1
|
Wang F, Ning A, Sun X, Zhou Y, Deng H, Zhou H, Chen S, He M, Meng Z, Wang Y, Xia H, Ma X, Xia Q. Fabrication of a transforming growth factor β1 functionalized silk sericin hydrogel through genetical engineering to repair alveolar bone defects in rabbit. Biomaterials 2025; 316:122986. [PMID: 39644879 DOI: 10.1016/j.biomaterials.2024.122986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/08/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Cleft palate is one of the most prevalent congenital craniofacial birth defects in human congenital facial anomaly. Severe cleft palate is usually accompanied by alveolar bone defects (ABDs). Growth factors (GFs) are considered as desirable opportunity to promote the craniofacial healing post the surgery. However, limited resource, susceptibility to degradation, and lack of appropriate delivery systems greatly hinder the clinic application of GFs in the ABDs repair. In this study, a transforming growth factor β1 variant (eTGF-β1) with enhanced extracellular matrix (ECM) binding efficiency was engineered to generate transgenic silkworm using the silk gland biosynthesizing system for cost effective and massive bio-synthesis of the eTGF-β1 functionalized silk fibers. The eTGF-β1 achieved a highly-efficient expression in the middle silk gland (MSG) cells of transgenic silkworm, and secretion and distribution in the sericin layer of silk fiber which accounted for approximately 5.57 ± 0.72 % of the cocoon shell weight. The eTGF-β1 functionalized silk sericin hydrogel (eTGF-β1 SH) was then fabricated with excellent mechanical and processing properties, injectability, biocompatibility, biodegradability, sustained release of eTGF-β1, and capability to promote cell proliferation, which significantly accelerated the bone defect repair particularly the osteoblast maturation and new bone formation through regulating the expressions of the bone formation-related genes in a rabbit alveolar process cleft model. This study provides a valuable strategy for future the treatments of ABDs in rabbit with cleft palate using the genetically engineered eTGF-β1 silk sericin hydrogel.
Collapse
Affiliation(s)
- Feng Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Anfeng Ning
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, China; Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Xuecheng Sun
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, China; Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Yujuan Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Hanxin Deng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Hongji Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Siyu Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Mengyao He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Zihan Meng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Yushu Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Hongfei Xia
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, China; Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| | - Xu Ma
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, China; Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
2
|
Wang F, Lei H, Tian C, Ji Y, Wang F, Deng H, Zhou H, Chen S, Zhou Y, Meng Z, He M, Yang S, Dong H, Tu D, Wang H, Li X, Kaplan DL, Xia Q. An Efficient Biosynthetic System for Developing Functional Silk Fibroin-Based Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414878. [PMID: 39663673 DOI: 10.1002/adma.202414878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Indexed: 12/13/2024]
Abstract
Long historical evolution and domestication endow silkworms with the super ability to synthesize and secrete massive silk proteins using silk glands. The major component of this secretion consists of silk fibroin, considered a promising biomaterial for tissue repairs and engineering. To further expand the utility of this unique protein, there is a continuing need for silk fibroin functionalization. Here, a highly-efficient Fib-HEXP biosynthetic system is established to synthesize massive recombinant RFP in silk fibers using transgenic silkworms, which accounts for ≈7.86% of silk mass and achieves fabrication of fluorescent silk fibroin (SF) biomaterials. The universality of the Fib-HEXP system is validated by genetic engineering glucose oxidase (GOx) functionalized silk fibers for fabricating GOx-SF hydrogels with antimicrobial activity to promote healing of infected diabetic wounds in mouse through the enzyme-catalyzed reaction of glucose to gluconic acid and H2O2. These findings demonstrate that the Fib-HEXP system provides an opportunity for genetic functionalization of SF to broaden the utility of this biomaterial for a range of potential applications.
Collapse
Affiliation(s)
- Feng Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Hexu Lei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Chi Tian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Yanting Ji
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Fangyu Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Hanxin Deng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Hongji Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Siyu Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Yujuan Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Zihan Meng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Mengyao He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Shifeng Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Huan Dong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Ding Tu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - He Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Xian Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| |
Collapse
|
3
|
Wang F, Wang RY, Zhong DB, Zhao P, Xia QY. Highly efficient expression of human extracellular superoxide dismutase (rhEcSOD) with ultraviolet-B-induced damage-resistance activity in transgenic silkworm cocoons. INSECT SCIENCE 2024; 31:1150-1164. [PMID: 38010045 DOI: 10.1111/1744-7917.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 11/29/2023]
Abstract
Extracellular superoxide dismutase (EcSOD) protects tissues from oxidative stress, and thus is considered as a therapeutic agent for many diseases such as atherosclerosis, hypertension, and cancer. However, cost-effective production of bioactive recombinant human EcSOD (rhEcSOD) remains a challenge. Herein, we developed an efficient strategy for producing active rhEcSOD by transgenic silkworms. rhEcSOD was successfully synthesized as homodimers and homotetramers in the middle silk gland and spun into the cocoons with a concentration of 9.48 ± 0.21 mg/g. Purification of rhEcSOD from the cocoons could be conveniently achieved with a purity of 99.50% and a yield of 3.5 ± 0.5 mg/g. Additionally, N-glycosylation at the only site of N89 in rhEcSOD with 10 types were identified. The purified rhEcSOD gained the potent enzymatic activity of 4 162 ± 293 U/mg after Cu/Zn ions incorporation. More importantly, rhEcSOD was capable of penetrating and accumulating in the nuclei of cells to maintain cell morphology and attenuate ultraviolet B-induced cell apoptosis by eliminating reactive oxygen species and inhibiting the C-Jun N-terminal kinase signaling pathway. These results demonstrated that the transgenic silkworm could successfully produce rhEcSOD with enzymatic and biological activities for biomedical applications.
Collapse
Affiliation(s)
- Feng Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Ri-Yuan Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - De-Bin Zhong
- Century Legend Biotechnology Research Institute (Chongqing) Co., Ltd., Chongqing, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qing-You Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Long D, Liu R, Huang Y, Fu A, Zhang Y, Hao Z, Li Q, Xu H, Xiang Z, Zhao A. An efficient and safe strategy for germ cell-specific automatic excision of foreign DNA in F 1 hybrid transgenic silkworms. INSECT SCIENCE 2024; 31:28-46. [PMID: 37356084 DOI: 10.1111/1744-7917.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/27/2023]
Abstract
The safety of transgenic technology is a major obstacle in the popularization and use of transgenic silkworms and their products. In sericulture, only the first filial generation (F1 ) hybrid eggs produced by cross-breeding Japanese and Chinese original strains are usually used for the large-scale breeding of silkworms, but this may result in uncontrolled transgene dispersal during the popularization and application of the F1 hybrid transgenic eggs. To address this issue, we developed a safe and efficient strategy using the GAL4/Upstream activating sequence (UAS) system, the FLP/flippase recognition target (FRT) system, and the gonad-specific expression gene promoters (RSHP1p and Nanosp) for the germ cell-specific automatic excision of foreign DNA in the F1 hybrid transgenic silkworms. We established 2 types of activator strains, R1p::GAL4-Gr and Nsp::GAL4-Gr, containing the testis-specific GAL4 gene expression cassettes driven by RSHP1p or Nanosp, respectively, and 1 type of effector strain, UAS::FLP-Rg, containing the UAS-linked FLP gene expression cassette. The FLP recombinase-mediated sperm-specific complete excision of FRT-flanked target DNA in the F1 double-transgenic silkworms resulting from the hybridization of R1p::GAL4-Gr and UAS::FLP-Rg was 100%, whereas the complete excision efficiency resulting from the hybridization of Nsp::GAL4-Gr and UAS::FLP-Rg ranged from 13.73% to 80.3%. Additionally, we identified a gene, sw11114, that is expressed in both testis and ovary of Bombyx mori, and can be used to establish novel gonad-specific expression systems in transgenic silkworms. This strategy has the potential to fundamentally solve the safety issue in the production of F1 transgenic silkworm eggs and provides an important reference for the safety of transgenic technology in other insect species.
Collapse
Affiliation(s)
- Dingpei Long
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Rongpeng Liu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Yang Huang
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Anyao Fu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Yuli Zhang
- Guangxi Institute of Sericulture Science, Nanning, Guangxi, China
| | - Zhanzhang Hao
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Qiang Li
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, USA
| | - Hanfu Xu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Zhonghuai Xiang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Aichun Zhao
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Tan H, Ji Y, Lei H, Wang F, Dong H, Yang S, Zhou H, Deng H, Chen S, Kaplan DL, Xia Q, Wang F. Large-scale and cost-effective production of recombinant human serum albumin (rHSA) in transgenic Bombyx mori cocoons. Int J Biol Macromol 2023:125527. [PMID: 37379947 DOI: 10.1016/j.ijbiomac.2023.125527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
HSA is considered a versatile natural cargo carrier with multiple bio-functions and applications. However, insufficient supply of HSA has limited widespread use. Although various recombinant expression systems had been applied to produce the rHSA to overcome the limited resource, cost-effective and large scale production of rHSA remains a challenge. Herein, we provide a strategy for the large-scale and cost-effective production of rHSA in cocoons of transgenic silkworms, achieving a final 13.54 ± 1.34 g/kg of rHSA yield in cocoons. rHSA was efficiently synthesized and stable over the long-term in the cocoons at room temperature. Artificial control of silk crystal structure during silk spinning significantly facilitated rHSA extraction and purification, with 99.69 ± 0.33 % purity and a productivity of 8.06 ± 0.17 g rHSA from 1 kg cocoons. The rHSA had the same secondary structure to natural HSA, along with effective drug binding capacity, biocompatibility, and bio-safe. The rHSA was successfully evaluated as a potential substitute in serum-free cell culture. These findings suggest the silkworm bioreactor is promising for large-scale and cost-effective production of high quality rHSA to meet the increased worldwide demand.
Collapse
Affiliation(s)
- Huanhuan Tan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Yanting Ji
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Hexu Lei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Fangyu Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Huan Dong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Shifeng Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Hongji Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Hanxin Deng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Siyu Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China.
| | - Feng Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
6
|
Jia L, Lu W, Hu D, Feng M, Wang A, Wang R, Sun H, Wang P, Xia Q, Ma S. Genetically engineered Blue silkworm capable of synthesizing natural blue pigment. Int J Biol Macromol 2023; 235:123863. [PMID: 36870637 DOI: 10.1016/j.ijbiomac.2023.123863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Synthetic biology is an eco-friendly and sustainable approach for the production of compounds, particularly used when the production processes involve toxic reagents. In this study, we used the silk gland of silkworm to produce indigoidine, a valuable natural blue pigment that cannot be synthesized naturally in animals. We genetically engineered these silkworms by integrating the indigoidine synthetase (idgS) gene from S. lavendulae and the PPTase (Sfp) gene from B. subtilis into the silkworm genome. In the resulting Blue silkworm, indigoidine was detected at a high level in the posterior silk gland (PSG), spanning all developmental stages from larvae to adults, without affecting silkworm growth or development. This synthesized indigoidine was secreted from the silk gland and subsequently stored in the fat body, with only a small fraction being excreted by the Malpighian tubule. Metabolomic analysis revealed that Blue silkworm efficiently synthesized indigoidine by upregulating l-glutamine, the precursor of indigoidine, and succinate, which is related to energy metabolism in the PSG. This study represents the first synthesis of indigoidine in an animal and therefore opens a new avenue for the biosynthesis of natural blue pigments and other valuable small molecules.
Collapse
Affiliation(s)
- Ling Jia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Wei Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Dan Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Min Feng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Aoming Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Ruolin Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Hao Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Pan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China.
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Wang F, Ji YT, Tian C, Wang YC, Xu S, Wang RY, Yang QQ, Zhao P, Xia QY. An inducible constitutive expression system in Bombyx mori mediated by phiC31 integrase. INSECT SCIENCE 2021; 28:1277-1289. [PMID: 32803790 DOI: 10.1111/1744-7917.12866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Inducible gene-expression systems play important roles in gene functional assays in the post-genome era. Streptomyces phage-derived phiC31 integrase, which mediates an irreversible site-specific cassette exchange between the phage attachment site (attP) and the bacterial attachment site (attB), provides a promising option for the construction of a controllable gene-expression system. Here, we report a phiC31 integrase-mediated promoter flip system (FLIP) for the inducible expression of target genes in silkworm (Bombyx mori). First, we constructed a FLIP reporter system, in which a BmAct4 promoter with enhanced translational efficiency was flanked by the attB and attP sites in a head-to-head orientation and further linked in a reverse orientation to a DsRed reporter gene. The coexpression of a C-terminal modified phiC31-NLS integrase carrying a simian virus 40 (SV40) nuclear localization signal (NLS) effectively flipped the BmAct4 promoter through an attB/attP exchange, thereby activating the downstream expression of DsRed in a silkworm embryo-derived cell line, BmE. Subsequently, the FLIP system, together with a system continuously expressing the phiC31-NLS integrase, was used to construct binary transgenic silkworm lines. Hybridization between FLIP and phiC31-NLS transgenic silkworm lines resulted in the successful flipping of the BmAct4 promoter, with an approximately 39% heritable transformation efficiency in silkworm offspring, leading to the constitutive and high-level expression of DsRed in silkworms, which accounted for approximately 0.81% of the silkworm pupal weight. Our successful development of the FLIP system offers an effective alternative for manipulating gene expression in silkworms and other lepidopteran species.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yan-Ting Ji
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing, China
| | - Chi Tian
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yuan-Cheng Wang
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing, China
| | - Shen Xu
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing, China
| | - Ri-Yuan Wang
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qian-Qian Yang
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Jia X, Pang X, Yuan Y, Gao Q, Lu M, Zhang G, Dai F, Zhao T. Unpredictable recombination of PB transposon in Silkworm: a potential risk. Mol Genet Genomics 2020; 296:271-277. [PMID: 33201294 DOI: 10.1007/s00438-020-01743-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022]
Abstract
The piggyBac (PB) transposon is the most widely used vector for generating transgenic silkworms. The stability of the PB transposon in the receptor is a serious concern that requires attention because of biosafety concerns. In this study, we found that the transgene silkworm developed loss of reporter gene traits. To further investigate the regularity, we traced the genes and traits of this silkworm. After successful alteration of the silkworm genome with the MASP1 gene (named red-eyed silkworm; RES), silkworm individuals with lost reporter genes were found after long-term transgenerational breeding and were designated as the white-eyed silkworm (WES). PCR amplification indicated that exogenous genes had been lost in the WES. Testing was conducted on the PB transposons, and the left arm (L arm) did not exist; however, the right arm (R arm) was preserved. Amino acid analysis showed that the amino acid content of the WES changed versus the common silkworm and RES. These results indicate that the migration of PB transposons in Bombyx mori does occur and is unpredictable. This is because the silkworm genome contains multiple PB-like sequences that might influence the genetic stability of transgenic lines. When using PB transposons as a transgene vector, it is necessary to fully evaluate and take necessary measures to prevent its re-migration in the recipient organism. Further experiments are needed if we want to clarify the regularity of the retransposition phenomenon and the direct and clear association with similar sequences of transposons.
Collapse
Affiliation(s)
- Xuehua Jia
- State Key Laboratory of Silkworm Genome Biology, College of Textile and Garment, Southwest University, No. 2 Tiansheng Street, Beibei, Chongqing, 400715, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Xiaoyu Pang
- State Key Laboratory of Silkworm Genome Biology, College of Textile and Garment, Southwest University, No. 2 Tiansheng Street, Beibei, Chongqing, 400715, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Yajie Yuan
- State Key Laboratory of Silkworm Genome Biology, College of Textile and Garment, Southwest University, No. 2 Tiansheng Street, Beibei, Chongqing, 400715, China
| | - Qiang Gao
- State Key Laboratory of Silkworm Genome Biology, College of Textile and Garment, Southwest University, No. 2 Tiansheng Street, Beibei, Chongqing, 400715, China
| | - Ming Lu
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Guangxian Zhang
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - FangYing Dai
- State Key Laboratory of Silkworm Genome Biology, College of Textile and Garment, Southwest University, No. 2 Tiansheng Street, Beibei, Chongqing, 400715, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China.,Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Tianfu Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Textile and Garment, Southwest University, No. 2 Tiansheng Street, Beibei, Chongqing, 400715, China. .,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China.
| |
Collapse
|
9
|
Transdermal peptide conjugated to human connective tissue growth factor with enhanced cell proliferation and hyaluronic acid synthesis activities produced by a silkworm silk gland bioreactor. Appl Microbiol Biotechnol 2020; 104:9979-9990. [DOI: 10.1007/s00253-020-10836-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/19/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
|
10
|
Wang F, Hou K, Chen W, Wang Y, Wang R, Tian C, Xu S, Ji Y, Yang Q, Zhao P, Yu L, Lu Z, Zhang H, Li F, Wang H, He B, Kaplan DL, Xia Q. Transgenic PDGF-BB/sericin hydrogel supports for cell proliferation and osteogenic differentiation. Biomater Sci 2020; 8:657-672. [DOI: 10.1039/c9bm01478k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The present study demonstrates fabrication of PDGF-BB functionalized sericin hydrogel to explore biomaterials-related utility in bone tissue engineering.
Collapse
|
11
|
Chen E, Chen Z, Li S, Xing D, Guo H, Liu J, Ji X, Lin Y, Liu S, Xia Q. MicroRNAs bmo-miR-2739 and novel-miR-167 coordinately regulate the expression of the vitellogenin receptor in Bombyx mori oogenesis. Development 2020; 147:dev.183723. [DOI: 10.1242/dev.183723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
Vitellogenin receptors (VgRs) play critical roles in oogenesis by mediating endocytosis of vitellogenin and other nutrients in ovipara. We conducted small RNA sequencing and screening with a luciferase reporter system, and found that bmo-miR-2739 and a novel miRNA (novel-miR-167) coordinately regulate the expression of VgR in Bombyx mori (BmVgR). Further analyses suggested that these two miRNAs direct target repression by binding directly to the BmVgR 3ʹ untranslated region. Forced expression of either miRNA using the piggyBac system blocked vitellogenin (Vg) transport and retarded ovariole development. Antagomir silencing of bmo-miR-2739 or novel-miR-167 resulted in increased amounts of BmVgR protein in the ovaries and BmVgR mRNA in the fat body. This evidence combined with spatiotemporal expression profiles revealed that these two miRNAs function together to fine-tune the amount of BmVgR protein for ovarian development. Additionally, novel-miR-167 mainly switched on the posttranscriptional repression of BmVgR in non-ovarian tissues. The results of this study contribute to a better understanding of the function of miRNA during ovarian development of a lepidopteran and suggest a new strategy for controlling insect reproduction.
Collapse
Affiliation(s)
- Enxiang Chen
- Biological Science Research Center, Southwest University, Chongqing 400716, PR China
- Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing 400716, PR China
| | - Zhiwei Chen
- Biological Science Research Center, Southwest University, Chongqing 400716, PR China
- Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing 400716, PR China
| | - Shenglong Li
- Biological Science Research Center, Southwest University, Chongqing 400716, PR China
- Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing 400716, PR China
| | - Dongxu Xing
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Huizhen Guo
- Biological Science Research Center, Southwest University, Chongqing 400716, PR China
- Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing 400716, PR China
| | - Jianqiu Liu
- Biological Science Research Center, Southwest University, Chongqing 400716, PR China
- Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing 400716, PR China
| | - Xiaocun Ji
- Research Center of Bioenergy & Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Ying Lin
- Biological Science Research Center, Southwest University, Chongqing 400716, PR China
- Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing 400716, PR China
| | - Shiping Liu
- Biological Science Research Center, Southwest University, Chongqing 400716, PR China
- Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing 400716, PR China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400716, PR China
- Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing 400716, PR China
| |
Collapse
|
12
|
Wang Y, Wang F, Xu S, Wang R, Chen W, Hou K, Tian C, Wang F, Zhao P, Xia Q. Optimization of a 2A self-cleaving peptide-based multigene expression system for efficient expression of upstream and downstream genes in silkworm. Mol Genet Genomics 2019; 294:849-859. [PMID: 30895377 DOI: 10.1007/s00438-019-01534-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 01/31/2019] [Indexed: 10/27/2022]
Abstract
The multigene expression system is highly attractive to co-express multiple genes or multi-subunit complex-based genes for their functional studies, and in gene therapy and visual tracking of expressed proteins. However, the current multiple gene co-expression strategies usually suffer from severe inefficiency and unbalanced expression of multiple genes. Here, we report on an improved 2A self-cleaving peptide (2A)-based multigene expression system (2A-MGES), by introducing an optimized Kozak region (Ck) and altering the gene arrangement, both of which contributed to the efficient expression of two fluorescent protein genes in silkworm. By co-expressing DsRed and EGFP genes in insect cells and silkworms, the potent Ck was first found to improve the translation efficiency of downstream genes, and the expression of the flanking genes of 2A were improved by altering the gene arrangement in 2A-MGES. Moreover, we showed that combining Ck and an optimized gene arrangement in 2A-MGES could synergistically improve the expression of genes in the cell. Further, these two flanking genes, regulated by modified 2A-MGES, were further co-expressed in the middle silk gland and secreted into the cocoon, and both achieved efficient expression in the transgenic silkworms and their cocoons. These results suggested that the modified Ck-2A-MGES will be a potent tool for multiple gene expression, for studies of their functions, and their applications in insect species.
Collapse
Affiliation(s)
- Yuancheng Wang
- Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Feng Wang
- Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, 400715, People's Republic of China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, People's Republic of China
| | - Sheng Xu
- Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Riyuan Wang
- Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Wenjing Chen
- Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Kai Hou
- Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Chi Tian
- Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Fan Wang
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, People's Republic of China
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China.
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
13
|
A silkworm based silk gland bioreactor for high-efficiency production of recombinant human lactoferrin with antibacterial and anti-inflammatory activities. J Biol Eng 2019; 13:61. [PMID: 31312254 PMCID: PMC6612213 DOI: 10.1186/s13036-019-0186-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Background Silk glands are used by silkworms to spin silk fibers for making their cocoons. These have recently been regarded as bioreactor hosts for the cost-effective production of other valuable exogenous proteins and have drawn wide attention. Results In this study, we established a transgenic silkworm strain which synthesizes the recombinant human lactoferrin (rhLF) in the silk gland and spins them into the cocoon by our previously constructed silk gland based bioreactor system. The yield of the rhLF with the highest expression level was estimated to be 12.07 mg/g cocoon shell weight produced by the transgenic silkworm strain 34. Utilizing a simple purification protocol, 9.24 mg of the rhLF with recovery of 76.55% and purity of 95.45% on average could be purified from 1 g of the cocoons. The purified rhLF was detected with a secondary structure similar with the commercially purchased human lactoferrin. Eight types of N-glycans which dominated by the GlcNAc (4) Man (3) (61.15%) and the GlcNAc (3) Man (3) (17.98%) were identified at the three typical N-glycosylation sites of the rhLF. Biological activities assays showed the significant evidence that the purified rhLF could relief the lipopolysaccharide (LPS)-induced cell inflammation in RAW264.7 cells and exhibit potent antibacterial bioactivities against the Escherichia coli (E. coli) and Bacillus subtilis. Conclusions These results show that the middle silk gland of silkworm can be an efficient bioreactor for the mass production of rhLF and the potential application in anti-inflammation and antibacterial. Electronic supplementary material The online version of this article (10.1186/s13036-019-0186-z) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Wang Y, Wang F, Xu S, Wang R, Chen W, Hou K, Tian C, Wang F, Yu L, Lu Z, Zhao P, Xia Q. Genetically engineered bi-functional silk material with improved cell proliferation and anti-inflammatory activity for medical application. Acta Biomater 2019; 86:148-157. [PMID: 30586645 DOI: 10.1016/j.actbio.2018.12.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/14/2018] [Accepted: 12/21/2018] [Indexed: 01/01/2023]
Abstract
Functional silk is a promising material for future medical applications. These include fabrication of diverse silk fiber and silk protein-regenerated biomaterials such as silk sutures, hydrogel, films, and 3D scaffolds for wound healing and tissue regeneration and reconstruction. Here, a novel bi-functional silk with improved cell proliferation and anti-inflammatory activities was created by co-expressing the human basic fibroblast growth factor (FGF2) and transforming growth factor-β1 (TGF_β1) genes in silkworm. First, both FGF2 and TGF_β1 genes were confirmed to be successfully expressed in silk thread. The characterization of silk properties by SEM, FTIR, and mechanical tests showed that this new silk (FT silk) had a similar diameter, inner molecular composition, and mechanical properties as those of normal silk. Additionally, expressed FGF2 and TGF_β1 proteins were continuously and slowly released from FT silk for one week. Most importantly, the FGF2 and TGF_β1 contained in FT silk not only promoted cell proliferation by activating the ERK pathway but also significantly reduced LPS-induced inflammation responses in macrophages by mediating the Smad pathway. Moreover, this FT silk had no apparent toxicity for cell growth and caused no cell inflammation. These properties suggest that it has a potential for medical applications. STATEMENT OF SIGNIFICANCE: Silk spun by domestic silkworm is a promising material for fabricating various silk protein regenerated biomaterials in medical area, since it owes good biocompatibility, biodegradability and low immunogenicity. Recently, fabricating various functional silk fibers and regenerated silk protein biomaterials which has ability of releasing functional protein factor is the hot point field. This study is a first time to create a novel bi-functional silk material with the improved cell proliferation and anti-inflammatory activity by genetic engineered technology. This novel silk has a great application potential as new and novel medical material, and this study also provides a new strategy to create various functional or multifunctional silk fiber materials in future.
Collapse
|
15
|
Chen W, Wang F, Tian C, Wang Y, Xu S, Wang R, Hou K, Zhao P, Yu L, Lu Z, Xia Q. Transgenic Silkworm-Based Silk Gland Bioreactor for Large Scale Production of Bioactive Human Platelet-Derived Growth Factor (PDGF-BB) in Silk Cocoons. Int J Mol Sci 2018; 19:ijms19092533. [PMID: 30150526 PMCID: PMC6164493 DOI: 10.3390/ijms19092533] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/20/2018] [Indexed: 01/17/2023] Open
Abstract
Human platelet derived growth factor (PDGF) is a major therapeutic protein with great demand in the clinical setting; however, its rate of supply is far from meeting needs. Here, we provide an effective strategy to produce PDGF-BB in large quantities using a transgenic silkworm. The codon-optimized PDGF-B gene regulated by the highly efficient sericin-1 expression system was integrated into the genome of a silkworm. The high transcriptional expression of the PDGF-BB gene in the transgenic silkworm competitively inhibited the transcription expression of the endogenous sericin-1 gene which caused a significant 37.5% decline. The PDGF-BB synthesized in the middle silk gland (MSG) of transgenic silkworms could form a homodimer through intermolecular disulfide bonds, which is then secreted into sericin lumen and finally, distributed in the sericin layer of the cocoon. In this study, a protein quantity of approximately 0.33 mg/g was found in the cocoon. Following a purification process, approximately 150.7 μg of recombinant PDGF-BB with a purity of 82% was purified from 1 g of cocoons. Furthermore, the bioactivity assays showed that the purified recombinant PDGF-BB was able to promote the growth, proliferation and migration of NIH/3T3 cells significantly. These results suggest that the silk gland bioreactor can produce active recombinant PDGF-BB as an efficient mitogen and wound healing agent.
Collapse
Affiliation(s)
- Wenjing Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Mulberry Silkworm, Southwest University, Chongqing 400715, China.
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Mulberry Silkworm, Southwest University, Chongqing 400715, China.
| | - Chi Tian
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Mulberry Silkworm, Southwest University, Chongqing 400715, China.
| | - Yuancheng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Mulberry Silkworm, Southwest University, Chongqing 400715, China.
| | - Sheng Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Mulberry Silkworm, Southwest University, Chongqing 400715, China.
| | - Riyuan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Mulberry Silkworm, Southwest University, Chongqing 400715, China.
| | - Kai Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Mulberry Silkworm, Southwest University, Chongqing 400715, China.
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Mulberry Silkworm, Southwest University, Chongqing 400715, China.
| | - Ling Yu
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, China.
| | - Zhisong Lu
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, China.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Mulberry Silkworm, Southwest University, Chongqing 400715, China.
| |
Collapse
|
16
|
Ma S, Xia X, Li Y, Sun L, Liu Y, Liu Y, Wang X, Shi R, Chang J, Zhao P, Xia Q. Increasing the yield of middle silk gland expression system through transgenic knock-down of endogenous sericin-1. Mol Genet Genomics 2017; 292:823-831. [PMID: 28357595 DOI: 10.1007/s00438-017-1311-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/14/2017] [Indexed: 11/29/2022]
Abstract
Various genetically modified bioreactor systems have been developed to meet the increasing demands of recombinant proteins. Silk gland of Bombyx mori holds great potential to be a cost-effective bioreactor for commercial-scale production of recombinant proteins. However, the actual yields of proteins obtained from the current silk gland expression systems are too low for the proteins to be dissolved and purified in a large scale. Here, we proposed a strategy that reducing endogenous sericin proteins would increase the expression yield of foreign proteins. Using transgenic RNA interference, we successfully reduced the expression of BmSer1 to 50%. A total 26 transgenic lines expressing Discosoma sp. red fluorescent protein (DsRed) in the middle silk gland (MSG) under the control of BmSer1 promoter were established to analyze the expression of recombinant. qRT-PCR and western blotting showed that in BmSer1 knock-down lines, the expression of DsRed had significantly increased both at mRNA and protein levels. We did an additional analysis of DsRed/BmSer1 distribution in cocoon and effect of DsRed protein accumulation on the silk fiber formation process. This study describes not only a novel method to enhance recombinant protein expression in MSG bioreactor, but also a strategy to optimize other bioreactor systems.
Collapse
Affiliation(s)
- Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing, 400716, China
| | - Xiaojuan Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Yufeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Le Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Yue Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Yuanyuan Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Xiaogang Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Run Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Jiasong Chang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing, 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing, 400716, China.
| |
Collapse
|
17
|
Large-scale production of bioactive recombinant human acidic fibroblast growth factor in transgenic silkworm cocoons. Sci Rep 2015; 5:16323. [PMID: 26567460 PMCID: PMC4644950 DOI: 10.1038/srep16323] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/13/2015] [Indexed: 12/29/2022] Open
Abstract
With an increasing clinical demand for functional therapeutic proteins every year, there is an increasing requirement for the massive production of bioactive recombinant human acidic fibroblast growth factor (r-haFGF). In this present study, we delicately explore a strategy for the mass production of r-haFGF protein with biological activity in the transgenic silkworm cocoons. The sequence-optimized haFGF was inserted into an enhanced sericin-1 expression system to generate the original transgenic silkworm strain, which was then further crossed with a PIG jumpstarter strain to achieve the remobilization of the expression cassette to a “safe harbor” locus in the genome for the efficient expression of r-haFGF. In consequence, the expression of r-haFGF protein in the mutant line achieved a 5.6-fold increase compared to the original strain. The high content of r-haFGF facilitated its purification and large-scald yields. Furthermore, the r-haFGF protein bioactively promoted the growth, proliferation and migration of NIH/3T3 cells, suggesting the r-haFGF protein possessed native mitogenic activity and the potential for wound healing. These results show that the silk gland of silkworm could be an efficient bioreactor strategy for recombinant production of bioactive haFGF in silkworm cocoons.
Collapse
|
18
|
2A self-cleaving peptide-based multi-gene expression system in the silkworm Bombyx mori. Sci Rep 2015; 5:16273. [PMID: 26537835 PMCID: PMC4633692 DOI: 10.1038/srep16273] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/07/2015] [Indexed: 12/15/2022] Open
Abstract
Fundamental and applied studies of silkworms have entered the functional genomics era. Here, we report a multi-gene expression system (MGES) based on 2A self-cleaving peptide (2A), which regulates the simultaneous expression and cleavage of multiple gene targets in the silk gland of transgenic silkworms. First, a glycine-serine-glycine spacer (GSG) was found to significantly improve the cleavage efficiency of 2A. Then, the cleavage efficiency of six types of 2As with GSG was analyzed. The shortest porcine teschovirus-1 2A (P2A-GSG) exhibited the highest cleavage efficiency in all insect cell lines that we tested. Next, P2A-GSG successfully cleaved the artificial human serum albumin (66 kDa) linked with human acidic fibroblast growth factor (20.2 kDa) fusion genes and vitellogenin receptor fragment (196 kD) of silkworm linked with EGFP fusion genes, importantly, vitellogenin receptor protein was secreted to the outside of cells. Furthermore, P2A-GSG successfully mediated the simultaneous expression and cleavage of a DsRed and EGFP fusion gene in silk glands and caused secretion into the cocoon of transgenic silkworms using our sericin1 expression system. We predicted that the MGES would be an efficient tool for gene function research and innovative research on various functional silk materials in medicine, cosmetics, and other biomedical areas.
Collapse
|