1
|
Combined analysis of silk synthesis and hemolymph amino acid metabolism reveal key roles for glycine in increasing silkworm silk yields. Int J Biol Macromol 2022; 209:1760-1770. [PMID: 35490768 DOI: 10.1016/j.ijbiomac.2022.04.143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022]
Abstract
Rearing silkworms (Bombyx mori) using formula feed has revolutionized traditional mulberry feed strategies. However, low silk production efficiencies persist and have caused bottlenecks, hindering the industrial application of formula feed sericulture. Here, we investigated the effects of formula feed amino acid composition on silk yields. We showed that imbalanced amino acids reduced DNA proliferation, decreased Fib-H, Fib-L, and P25 gene expression, and caused mild autophagy in the posterior silk gland, reducing cocoon shell weight and ratio. When compared with mulberry leaves, Gly, Ala, Ser, and Tyr percentages of total amino acids in formula feed were decreased by 5.26%, while Glu and Arg percentages increased by 9.56%. These changes increased uric acid and several amino acids levels in the hemolymph of silkworms on formula feed. Further analyses showed that Gly and Thr (important synthetic Gly sources) increased silk yields, with Gly increasing amino acid conversion efficiencies to silk protein, and reducing urea levels in hemolymph. Also, Gly promoted endomitotic DNA synthesis in silk gland cells via phosphoinositide 3-kinase (PI3K)/Akt/target of rapamycin (TOR) signaling. In this study, we highlighted the important role of Gly in regulating silk yields in silkworms.
Collapse
|
2
|
Tao S, Wang J, Liu M, Sun F, Li B, Ye C. Haemolymph metabolomic differences in silkworms (Bombyx mori L.) under mulberry leaf and two artificial diet rearing methods. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 109:e21851. [PMID: 34877697 DOI: 10.1002/arch.21851] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The new technology of silkworm (Bombyx mori L.) artificial feed breeding has many characteristics and advantages. This study assessed silkworm rearing with mulberry leaf at all instars (MF) as the control, and used metabolomics to explore the differences in haemolymph metabolism of fifth instar silkworms under two modes of rearing with an artificial diet at all instars (AF) and rearing with an artificial diet during first to third instars and mulberry leaf during the fourth and fifth instars (AMF). The results show that, compared with silkworms of the MF group, the amount and fold change of various metabolites were higher in the haemolymph of AF group silkworms, and the metabolism of amino acids and uric acid, carbohydrates, lipids, and vitamins were changed. These changes may be the reasons for the poor performance of the AF silkworms. However, the amount and fold change of the various metabolites of silkworms in the AMF group were lower, and some metabolic pathways were more active. The amount of material and energy supply were greater. These changes could explain the high efficiency growth of body weight of silkworms after the conversion from artificial diet rearing to mulberry leaf rearing. These findings provide an important theoretical basis for the optimisation of artificial diet rearing technology for silkworms.
Collapse
Affiliation(s)
- Shanshan Tao
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Minghui Liu
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Fan Sun
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Bing Li
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Chongjun Ye
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
3
|
Qin D, Wang G, Dong Z, Xia Q, Zhao P. Comparative Fecal Metabolomes of Silkworms Being Fed Mulberry Leaf and Artificial Diet. INSECTS 2020; 11:E851. [PMID: 33266201 PMCID: PMC7759890 DOI: 10.3390/insects11120851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 02/03/2023]
Abstract
Metabonomics accurately monitors the precise metabolic responses to various dietary patterns. Metabolic profiling allows simultaneous measurement of various fecal metabolites whose concentrations may be affected by food intake. In this study, we analyzed the fecal metabolomes of silkworm (Bombyx mori) larvae reared on fresh mulberry leaves and artificial diets. 57 differentially expressed metabolites were identified by gas chromatography-mass spectrometry. Of these, 39 were up-regulated and 18 were downregulated in the mulberry leaf meal group. Most of the amino acids, carbohydrates and lipids associated with physical development and silk protein biosynthesis were enriched in silkworms reared on mulberry leaves. In contrast, the urea, citric acid, D-pinitol, D-(+)-cellobiose and N-acetyl glucosamine levels were relatively higher in the silkworm feeding on the artificial diets. The findings of this study help clarify the association between diet and metabolic profiling.
Collapse
Affiliation(s)
- DaoYuan Qin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (D.Q.); (G.W.); (Z.D.); (Q.X.)
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - GenHong Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (D.Q.); (G.W.); (Z.D.); (Q.X.)
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - ZhaoMing Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (D.Q.); (G.W.); (Z.D.); (Q.X.)
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - QingYou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (D.Q.); (G.W.); (Z.D.); (Q.X.)
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (D.Q.); (G.W.); (Z.D.); (Q.X.)
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Dong HL, Zhang SX, Tao H, Chen ZH, Li X, Qiu JF, Cui WZ, Sima YH, Cui WZ, Xu SQ. Metabolomics differences between silkworms (Bombyx mori) reared on fresh mulberry (Morus) leaves or artificial diets. Sci Rep 2017; 7:10972. [PMID: 28887546 PMCID: PMC5591246 DOI: 10.1038/s41598-017-11592-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/24/2017] [Indexed: 12/14/2022] Open
Abstract
Silkworms (Bombyx mori) reared on artificial diets have great potential applications in sericulture. However, the mechanisms underlying the enhancement of metabolic utilization by altering silkworm nutrition are unclear. The aim of this study was to investigate the mechanisms responsible for the poor development and low silk protein synthesis efficiency of silkworms fed artificial diets. After multi-generational selection of the ingestive behavior of silkworms to artificial diets, we obtained two strains, one of which developed well and another in which almost all its larvae starved to death on the artificial diets. Subsequently, we analyzed the metabolomics of larval hemolymph by gas chromatography/liquid chromatography–mass spectrometry, and the results showed that vitamins were in critically short supply, whereas the nitrogen metabolic end product of urea and uric acid were enriched substantially, in the hemolymph of the silkworms reared on the artificial diets. Meanwhile, amino acid metabolic disorders, as well as downregulation of carbohydrate metabolism, energy metabolism, and lipid metabolism, co-occurred. Furthermore, 10 male-dominant metabolites and 27 diet-related metabolites that differed between male and female silkworms were identified. These findings provide important insights into the regulation of silkworm metabolism and silk protein synthesis when silkworms adapt to an artificial diet.
Collapse
Affiliation(s)
- Hui-Ling Dong
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, China.,Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, 215123, China
| | - Sheng-Xiang Zhang
- College of Forestry, Shandong Agricultural University, Taian Shandong, 271018, China
| | - Hui Tao
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, China.,Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, 215123, China
| | - Zhuo-Hua Chen
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, China.,Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, 215123, China
| | - Xue Li
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, China.,Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, 215123, China
| | - Jian-Feng Qiu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, China.,Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, 215123, China
| | - Wen-Zhao Cui
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, China.,Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, 215123, China
| | - Yang-Hu Sima
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, China.,Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, 215123, China.,National Engineering Laboratory for Modern Silk (NEAER), Soochow University, Suzhou, 215123, China
| | - Wei-Zheng Cui
- College of Forestry, Shandong Agricultural University, Taian Shandong, 271018, China.
| | - Shi-Qing Xu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, China. .,Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, 215123, China. .,National Engineering Laboratory for Modern Silk (NEAER), Soochow University, Suzhou, 215123, China.
| |
Collapse
|
5
|
Guo H, Cheng T, Chen Z, Jiang L, Guo Y, Liu J, Li S, Taniai K, Asaoka K, Kadono-Okuda K, Arunkumar KP, Wu J, Kishino H, Zhang H, Seth RK, Gopinathan KP, Montagné N, Jacquin-Joly E, Goldsmith MR, Xia Q, Mita K. Expression map of a complete set of gustatory receptor genes in chemosensory organs of Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 82:74-82. [PMID: 28185941 DOI: 10.1016/j.ibmb.2017.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
Most lepidopteran species are herbivores, and interaction with host plants affects their gene expression and behavior as well as their genome evolution. Gustatory receptors (Grs) are expected to mediate host plant selection, feeding, oviposition and courtship behavior. However, due to their high diversity, sequence divergence and extremely low level of expression it has been difficult to identify precisely a complete set of Grs in Lepidoptera. By manual annotation and BAC sequencing, we improved annotation of 43 gene sequences compared with previously reported Grs in the most studied lepidopteran model, the silkworm, Bombyx mori, and identified 7 new tandem copies of BmGr30 on chromosome 7, bringing the total number of BmGrs to 76. Among these, we mapped 68 genes to chromosomes in a newly constructed chromosome distribution map and 8 genes to scaffolds; we also found new evidence for large clusters of BmGrs, especially from the bitter receptor family. RNA-seq analysis of diverse BmGr expression patterns in chemosensory organs of larvae and adults enabled us to draw a precise organ specific map of BmGr expression. Interestingly, most of the clustered genes were expressed in the same tissues and more than half of the genes were expressed in larval maxillae, larval thoracic legs and adult legs. For example, BmGr63 showed high expression levels in all organs in both larval and adult stages. By contrast, some genes showed expression limited to specific developmental stages or organs and tissues. BmGr19 was highly expressed in larval chemosensory organs (especially antennae and thoracic legs), the single exon genes BmGr53 and BmGr67 were expressed exclusively in larval tissues, the BmGr27-BmGr31 gene cluster on chr7 displayed a high expression level limited to adult legs and the candidate CO2 receptor BmGr2 was highly expressed in adult antennae, where few other Grs were expressed. Transcriptional analysis of the Grs in B. mori provides a valuable new reference for finding genes involved in plant-insect interactions in Lepidoptera and establishing correlations between these genes and vital insect behaviors like host plant selection and courtship for mating.
Collapse
Affiliation(s)
- Huizhen Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Zhiwei Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Youbing Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Jianqiu Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Shenglong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Kiyoko Taniai
- National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Kiyoshi Asaoka
- National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Keiko Kadono-Okuda
- National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | | | - Jiaqi Wu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hirohisa Kishino
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Huijie Zhang
- Ministry of Education Key Laboratory of Diagnostic Medicine, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Rakesh K Seth
- Department of Zoology, University of Delhi, Delhi 110007, India
| | | | - Nicolas Montagné
- Sorbonne Universités, UPMC Univ Paris 06, Institute of Ecology and Environmental Sciences IEES-Paris, 4 Place Jussieu, Paris F-75005, France
| | - Emmanuelle Jacquin-Joly
- INRA, Institute of Ecology and Environmental Sciences IEES-Paris, Route de Saint-Cyr, Versailles F-78000, France.
| | - Marian R Goldsmith
- Department of Biological Sciences, University of Rhode Island, Kingston 02881, RI, USA.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Kazuei Mita
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
6
|
Jiang L, Huang C, Sun Q, Guo H, Cheng T, Peng Z, Dang Y, Liu W, Xu G, Xia Q. The 5'-UTR intron of the midgut-specific BmAPN4 gene affects the level and location of expression in transgenic silkworms. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 63:1-6. [PMID: 25982022 DOI: 10.1016/j.ibmb.2015.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/07/2015] [Accepted: 05/04/2015] [Indexed: 05/09/2023]
Abstract
Introns are important for regulating gene expression. BmAPN4, which has a 5'-UTR upstream intron (5 UI), is specifically expressed in the entire silkworm midgut. In our previous study, the promoter region upstream of the 5 UI of BmAPN4 was cloned and identified as the P3 promoter (P3P) with activity only in the anterior midgut. In this study, the sequence consisting of the P3P and the 5 UI was cloned and named as P3P+5 UI. A transgenic vector was constructed in which EGFP was controlled by P3P+5 UI. Transgenic P3+5 UI silkworms were generated by embryo microinjection. RT-PCR showed P3P+5 UI activity throughout the larval stage. Intense green fluorescence was seen only in the entire midgut of P3+5 UI silkworms and expression was confirmed by RT-PCR. qPCR revealed that expression of EGFP in the anterior midgut of P3+5 UI silkworms was 64% higher than in P3 silkworms, indicating the 5 UI sustained intron-mediated enhancement of gene expression. These results suggested that the BmAPN4 5 UI affected the level and site of expression. The 5 UI was cloned and added behind P2P, another specific promoter with activity only in the anterior midgut of silkworm, to construct the P2P+5 UI and transgenic P2+5 UI silkworms. Expression patterns were the same for P2P+5 UI and P2P, suggesting that the 5UI of BmAPN4 did not affect P2P. This study found that the BmAPN4 5 UI affected the amount and location of gene expression. Its influence appeared to be dependent on a specific promoter.
Collapse
Affiliation(s)
- Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Chunlin Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Qiang Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Huizhen Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Zhengwen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Yinghui Dang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Weiqiang Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Guowen Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|