls.2017.00398] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/08/2017] [Indexed: 05/24/2023]
Abstract
The bicolor Asiatic hybrid lily cultivar "Tiny Padhye" is an attractive variety because of its unique color pattern. During its bicolor tepal development, the upper tepals undergo a rapid color change from green to white, while the tepal bases change from green to purple. However, the molecular mechanisms underlying these changes remain largely uncharacterized. To systematically investigate the dynamics of the lily bicolor tepal transcriptome during development, we generated 15 RNA-seq libraries from the upper tepals (S2-U) and basal tepals (S1-D, S2-D, S3-D, and S4-D) of Lilium "Tiny Padhye." Utilizing the Illumina platform, a total of 295,787 unigenes were obtained from 713.12 million high-quality paired-end reads. A total of 16,182 unigenes were identified as differentially expressed genes during tepal development. Using Kyoto Encyclopedia of Genes and Genomes pathway analysis, candidate genes involved in the anthocyanin biosynthetic pathway (61 unigenes), and chlorophyll metabolic pathway (106 unigenes) were identified. Further analyses showed that most anthocyanin biosynthesis genes were transcribed coordinately in the tepal bases, but not in the upper tepals, suggesting that the bicolor trait of "Tiny Padhye" tepals is caused by the transcriptional regulation of anthocyanin biosynthetic genes. Meanwhile, the high expression level of chlorophyll degradation genes and low expression level of chlorophyll biosynthetic genes resulted in the absence of chlorophylls from "Tiny Padhye" tepals after flowering. Transcription factors putatively involved in the anthocyanin biosynthetic pathway and chlorophyll metabolism in lilies were identified using a weighted gene co-expression network analysis and their possible roles in lily bicolor tepal development were discussed. In conclusion, these extensive transcriptome data provide a platform for elucidating the molecular mechanisms of bicolor tepals in lilies and provide a basis for similar research in other closely related species.
Collapse
Affiliation(s)
- Leifeng Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Panpan Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
- Department of Ornamental Plants, College of Landscape Architecture, Nanjing Forestry UniversityNanjing, China
| | - Yayan Feng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Hua Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yuwei Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yuchao Tang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Suxia Yuan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xinyan Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jun Ming
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
21
|
Ye W, Liu T, Zhu M, Zhang W, Li H, Huang Z, Li S. De Novo Transcriptome Analysis of Plant Pathogenic Fungus Myrothecium roridum and Identification of Genes Associated with Trichothecene Mycotoxin Biosynthesis. Int J Mol Sci 2017; 18:E497. [PMID: 28245611 PMCID: PMC5372513 DOI: 10.3390/ijms18030497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/20/2022] Open
Abstract
Myrothecium roridum is a plant pathogenic fungus that infects different crops and decreases the yield of economical crops, including soybean, cotton, corn, pepper, and tomato. Until now, the pathogenic mechanism of M. roridum has remained unclear. Different types of trichothecene mycotoxins were isolated from M. roridum, and trichothecene was considered as a plant pathogenic factor of M. roridum. In this study, the transcriptome of M. roridum in different incubation durations was sequenced using an Illumina Hiseq 2000. A total of 35,485 transcripts and 25,996 unigenes for M. roridum were obtained from 8.0 Gb clean reads. The protein-protein network of the M. roridum transcriptome indicated that the mitogen-activated protein kinases signal pathway also played an important role in the pathogenicity of M. roridum. The genes related to trichothecene biosynthesis were annotated. The expression levels of these genes were also predicted and validated through quantitative real-time polymerase chain reaction. Tri5 gene encoding trichodiene synthase was cloned and expressed, and the purified trichodiene synthase was able to catalyze farnesyl pyrophosphate into different kinds of sesquiterpenoids.Tri4 and Tri11 genes were expressed in Escherichia coli, and their corresponding enzymatic properties were characterized. The phylogenetic tree of trichodiene synthase showed a great discrepancy between the trichodiene synthase from M. roridum and other species. Our study on the genes related to trichothecene biosynthesis establishes a foundation for the M. roridum hazard prevention, thus improving the yields of economical crops.
Collapse
Affiliation(s)
- Wei Ye
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, No. 100 Xianlie Middle Road, Yuexiu District, Guangzhou 510070, China.
| | - Taomei Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, No. 100 Xianlie Middle Road, Yuexiu District, Guangzhou 510070, China.
| | - Muzi Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, No. 100 Xianlie Middle Road, Yuexiu District, Guangzhou 510070, China.
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, No. 100 Xianlie Middle Road, Yuexiu District, Guangzhou 510070, China.
| | - Haohua Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, No. 100 Xianlie Middle Road, Yuexiu District, Guangzhou 510070, China.
| | - Zilei Huang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, No. 100 Xianlie Middle Road, Yuexiu District, Guangzhou 510070, China.
| | - Saini Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, No. 100 Xianlie Middle Road, Yuexiu District, Guangzhou 510070, China.
| |
Collapse
|
22
|
Zhu S, Liu T, Dai Q, Wu D, Zheng X, Tang S, Chen J. Genetic structure and relationships of an associated population in ramie (Boehmeria nivea L. Gaud) evaluated by SSR markers. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1253437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Siyuan Zhu
- Department of Southern Forage Crop and Utilization, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, PR China
| | - Touming Liu
- Department of Southern Forage Crop and Utilization, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, PR China
| | - Qiuzhong Dai
- Department of Southern Forage Crop and Utilization, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, PR China
| | - Duanqing Wu
- Department of Southern Forage Crop and Utilization, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, PR China
| | - Xia Zheng
- Department of Southern Forage Crop and Utilization, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, PR China
| | - Shouwei Tang
- Department of Southern Forage Crop and Utilization, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, PR China
| | - Jianhua Chen
- Department of Southern Forage Crop and Utilization, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, PR China
| |
Collapse
|
23
|
Suzuki K, Suzuki T, Nakatsuka T, Dohra H, Yamagishi M, Matsuyama K, Matsuura H. RNA-seq-based evaluation of bicolor tepal pigmentation in Asiatic hybrid lilies (Lilium spp.). BMC Genomics 2016; 17:611. [PMID: 27516339 PMCID: PMC4982199 DOI: 10.1186/s12864-016-2995-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Color patterns in angiosperm flowers are produced by spatially and temporally restricted deposition of pigments. Identifying the mechanisms responsible for restricted pigment deposition is a topic of broad interest. Some dicots species develop bicolor petals, which are often caused by the post-transcriptional gene silencing (PTGS) of chalcone synthase (CHS) genes. An Asiatic hybrid lily (Lilium spp.) cultivar Lollypop develops bicolor tepals with pigmented tips and white bases. Here, we analyzed the global transcription of pigmented and non-pigmented tepal parts from Lollypop, to determine the main transcriptomic differences. RESULTS De novo assembly of RNA-seq data yielded 49,239 contigs (39,426 unigenes), which included a variety of novel transcripts, such as those involved in flavonoid-glycosylation and sequestration and in regulation of anthocyanin biosynthesis. Additionally, 1258 of the unigenes exhibited significantly differential expression between the tepal parts (false discovery rates <0.05). The pigmented tepal parts accumulated more anthocyanins, and unigenes annotated as anthocyanin biosynthesis genes (e.g., CHS, dihydroflavonol 4-reductase, and anthocyanidin synthase) were expressed 7-30-fold higher than those in non-pigmented parts. These results indicate that the transcriptional regulation of biosynthesis genes is more likely involved in the development of bicolor lily tepals rather than the PTGS of CHS genes. In addition, the expression level of a unigene homologous to LhMYB12, which often regulates full-tepal anthocyanin pigmentation in lilies, was >2-fold higher in the pigmented parts. Thus, LhMYB12 should be involved in the transcriptional regulation of the biosynthesis genes in bicolor tepals. Other factors that potentially suppress or enhance the expression of anthocyanin biosynthesis genes, including a WD40 gene, were identified, and their involvement in bicolor development is discussed. CONCLUSIONS Our results indicate that the bicolor trait of Lollypop tepals is caused by the transcriptional regulation of anthocyanin biosynthesis genes and that the transcription profile of LhMYB12 provides a clue for elucidating the mechanisms of the trait. The tepal transcriptome constructed in this study will accelerate investigations of the genetic controls of anthocyanin color patterns, including the bicolor patterns, of Lilium spp.
Collapse
Affiliation(s)
- Kazuma Suzuki
- Faculty of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo, 060-8589 Japan
| | - Tomohiro Suzuki
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
- Present address: Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505 Japan
| | - Takashi Nakatsuka
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
| | - Hideo Dohra
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
| | - Masumi Yamagishi
- Research Faculty of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo, 060-8589 Japan
| | - Kohei Matsuyama
- Faculty of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo, 060-8589 Japan
| | - Hideyuki Matsuura
- Research Faculty of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo, 060-8589 Japan
| |
Collapse
|
24
|
Su X, Li Q, Chen S, Dong C, Hu Y, Yin L, Yang J. Analysis of the transcriptome of Isodon rubescens and key enzymes involved in terpenoid biosynthesis. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1146086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Xiuhong Su
- Pharmacognosy Discipline, College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Qinglei Li
- Pharmacognosy Discipline, College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Suiqing Chen
- Pharmacognosy Discipline, College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Chengming Dong
- Pharmacognosy Discipline, College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yuansen Hu
- Department of Microbiology, College of Bioengineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Lei Yin
- Pharmacognosy Discipline, College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Jingfan Yang
- Pharmacognosy Discipline, College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
25
|
De novo assembly and characterization of the leaf, bud, and fruit transcriptome from the vulnerable tree Juglans mandshurica for the development of 20 new microsatellite markers using Illumina sequencing. Mol Genet Genomics 2015; 291:849-62. [DOI: 10.1007/s00438-015-1147-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/13/2015] [Indexed: 01/08/2023]
|
26
|
Chen J, Yu R, Liu L, Wang B, Peng D. Large-scale developing of simple sequence repeat markers and probing its correlation with ramie (Boehmeria nivea L.) fiber quality. Mol Genet Genomics 2015; 291:753-61. [PMID: 26577947 DOI: 10.1007/s00438-015-1143-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
Marker-assisted selection is an important component of the discipline of molecular breeding. Using DNA markers to assist in plant breeding, the efficiency and precision could be greatly increased. However, the scarcity number of identified DNA markers has hindered the research and the breeding process of ramie (Boehmeria nivea L.) in many aspects, especially fiber quality, one of the top-priority breeding objectives of ramie. In this study, 4230 SSR loci were identified in 3969 unigenes (6.80 % of 58,369), which were de novo assembled from the transcriptome involving different ramie fiber developmental stages. Among these SSRs, the dinucleotides (1599, 37.80 %) and trinucleotides (772, 18.25 %) were most abundant; the motifs AG/CT (1140, 26.94 %), AT/AT (407, 9.62 %) and AGA/TCT (246, 8.31 %) comprised the three most abundant repeats. A total of 2431 primer pairs were designed flanking the SSRs and 1050 of them were employed in PCR amplification for their usefulness using three ramie cultivars. The results showed that 88.10 % of these primers could generate positive PCR bands in any of the three cultivars. Further phylogenetic analysis that conducted from the PCR amplification of 52 specifically sifted SSR primers within 17 cultivars approved that the possible correlation may exist between the primers and ramie fiber quality. These developed SSR markers could be applied in downstream studies, like genetic and physical maps, quantitative trait loci mapping, genetic diversity studies and cultivar fingerprinting, and breeding processes of ramie with better fiber quality under further confirmation of the correlation with ramie fiber quality.
Collapse
Affiliation(s)
- Jie Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Runqing Yu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Lijun Liu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Bo Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Hongshan District, Wuhan, 430070, Hubei Province, China.
| | - Dingxiang Peng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Hongshan District, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
27
|
Sun XD, Yu XH, Zhou SM, Liu SQ. De novo assembly and characterization of the Welsh onion (Allium fistulosum L.) transcriptome using Illumina technology. Mol Genet Genomics 2015; 291:647-59. [DOI: 10.1007/s00438-015-1131-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 10/09/2015] [Indexed: 12/24/2022]
|
28
|
Wang J, Dang Z, Zhang H, Zheng L, Borjigin T, Wang Y. Gene transcript profiles in the desert plant Nitraria tangutorum during fruit development and ripening. Mol Genet Genomics 2015; 291:383-98. [PMID: 26388259 DOI: 10.1007/s00438-015-1116-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/04/2015] [Indexed: 11/26/2022]
Abstract
Nitraria tangutorum Bobr., a valuable wild shrub distributed in Northwest China, produces edible and medicinal berries. However, little is known about the molecular mechanisms of its fruit development and ripening. We performed de novo transcriptome sequencing of N. tangutorum fruit using the Illumina HiSeq™ 2000 sequencing platform. More than 62.94 million reads were obtained and assembled into 69,306 unigenes (average length, 587 bp). These unigenes were annotated by querying against five databases (Nr, Swiss-Prot, GO, COG, and KEGG); 42,929 and 26,809 unigenes were found in the Nr and Swiss-Prot databases, respectively. In ortholog analyses, 33,363 unigenes were assigned with one or more GO terms, 15,537 hits were aligned to 25 COG classes, and 24,592 unigenes were classified into 128 KEGG pathways. Digital gene expression analyses were conducted on N. tangutorum fruit at the green (S1), yellow (S2), and red (S3) developmental stages. In total, 8240, 5985, and 4994 differentially expressed genes (DEGs) were detected for S1 vs. S2, S1 vs. S3, and S2 vs. S3, respectively. Cluster analyses showed that a large proportion of DEGs related to plant hormones and transcription factors (TFs) showed high expression in S1, down-regulated expression in S2, and up-regulated expression in S3. We analyzed the expression patterns of 23 genes encoding 12 putative enzymes involved in flavonoid biosynthesis. The expression profiles of 10 DEGs involved in flavonoid biosynthesis were validated by Q-PCR analysis. The assembled and annotated transcriptome sequences and gene expression profile analyses provide valuable genetic resources for research on N. tangutorum.
Collapse
Affiliation(s)
- Jia Wang
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Zhenhua Dang
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Huirong Zhang
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Linlin Zheng
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Tebuqin Borjigin
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, People's Republic of China
- College of Mongolian Medicine, Inner Mongolia Medical University, Hohhot, 010110, People's Republic of China
| | - Yingchun Wang
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, People's Republic of China.
| |
Collapse
|