1
|
Yang S, Xue S, Shan L, Fan S, Sun L, Dong Y, Li S, Gao Y, Qi Y, Yang L, An M, Wang F, Pang J, Zhang W, Weng Y, Liu X, Ren H. The CsTM alters multicellular trichome morphology and enhances resistance against aphid by interacting with CsTIP1;1 in cucumber. J Adv Res 2025; 69:17-30. [PMID: 38609051 PMCID: PMC11954831 DOI: 10.1016/j.jare.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
The multicellular trichomes of cucumber (Cucumis sativus L.) serve as the primary defense barrier against external factors, whose impact extends beyond plant growth and development to include commercial characteristics of fruits. The aphid (Aphis gossypii Glover) is one of prominent pests in cucumber cultivation. However, the relationship between physical properties of trichomes and the aphid resistance at molecular level remains largely unexplored. Here, a spontaneous mutant trichome morphology (tm) was characterized by increased susceptibility towards aphid. Further observations showed the tm exhibited a higher and narrower trichome base, which was significantly distinguishable from that in wild-type (WT). We conducted map-based cloning and identified the candidate, CsTM, encoding a C-lectin receptor-like kinase. The knockout mutant demonstrated the role of CsTM in trichome morphogenesis. The presence of SNP does not regulate the relative expression of CsTM, but diminishes the CsTM abundance of membrane proteins in tm. Interestingly, CsTM was found to interact with CsTIP1;1, which encodes an aquaporin with extensive reports in plant resistance and growth development. The subsequent aphid resistance experiments revealed that both CsTM and CsTIP1;1 regulated the development of trichomes and conferred resistance against aphid by affecting cytoplasmic H2O2 contents. Transcriptome analysis revealed a significant enrichment of genes associated with pathogenesis, calcium binding and cellulose synthase. Overall, our study elucidates an unidentified mechanism that CsTM-CsTIP1;1 alters multicellular trichome morphology and enhances resistance against aphid, thus providing a wholly new perspective for trichome morphogenesis in cucumber.
Collapse
Affiliation(s)
- Songlin Yang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Shudan Xue
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Li Shan
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Shanshan Fan
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Lei Sun
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Yuming Dong
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Sen Li
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Yiming Gao
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Yu Qi
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Lin Yang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Menghang An
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Fang Wang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Jin'an Pang
- Tianjin Derit Seeds Co. Ltd, Tianjin 300384, PR China
| | - Wenzhu Zhang
- Tianjin Derit Seeds Co. Ltd, Tianjin 300384, PR China
| | - Yiqun Weng
- USDA‑ARS Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin-Madison, Madison, USA
| | - Xingwang Liu
- College of Horticulture, China Agricultural University, Beijing 100193, PR China.
| | - Huazhong Ren
- College of Horticulture, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
2
|
Dong Y, Li S, Wu H, Gao Y, Feng Z, Zhao X, Shan L, Zhang Z, Ren H, Liu X. Advances in understanding epigenetic regulation of plant trichome development: a comprehensive review. HORTICULTURE RESEARCH 2023; 10:uhad145. [PMID: 37691965 PMCID: PMC10483894 DOI: 10.1093/hr/uhad145] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/14/2023] [Indexed: 09/12/2023]
Abstract
Plant growth and development are controlled by a complex gene regulatory network, which is currently a focal point of research. It has been established that epigenetic factors play a crucial role in plant growth. Trichomes, specialized appendages that arise from epidermal cells, are of great significance in plant growth and development. As a model system for studying plant development, trichomes possess both commercial and research value. Epigenetic regulation has only recently been implicated in the development of trichomes in a limited number of studies, and microRNA-mediated post-transcriptional regulation appears to dominate in this context. In light of this, we have conducted a review that explores the interplay between epigenetic regulations and the formation of plant trichomes, building upon existing knowledge of hormones and transcription factors in trichome development. Through this review, we aim to deepen our understanding of the regulatory mechanisms underlying trichome formation and shed light on future avenues of research in the field of epigenetics as it pertains to epidermal hair growth.
Collapse
Affiliation(s)
- Yuming Dong
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Sen Li
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Haoying Wu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yiming Gao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhongxuan Feng
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xi Zhao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Li Shan
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhongren Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Huazhong Ren
- College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya Hainan 572000, China
| | - Xingwang Liu
- College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya Hainan 572000, China
| |
Collapse
|
3
|
Identification of the WRKY Gene Family and Characterization of Stress-Responsive Genes in Taraxacum kok-saghyz Rodin. Int J Mol Sci 2022; 23:ijms231810270. [PMID: 36142183 PMCID: PMC9499643 DOI: 10.3390/ijms231810270] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
WRKY transcription factors present unusual research value because of their critical roles in plant physiological processes and stress responses. Taraxacum kok-saghyz Rodin (TKS) is a perennial herb of dandelion in the Asteraceae family. However, the research on TKS WRKY TFs is limited. In this study, 72 TKS WRKY TFs were identified and named. Further comparison of the core motifs and the structure of the WRKY motif was analyzed. These TFs were divided into three groups through phylogenetic analysis. Genes in the same group of TkWRKY usually exhibit a similar exon-intron structure and motif composition. In addition, virtually all the TKS WRKY genes contained several cis-elements related to stress response. Expression profiling of the TkWRKY genes was assessed using transcriptome data sets and Real-Time RT-PCR data in tissues during physiological development, under abiotic stress and hormonal treatments. For instance, the TkWRKY18, TkWRKY23, and TkWRKY38 genes were significantly upregulated during cold stress, whereas the TkWRKY21 gene was upregulated under heat-stress conditions. These results could provide a basis for further studies on the function of the TKS WRKY gene family and genetic amelioration of TKS germplasm.
Collapse
|
4
|
Dong M, Xue S, Bartholomew ES, Zhai X, Sun L, Xu S, Zhang Y, Yin S, Ma W, Chen S, Feng Z, Geng C, Li X, Liu X, Ren H. Transcriptomic and functional analysis provides molecular insights into multicellular trichome development. PLANT PHYSIOLOGY 2022; 189:301-314. [PMID: 35171294 PMCID: PMC9070826 DOI: 10.1093/plphys/kiac050] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/13/2022] [Indexed: 05/31/2023]
Abstract
Trichomes, the hair-like structures located on aerial parts of most vascular plants, are associated with a wide array of biological processes and affect the economic value of certain species. The processes involved in unicellular trichome formation have been well-studied in Arabidopsis (Arabidopsis thaliana). However, our understanding of the morphological changes and the underlying molecular processes involved in multicellular trichome development is limited. Here, we studied the dynamic developmental processes involved in glandular and nonglandular multicellular trichome formation in cucumber (Cucumis sativus L.) and divided these processes into five sequential stages. To gain insights into the underlying mechanisms of multicellular trichome formation, we performed a time-course transcriptome analysis using RNA-sequencing analysis. A total of 711 multicellular trichome-related genes were screened and a model for multicellular trichome formation was developed. The transcriptome and co-expression datasets were validated by reverse transcription-quantitative PCR and in situ hybridization. In addition, virus-induced gene silencing analysis revealed that CsHOMEOBOX3 (CsHOX3) and CsbHLH1 are involved in nonglandular trichome elongation and glandular trichome formation, respectively, which corresponds with the transcriptome data. This study presents a transcriptome atlas that provides insights into the molecular processes involved in multicellular trichome formation in cucumber and can be an important resource for future functional studies.
Collapse
Affiliation(s)
- Mingming Dong
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Shudan Xue
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ezra S Bartholomew
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xuling Zhai
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lei Sun
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Shuo Xu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yaqi Zhang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Shuai Yin
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Wenyue Ma
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Shuying Chen
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhongxuan Feng
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chao Geng
- Department of Plant Pathology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Xiangdong Li
- Department of Plant Pathology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | | | | |
Collapse
|
5
|
Lv D, Wang G, Zhang Q, Yu Y, Qin PC, Pang JA, Sun JX, Zhang KY, He HL, Cai R, Pan JS. Comparative Transcriptome Analysis of Hard and Tender Fruit Spines of Cucumber to Identify Genes Involved in the Morphological Development of Fruit Spines. FRONTIERS IN PLANT SCIENCE 2022; 13:797433. [PMID: 35371132 PMCID: PMC8965156 DOI: 10.3389/fpls.2022.797433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
The spines of cucumber fruit not only have important commercial value but are also a classical tissue to study cell division and differentiation modes of multicellular trichomes. It has been reported that CsTs (C-type Lectin receptor-like kinase) can influence the development of fruit spines. In this study, we took a pair of cucumber materials defined as hard (Ts, wild type) and tender spines (ts, mutant) and defined the developmental process of fruit spines as consisting of four stages (stage I to stage IV) by continuously observing by microscope and SEM. Comparisons of transcriptome profiles at different development stages of wild-type spines showed that 803 and 722 genes were upregulated in the stalk (stage II and stage III) and base (stage IV) development stages of fruit spines, respectively. The function analysis of DEGs showed that genes related to auxin polar transport and HD-ZIP transcription factor are significantly upregulated during the development of the stalk. bHLH transcription factors and cytoskeleton-related genes were significantly upregulated during the development of the base. In addition, stage III is the key point for the difference between wild-type and mutant spines. We detected 628 DEGs between wild type and mutant at stage III. These DEGs are mainly involved in the calcium signaling of the cytoskeleton and auxin polar transport. Coincidentally, we found that CsVTI11, a factor involved in auxin signal transmission, can interact with CsTs in vivo, but this interaction does not occur between CsVTI11 and Csts, further suggesting that CsTs may regulate the development of fruit spines by influencing cell polarity. These results provide useful tools to study the molecular networks associated with cucumber fruit spine development and elucidate the biological pathways that C-type Lectin receptor-like kinase plays in regulating the development of fruit spines.
Collapse
Affiliation(s)
- Duo Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Zhang
- Committee of Agriculture and Rural Areas of Jinshan District, Shanghai, China
| | - Yao Yu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pei-Chao Qin
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jin-An Pang
- Tianjin Derit Seeds Company Limited, Tianjin, China
| | - Jing-Xian Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ke-Yan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Huan-Le He
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Run Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jun-Song Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Yang S, Wang Y, Zhu H, Zhang M, Wang D, Xie K, Fan P, Dou J, Liu D, Liu B, Chen C, Yan Y, Zhao L, Yang L. A novel HD-Zip I/C2H2-ZFP/WD-repeat complex regulates the size of spine base in cucumber. THE NEW PHYTOLOGIST 2022; 233:2643-2658. [PMID: 35037268 DOI: 10.1111/nph.17967] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Fruit spine is an important trait in cucumber, affecting not only commercial quality, but also fruit smoothness, transportation and storage. Spine size is determined by a multi-cellular base. However, the molecular mechanism underlying the regulation of cucumber spine base remains largely unknown. Here, we report map-based cloning and characterization of a spine base size 1 (SBS1) gene, encoding a C2H2 zinc-finger transcription factor. Near-isogenic lines of cucumber were used to map, identify and quantify cucumber spine base size 1 (CsSBS1). Yeast-hybrid, bimolecular fluorescence complementation (BiFC), co-immunoprecipitation (Co-IP) and RNA-sequencing assays were used to explore the molecular mechanism of CsSBS1 in regulating spine base size development. CsSBS1 was specifically expressed in cucumber ovaries with particularly high expression in fruit spines. Overexpression of CsSBS1 resulted in large fruit spine base, while RNA-interference silencing of CsSBS1 inhibited the expansion of fruit spine base. Sequence analysis of natural cucumber accessions revealed that CsSBS1 was lost in small spine base accessions, resulting from a 4895 bp fragment deletion in CsSBS1 locus. CsSBS1 can form a trimeric complex with two positive regulators CsTTG1 and CsGL1 to regulate spine base development through ethylene signaling. A novel regulator network is proposed that the CsGL1/CsSBS1/CsTTG1 complex plays a significant role in regulating spine base formation and size, which offers a strategy for cucumber breeders to develop smooth fruit.
Collapse
Affiliation(s)
- Sen Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Yueling Wang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Huayu Zhu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Minjuan Zhang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Dengke Wang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Kuixi Xie
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Pengfei Fan
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Junling Dou
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Dongming Liu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Bin Liu
- Department of Plant Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193, Spain
| | - Chunhua Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yan Yan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lijun Zhao
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| |
Collapse
|
7
|
Luan H, Niu C, Nie X, Li Y, Wei M. Transcriptome and Physiological Analysis of Rootstock Types and Silicon Affecting Cold Tolerance of Cucumber Seedlings. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030445. [PMID: 35161426 PMCID: PMC8838756 DOI: 10.3390/plants11030445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 05/05/2023]
Abstract
Cucumbers grafted on rootstocks with different de-blooming capacity show varying levels of cold tolerance. The content of fruit bloom correlates with its silicon-metabolizing capacity, and rootstock grafting can alter not only the cold tolerance but also the silicon-metabolizing capacity of the scion. The molecular mechanisms responsible for resistance due to rootstocks and silicon and the pathway that affects cold tolerance, however, remain poorly understood. Therefore, we performed physiological and transcriptome analysis to clarify how rootstock types and silicon affect cold tolerance in cucumber seedlings. Then, we randomly selected eight differentially expressed genes (DEGs) for quantitative real time PCR (qRT-PCR) analysis to proof the reliability of the transcriptome data. The results showed that silicon can enhance the cold tolerance of cucumbers by boosting the phenylpropanoid metabolism, and rootstock grafting can boost the active oxygen scavenging ability and synthesis level of hormones in cucumbers and maintain the stability of the membrane structure to enhance cold tolerance. The difference in cold tolerance between the two rootstocks is because the cold-tolerant one has stronger metabolic and sharp signal transduction ability and can maintain the stability of photosynthesis, thereby contributing to the stability of the cellular system and enhancing tolerance to cold.
Collapse
Affiliation(s)
- Heng Luan
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (H.L.); (C.N.); (X.N.); (Y.L.)
| | - Chenxu Niu
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (H.L.); (C.N.); (X.N.); (Y.L.)
| | - Xinmiao Nie
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (H.L.); (C.N.); (X.N.); (Y.L.)
| | - Yan Li
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (H.L.); (C.N.); (X.N.); (Y.L.)
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Taian 271018, China
- State Key Laboratory of Crop Biology, Taian 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian 271018, China
| | - Min Wei
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (H.L.); (C.N.); (X.N.); (Y.L.)
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Taian 271018, China
- State Key Laboratory of Crop Biology, Taian 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian 271018, China
- Correspondence: ; Tel.: +86-0538-824-6296
| |
Collapse
|
8
|
Negi N, Khurana P. A salicylic acid inducible mulberry WRKY transcription factor, MiWRKY53 is involved in plant defence response. PLANT CELL REPORTS 2021; 40:2151-2171. [PMID: 33997916 DOI: 10.1007/s00299-021-02710-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
MiWRKY53 is expressed in response to various stresses and hormones. Although it is localized in the nucleus, it shows no transcriptional activation. Role of SA-mediated plant defence response is demonstrated. WRKY transcription factors are one the largest gene families in plants involved in almost every process in plants including development, physiological processes, and stress response. Salicylic acid (SA) is key regulator of biotic stress against various pathogens in plants acting via its multiple mechanisms to induce defence response. Herein, we have identified and functionally validated WRKY53 from mulberry (Morus indica var. K2). MiWRKY53 expressed differentially in response to different stress and hormonal treatments. MiWRKY53 belongs to group III of WKRY gene family, localized in nucleus, and lacks transcriptional activation activity in yeast. Hormone responsive behaviour of MiWRKY53 Arabidopsis overexpression (OE) transgenics preferentially was noted in root growth assay in response to Salicylic acid (SA). Arabidopsis overexpression plants also displayed alteration in leaf phenotype having wider leaves than the wild-type plants. PR-1 transcripts were higher in MiWRKY53 Arabidopsis OE plants and they displayed resistance towards biotrophic pathogen Pseudomonas syringae PstDC3000. MiWRKY53 Mulberry OE transgenics also depicted SA-responsive behaviour. Several hormones and stress-related cis-acting elements were also identified in the 1.2-Kb upstream regulatory region (URR) of MiWRKY53. Functional characterization of full-length promoter region revealed that it is induced by SA and further analysis of deletion constructs helped in the identification of minimal promoter responsible for its inducibility by SA. Altogether, the findings from this study point towards the SA preferential behaviour of MiWRKY53 and its function as regulator of plant defence response through SA-mediated mechanisms.
Collapse
Affiliation(s)
- Nisha Negi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
9
|
Zhao L, Zhu H, Zhang K, Wang Y, Wu L, Chen C, Liu X, Yang S, Ren H, Yang L. The MIXTA-LIKE transcription factor CsMYB6 regulates fruit spine and tubercule formation in cucumber. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110636. [PMID: 33180714 DOI: 10.1016/j.plantsci.2020.110636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/23/2020] [Accepted: 08/11/2020] [Indexed: 05/25/2023]
Abstract
Cucumber fruit wart composed of tubercule and spine (trichome on fruit) is not only an important fruit quality trait in cucumber production, but also a well-studied model for plant cell-fate determination. The development of spine is closely related to the initiation and formation of tubercule. The spine differentiation regulator CsGL1 has been proved to be epistatic to the tubercule initiation factor CsTu, which is the only connection to be identified between spine and tubercule formations. Our previous studies found that the MIXTA-LIKE transcription factor CsMYB6 can suppress fruit spine initiation, which is independent of CsGL1. How the formation of spine and tubercule is regulated at the molecular level by CsMYB6 remains poorly understood. In this study, we characterized cucumber 35S:CsMYB6 transgenic plants, which displayed an obvious reduction in the number and size of fruit spines and tubecules. Molecular analyses showed that CsMYB6 directly interacted with the key spine formation factor CsTTG1 in regulating the formation of fruit spine, and CsTu in regulating the initiation of fruit tubercule, respectively. Based on these evidences, a novel regulatory network is proposed by which CsMYB6/CsTTG1 and CsMYB6/CsTu complexes play an important role in regulating epidermal development, including spine formation and tubercule initiation in cucumber.
Collapse
Affiliation(s)
- Lijun Zhao
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Huayu Zhu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Kaige Zhang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Yueling Wang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Lin Wu
- Chongqing College Garden and Flower Engineering Research Center, Chongqing Engineering Research Center for Special Plant Seedlings, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402168, China
| | - Chunhua Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xingwang Liu
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Sen Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China.
| | - Huazhong Ren
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China.
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China.
| |
Collapse
|
10
|
Li J, Ye C, Chang C. Comparative transcriptomics analysis revealing flower trichome development during flower development in two Lonicera japonica Thunb. cultivars using RNA-seq. BMC PLANT BIOLOGY 2020; 20:341. [PMID: 32680457 PMCID: PMC7368687 DOI: 10.1186/s12870-020-02546-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/08/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Lonicera japonica Thunb. (L. japonica) has the functions of clearing away heat and detoxifying, broad-spectrum antibacterial and anti-virus, etc. More than 70% of anti-inflammatory and cold Chinese patent medicines contain L. japonica. Trichomes comprise specialized multicellular structures that have the capacity to synthesize and secrete secondary metabolites and protect plants from biotic and abiotic stresses. The extraction of trichome secretions has great commercial value. However, little is known about the trichome formation mechanism in L. japonica. Therefore, the study of trichome development between different varieties provides a basis for selecting suitable planting resources. RESULTS Here, we present a genome-wide comparative transcriptome analysis between two L. japonica cultivars, toward the identification of biological processes and functional gene activities that occur during flowering stage trichome development. In this study, the density and average lengths of flower trichomes were at their highest during three-green periods (S2). Using the Illumina RNA-Seq method, we obtained 134,304 unigenes, 33,733 of which were differentially expressed. In an analysis of 40 differentially expressed unigenes (DEGs) involved in trichome development, 29 of these were transcription factors. The DEGs analysis of plant hormone signal transduction indicated that plant growth and development may be independent of gibberellin (GA) and cytokinine (CTK) signaling pathways, and plant stress may be independent of jasmonic acid (JA) and ethylene (ET) signaling pathways. We screened several genes involved in the floral biosynthesis of odors, tastes, colors, and plant hormones, and proposed biosynthetic pathways for sesquiterpenoid, triterpenoid, monoterpenoid, flavonoid, and plant hormones. Furthermore, 82 DEGs were assigned to cell cycles and 2616 were predicted as plant resistance genes (PRGs). CONCLUSIONS This study provides a comprehensive characterization of the expression profiles of flower development during the seven developmental stages of L. japonica, thereby offering valuable insights into the molecular networks that underly flower development in L. japonica.
Collapse
Affiliation(s)
- Jianjun Li
- Green Medicine Biotechnology Henan Engineering Laboratory, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, College of Life Science, Henan Normal University, Xinxiang, China.
| | - Chenglin Ye
- Green Medicine Biotechnology Henan Engineering Laboratory, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, College of Life Science, Henan Normal University, Xinxiang, China
| | - Cuifang Chang
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
11
|
Ezenwaka L, Rabbi I, Onyeka J, Kulakow P, Egesi C. Identification of additional /novel QTL associated with resistance to cassava green mite in a biparental mapping population. PLoS One 2020; 15:e0231008. [PMID: 32240258 PMCID: PMC7117712 DOI: 10.1371/journal.pone.0231008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/13/2020] [Indexed: 11/19/2022] Open
Abstract
Cassava green mite [CGM, Mononychellus tanajoa (Bondar)] is the most destructive dry-season pest in most cassava production areas. The pest is responsible for cassava fresh root yield losses of over 80%. Deployment of CGM resistant cultivars is the most cost-effective and sustainable approach of alleviating such production losses. The purposes of this study were to validate the stability of CGM resistance genes found in previously published results, to identify new genes for CGM resistance in bi-parental mapping population and estimate the heritability of the trait. A total of 109 F1 progeny derived from a cross between CGM resistant parent, TMEB778 and a very susceptible parent, TMEB419 were evaluated under CGM hotspot areas in Nigeria for two cropping seasons. A total of 42,204 SNP markers with MAF ≥ 0.05 were used for single-marker analysis. The most significant QTL (S12_7962234) was identified on the left arm on chromosome 12 which explained high phenotypic variance and harboured significant single nucleotide polymorphism (SNP) markers conferring resistance to CGM and leaf pubescence (LP). Colocalization of the most significant SNP associated with resistance to CGM and LP on chromosome 12 is possibly an indication of a beneficial pleiotropic effect or are physically linked. These significant SNPs markers were intersected with the gene annotations and 33 unique genes were identified within SNPs at 4 - 8MB on chromosome 12. Among these genes, nine novel candidate genes namely; Manes.12077600, Manes.12G086200, Manes.12G061200, Manes.12G083100, Manes.12G082000, Manes.12G094100, Manes.12G075600, Manes.12G091400 and Manes.12G069300 highly expressed direct link to cassava green mite resistance. Pyramiding the new QTL/genes identified on chromosome 12 in this study with previously discovered loci, such on chromosome 8, will facilitate breeding varieties that are highly resistant CGM.
Collapse
Affiliation(s)
- Lydia Ezenwaka
- National Root Crops Research Institute, NRCRI, Umudike, Nigeria
| | - Ismail Rabbi
- International Institute for Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Joseph Onyeka
- National Root Crops Research Institute, NRCRI, Umudike, Nigeria
| | - Peter Kulakow
- International Institute for Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Chiedozie Egesi
- National Root Crops Research Institute, NRCRI, Umudike, Nigeria
- International Institute for Tropical Agriculture (IITA), Ibadan, Nigeria
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
12
|
Yuan F, Leng B, Zhang H, Wang X, Han G, Wang B. A WD40-Repeat Protein From the Recretohalophyte Limonium bicolor Enhances Trichome Formation and Salt Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:1456. [PMID: 31781150 PMCID: PMC6861380 DOI: 10.3389/fpls.2019.01456] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/18/2019] [Indexed: 05/03/2023]
Abstract
The Arabidopsis thaliana WD40-repeat protein TRANSPARENT TESTA GLABRA1 (TTG1) controls epidermis development, playing opposite roles in trichome differentiation and root hair formation. We isolated and characterized LbTTG1 (encoding a WD40-repeat protein with high sequence similarity to TTG1) from the recretohalophyte Limonium bicolor, which actively excretes absorbed salt via a salt gland. The complete open reading frame of LbTTG1 was 1,095 bp, encoding a protein of 364 amino acids, and showed highest expression during the salt gland initiation stage. We heterologously expressed LbTTG1 in wild type and ttg1-13 Arabidopsis plants to verify the protein's function, and the copies of LbTTG1 were identified in transgenic strains using southern blotting. Trichomes were extremely induced on the first true leaves of plants heterologously expressing LbTTG1, whereas no trichomes were produced by ttg1-13 plants. Conversely, plants heterologously expressing LbTTG1 produced fewer root hairs than ttg1-13 plants. In plants heterologously expressing LbTTG1 compared to controls, epidermis differentiation genes (GLABRA1 and GLABRA3) were up-regulated while genes encoding negative regulators of trichome development (TRIPTYCHON and CAPRICE) were down-regulated. Under increased NaCl concentrations, both of the transgenic lines showed enhanced germination and root length, and accumulated less malondialdehyde (MDA) and Na+ and produced more proline, soluble sugar, and higher glutathione S-transferase activity, compared with the ttg1-13 mutant. These results indicate that LbTTG1 participates in epidermis development in Arabidopsis, similarly to other WD40-repeat proteins, and specifically increases salt tolerance of transgenic Arabidopsis by reducing ion accumulation and increasing osmolyte levels.
Collapse
Affiliation(s)
- Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Bingying Leng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Haonan Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Xi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, China
| |
Collapse
|
13
|
Che G, Zhang X. Molecular basis of cucumber fruit domestication. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:38-46. [PMID: 30253288 DOI: 10.1016/j.pbi.2018.08.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 05/10/2023]
Abstract
Cucumber (Cucumis sativus L.) is an economically important vegetable crop that is cultivated worldwide. Compared to the wild ancestor bearing small, bitter and seedy fruit, domesticated cucumbers exhibit significant variation in fruit appearance, size and flavor. Understanding the molecular basis of domestication related traits can provide insights into fruit evolution and make crop breeding more efficient. Here we review recent advances in relating to the genetic basis of fruit morphological traits (femaleness, fruit spine, wart, size, color and carpel development) and organoleptic features (bitterness) during cucumber domestication.
Collapse
Affiliation(s)
- Gen Che
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaolan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Yue C, Cao HL, Chen D, Lin HZ, Wang Z, Hu J, Yang GY, Guo YQ, Ye NX, Hao XY. Comparative transcriptome study of hairy and hairless tea plant (Camellia sinensis) shoots. JOURNAL OF PLANT PHYSIOLOGY 2018; 229:41-52. [PMID: 30032044 DOI: 10.1016/j.jplph.2018.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/14/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
Trichome (also referred to as 'háo' in tea) is a key feature in both tea products and tea plant (Camellia sinensis) selection breeding. Although trichomes are used as a model for studying cell differentiation and have been well studied in many plant species, the regulation of trichome formation at the molecular level is poorly understood in tea plants. In the present study, the hairy and hairless tea plant cultivars Fudingdabaicha (FDDB) and Rongchunzao (RCZ), respectively, were used to study this mechanism. We characterised tea plant trichomes as unicellular and unbranched structures. High-throughput Illumina sequencing yielded approximately 277.0 million high-quality clean reads from the FDDB and RCZ cultivars. After de novo assembly, 161,444 unigenes were generated, with an average length of 937 bp. Among these unigenes, 81,425 were annotated using public databases, and 55,201 coding sequences and 4004 transcription factors (TFs) were identified. In total, 21,599 differentially expressed genes (DEGs) were identified between RCZ and FDDB, of which 10,785 DEGs were up-regulated and 10,814 DEGs were down-regulated. Genes involved in the DNA replication pathway were significantly enriched. Furthermore, between FDDB and RCZ, DEGs related to TFs, phytohormone signals, and cellulose synthesis were identified, suggesting that certain genes involved in these pathways are crucial for trichome initiation in tea plants. Together, the results of this study provide novel data to improve our understanding of the potential molecular mechanisms of trichome formation and lay a foundation for additional trichome studies in tea plants.
Collapse
Affiliation(s)
- Chuan Yue
- College of Horticulture, Fujian Agriculture and Forestry University, Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, China.
| | - Hong-Li Cao
- College of Horticulture, Fujian Agriculture and Forestry University, Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, China
| | - Dan Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, China
| | - Hong-Zheng Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, China
| | - Zan Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, China
| | - Juan Hu
- College of Horticulture, Fujian Agriculture and Forestry University, Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, China
| | - Guo-Yi Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, China
| | - Yu-Qiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, China
| | - Nai-Xing Ye
- College of Horticulture, Fujian Agriculture and Forestry University, Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, China.
| | - Xin-Yuan Hao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China.
| |
Collapse
|
15
|
Carvajal F, Rosales R, Palma F, Manzano S, Cañizares J, Jamilena M, Garrido D. Transcriptomic changes in Cucurbita pepo fruit after cold storage: differential response between two cultivars contrasting in chilling sensitivity. BMC Genomics 2018; 19:125. [PMID: 29415652 PMCID: PMC5804050 DOI: 10.1186/s12864-018-4500-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/28/2018] [Indexed: 11/18/2022] Open
Abstract
Background Zucchini fruit is susceptible to chilling injury (CI), but the response to low storage temperature is cultivar dependent. Previous reports about the response of zucchini fruit to chilling storage have been focused on the physiology and biochemistry of this process, with little information about the molecular mechanisms underlying it. In this work, we present a comprehensive analysis of transcriptomic changes that take place after cold storage in zucchini fruit of two commercial cultivars with contrasting response to chilling stress. Results RNA-Seq analysis was conducted in exocarp of fruit at harvest and after 14 days of storage at 4 and 20 °C. Differential expressed genes (DEGs) were obtained comparing fruit stored at 4 °C with their control at 20 °C, and then specific and common up and down-regulated DEGs of each cultivar were identified. Functional analysis of these DEGs identified similarities between the response of zucchini fruit to low temperature and other stresses, with an important number of GO terms related to biotic and abiotic stresses overrepresented in both cultivars. This study also revealed several molecular mechanisms that could be related to chilling tolerance, since they were up-regulated in cv. Natura (CI tolerant) or down-regulated in cv. Sinatra (CI sensitive). These mechanisms were mainly those related to carbohydrate and energy metabolism, transcription, signal transduction, and protein transport and degradation. Among DEGs belonging to these pathways, we selected candidate genes that could regulate or promote chilling tolerance in zucchini fruit including the transcription factors MYB76-like, ZAT10-like, DELLA protein GAIP, and AP2/ERF domain-containing protein. Conclusions This study provides a broader understanding of the important mechanisms and processes related to coping with low temperature stress in zucchini fruit and allowed the identification of some candidate genes that may be involved in the acquisition of chilling tolerance in this crop. These genes will be the basis of future studies aimed to identify markers involved in cold tolerance and aid in zucchini breeding programs. Electronic supplementary material The online version of this article (10.1186/s12864-018-4500-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- F Carvajal
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Fuentenueva s/n, 18071, Granada, Spain
| | - R Rosales
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Fuentenueva s/n, 18071, Granada, Spain
| | - F Palma
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Fuentenueva s/n, 18071, Granada, Spain
| | - S Manzano
- Department of Biology and Geology, Agrifood Campus of International Excellence (CeiA3), CIAIMBITAL, University of Almería, La Cañada de San Urbano s/n, 04120, Almería, Spain
| | - J Cañizares
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politécnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain
| | - M Jamilena
- Department of Biology and Geology, Agrifood Campus of International Excellence (CeiA3), CIAIMBITAL, University of Almería, La Cañada de San Urbano s/n, 04120, Almería, Spain
| | - D Garrido
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Fuentenueva s/n, 18071, Granada, Spain.
| |
Collapse
|
16
|
Liu X, wang T, Bartholomew E, Black K, Dong M, Zhang Y, Yang S, Cai Y, Xue S, Weng Y, Ren H. Comprehensive analysis of NAC transcription factors and their expression during fruit spine development in cucumber ( Cucumis sativus L.). HORTICULTURE RESEARCH 2018; 5:31. [PMID: 29872536 PMCID: PMC5981648 DOI: 10.1038/s41438-018-0036-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 05/06/2023]
Abstract
The cucumber (Cucumis sativus L.) is an important vegetable crop worldwide, and fruit trichomes or spines are an important trait for external fruit quality. The mechanisms underlying spine formation are not well understood, but the plant-specific NAC family of transcription factors may play important roles in fruit spine initiation and development. In this study, we conducted a genome-wide survey and identified 91 NAC gene homologs in the cucumber genome. Clustering analysis classified these genes into six subfamilies; each contained a varying number of NAC family members with a similar intron-exon structure and conserved motifs. Quantitative real-time PCR analysis revealed tissue-specific expression patterns of these genes, including 10 and 12 that exhibited preferential expression in the stem and fruit, respectively. Thirteen of the 91 NAC genes showed higher expression in the wild-type plant than in its near-isogenic trichome mutant, suggesting their important roles in fruit spine development. Exogenous application of four plant hormones promoted spine formation and increased spine density on the cucumber fruits; several NAC genes showed differential expression over time in response to phytohormone treatments on cucumber fruit, implying their essential roles in fruit-trichome development. Among the NAC genes identified, 12 were found to be targets of 13 known cucumber micro-RNAs. Collectively, these findings provide a useful resource for further analysis of the interactions between NAC genes and genes underlying trichome organogenesis and development during fruit spine development in cucumber.
Collapse
Affiliation(s)
- Xingwang Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193 Beijing, P. R. China
| | - Ting wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193 Beijing, P. R. China
| | - Ezra Bartholomew
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193 Beijing, P. R. China
| | - Kezia Black
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193 Beijing, P. R. China
| | - Mingming Dong
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193 Beijing, P. R. China
| | - Yaqi Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193 Beijing, P. R. China
| | - Sen Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193 Beijing, P. R. China
| | - Yanling Cai
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193 Beijing, P. R. China
| | - Shudan Xue
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193 Beijing, P. R. China
| | - Yiqun Weng
- Department of Horticulture, USDA-ARS, Vegetable Crops Research Unit, University of Wisconsin-, Madison, WI 53706 USA
| | - Huazhong Ren
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193 Beijing, P. R. China
| |
Collapse
|
17
|
Zhang HM, Wheeler SL, Xia X, Colyvas K, Offler CE, Patrick JW. Transcript Profiling Identifies Gene Cohorts Controlled by Each Signal Regulating Trans-Differentiation of Epidermal Cells of Vicia faba Cotyledons to a Transfer Cell Phenotype. FRONTIERS IN PLANT SCIENCE 2017; 8:2021. [PMID: 29234338 PMCID: PMC5712318 DOI: 10.3389/fpls.2017.02021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/14/2017] [Indexed: 05/29/2023]
Abstract
Transfer cells (TCs) support high rates of membrane transport of nutrients conferred by a plasma membrane area amplified by lining a wall labyrinth comprised of an uniform wall layer (UWL) upon which intricate wall ingrowth (WI) papillae are deposited. A signal cascade of auxin, ethylene, extracellular hydrogen peroxide (H2O2) and cytosolic Ca2+ regulates wall labyrinth assembly. To identify gene cohorts regulated by each signal, a RNA- sequencing study was undertaken using Vicia faba cotyledons. When cotyledons are placed in culture, their adaxial epidermal cells spontaneously undergo trans-differentiation to epidermal TCs (ETCs). Expressed genes encoding proteins central to wall labyrinth formation (signaling, intracellular organization, cell wall) and TC function of nutrient transport were assembled. Transcriptional profiles identified 9,742 annotated ETC-specific differentially expressed genes (DEGs; Log2fold change > 1; FDR p ≤ 0.05) of which 1,371 belonged to signaling (50%), intracellular organization (27%), cell wall (15%) and nutrient transporters (9%) functional categories. Expression levels of 941 ETC-specific DEGs were found to be sensitive to the known signals regulating ETC trans-differentiation. Significantly, signals acting alone, or in various combinations, impacted similar numbers of ETC-specific DEGs across the four functional gene categories. Amongst the signals acting alone, H2O2 exerted most influence affecting expression levels of 56% of the ETC-specific DEGs followed by Ca2+ (21%), auxin (18%) and ethylene (5%). The dominance by H2O2 was evident across all functional categories, but became more attenuated once trans-differentiation transitioned into WI papillae formation. Amongst the eleven signal combinations, H2O2/Ca2+ elicited the greatest impact across all functional categories accounting for 20% of the ETC-specific DEG cohort. The relative influence of the other signals acting alone, or in various combinations, varied across the four functional categories and two phases of wall labyrinth construction. These transcriptome data provide a powerful information platform from which to examine signal transduction pathways and how these regulate expression of genes encoding proteins engaged in intracellular organization, cell wall construction and nutrient transport.
Collapse
Affiliation(s)
- Hui-Ming Zhang
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Simon L. Wheeler
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Xue Xia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Kim Colyvas
- School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Christina E. Offler
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - John W. Patrick
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
18
|
Ning P, Liu C, Kang J, Lv J. Genome-wide analysis of WRKY transcription factors in wheat ( Triticum aestivum L.) and differential expression under water deficit condition. PeerJ 2017; 5:e3232. [PMID: 28484671 PMCID: PMC5420200 DOI: 10.7717/peerj.3232] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND WRKY proteins, which comprise one of the largest transcription factor (TF) families in the plant kingdom, play crucial roles in plant development and stress responses. Despite several studies on WRKYs in wheat (Triticum aestivum L.), functional annotation information about wheat WRKYs is limited. RESULTS Here, 171 TaWRKY TFs were identified from the whole wheat genome and compared with proteins from 19 other species representing nine major plant lineages. A phylogenetic analysis, coupled with gene structure analysis and motif determination, divided these TaWRKYs into seven subgroups (Group I, IIa-e, and III). Chromosomal location showed that most TaWRKY genes were enriched on four chromosomes, especially on chromosome 3B. In addition, 85 (49.7%) genes were either tandem (5) or segmental duplication (80), which suggested that though tandem duplication has contributed to the expansion of TaWRKY family, segmental duplication probably played a more pivotal role. Analysis of cis-acting elements revealed putative functions of WRKYs in wheat during development as well as under numerous biotic and abiotic stresses. Finally, the expression of TaWRKY genes in flag leaves, glumes, and lemmas under water-deficit condition were analyzed. Results showed that different TaWRKY genes preferentially express in specific tissue during the grain-filling stage. CONCLUSION Our results provide a more extensive insight on WRKY gene family in wheat, and also contribute to the screening of more candidate genes for further investigation on function characterization of WRKYs under various stresses.
Collapse
Affiliation(s)
- Pan Ning
- College of Science, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Congcong Liu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jingquan Kang
- College of Life Science, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jinyin Lv
- College of Life Science, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
19
|
Genome-wide Identification and Structural, Functional and Evolutionary Analysis of WRKY Components of Mulberry. Sci Rep 2016; 6:30794. [PMID: 27477686 PMCID: PMC4967854 DOI: 10.1038/srep30794] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/11/2016] [Indexed: 01/04/2023] Open
Abstract
Mulberry is known to be sensitive to several biotic and abiotic stresses, which in turn have a direct impact on the yield of silk, because it is the sole food source for the silk worm. WRKYs are a family of transcription factors, which play an important role in combating various biotic and abiotic stresses. In this study, we identified 54 genes with conserved WRKY motifs in the Morus notabilis genome. Motif searches coupled with a phylogenetic analysis revealed seven sub-groups as well as the absence of members of Group Ib in mulberry. Analyses of the 2K upstream region in addition to a gene ontology terms enrichment analysis revealed putative functions of mulberry WRKYs under biotic and abiotic stresses. An RNA-seq-based analysis showed that several of the identified WRKYs have shown preferential expression in the leaf, bark, root, male flower, and winter bud of M. notabilis. Finally, expression analysis by qPCR under different stress and hormone treatments revealed genotype-specific responses. Taken together, our results briefs about the genome-wide identification of WRKYs as well as their differential response to stresses and hormones. Importantly, these data can also be utilized to identify potential molecular targets for conferring tolerance to various stresses in mulberry.
Collapse
|
20
|
Wang YL, Nie JT, Chen HM, Guo CL, Pan J, He HL, Pan JS, Cai R. Identification and mapping of Tril, a homeodomain-leucine zipper gene involved in multicellular trichome initiation in Cucumis sativus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:305-16. [PMID: 26518574 DOI: 10.1007/s00122-015-2628-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/17/2015] [Indexed: 05/06/2023]
Abstract
KEY MESSAGE Using map-based cloning of Tril gene, we identified a homeodomain-leucine zipper gene involved in the initiation of multicellular trichomes (including the spines of fruit) in cucumber. ABSTRACT Fruit spines are a special type of trichome that impacts the quality and appearance of cucumber (Cucumis sativus L.) fruit. Scanning electron microscopy revealed that the trichome-less (tril) mutant originating from European greenhouse cucumber has a completely glabrous phenotype on cotyledons, hypocotyls, young leaves, fruits, and fruit stalks. Genetic analysis revealed that tril was inherited as a recessive allele at a single locus. Using 1058 F2 individuals derived from a cross between cucumber tril mutant CGN19839 and the micro-trichome (mict) mutant 06-2, tril was mapped to chromosome 6, and narrowed down to a 37.4 kb genomic region which carries seven predicted genes. Genetic and molecular analyses revealed that gene Cucsa.045360 is a possible candidate gene for the differentiation of epidermal cells to trichomes. It is a member of the class IV homeodomain-leucine zipper (HD-Zip IV) family and encodes homeodomain and START domain, sharing 66.7% predicted amino acid sequence identity to PROTODERMAL FACTOR2 (PDF2) and 35.0% to GLABRA2 (GL2) of Arabidopsis. The homeobox domain had changed amino acid sequence because of an insertion in tril mutant. The results of genetic analysis and transcriptome profiling indicated that the Tril gene had an epistatic effect on the Mict gene in trichome development. Phenotypes of the tril mutant such as glabrous fruits and female flowers at every node could be used in developing new cultivars.
Collapse
Affiliation(s)
- Yun-Li Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Jing-tao Nie
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Hui-Ming Chen
- Hunan Vegetable Research Institute, Hunan Academy of Agriculture Sciences, Changsha, 410125, China
| | - Chun-li Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Jian Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Huan-Le He
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Jun-Song Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| | - Run Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
21
|
Pan Y, Bo K, Cheng Z, Weng Y. The loss-of-function GLABROUS 3 mutation in cucumber is due to LTR-retrotransposon insertion in a class IV HD-ZIP transcription factor gene CsGL3 that is epistatic over CsGL1. BMC PLANT BIOLOGY 2015; 15:302. [PMID: 26714637 PMCID: PMC4696102 DOI: 10.1186/s12870-015-0693-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/17/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Trichomes, developed from the protodermal cells (the outermost cell layer of the embryo), are hair-like structures covering the aerial parts of plants. The genetic network regulating trichome development has been extensively studied and well understood in the model species Arabidopsis thaliana, which bears unicellular, non-glandular and branched trichomes. However, little is known about the genetic and molecular basis of organogenesis of multi-cellular trichomes in plant species like cucumber (Cucumis sativus L.), which are likely different from Arabidopsis. RESULTS We identified a new trichome mutant in cucumber which exhibited a completely glabrous phenotype on all aerial organs. Genetic analysis indicated that the glabrous phenotype was inherited as a single recessive gene, csgl3. Fine genetic mapping delimited the csgl3 locus into a 68.4 kb region with 12 predicted genes. Genetic analysis, sequence alignment and allelic variation survey in natural populations identified Csa6G514870 encoding a class IV homeodomain-associated leucine zipper (HD-ZIP) transcription factor as the only candidate for CsGL3, which was 5188 bp in length with 10 predicted exons. Gene expression analysis revealed the loss-of-function of CsGL3 in the mutant due to the insertion of a 5-kb long terminal repeat (LTR) retrotransposon in the 4th exon of CsGL3. Linkage analysis in a segregating population and gene expression analysis of the CsGL1 and CsGL3 genes in csgl1, csgl3, and csgl1 + 3 genetic backgrounds uncovered interactions between the two genes. Phylogenetic analysis among 28 class IV HD-ZIP protein sequences from five species placed cucumber CsGL3 into the same clade with 7 other members that play important roles in trichome initiation. CONCLUSIONS The new glabrous mutation in cucumber was controlled by a single recessive locus csgl3, which was phenotypically and genetically distinct from two previously reported glabrous mutants csgl1 and csgl2. The glabrous phenotype in csgl3 was due to insertion of an autonomous, active, class I transposable element in CsGL3, a class IV HD-ZIP transcription factor. CsGL3 was epistatic to CsGL1. CsGL3 seemed to play important roles in cucumber trichome initiation whereas CsGL1 may act downstream in the trichome development pathway(s). Findings from the present study provide new insights into genetic control of trichome development in cucumber.
Collapse
Affiliation(s)
- Yupeng Pan
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA.
- Horticulture College, Northwest A&F University, Yangling, 712100, China.
| | - Kailiang Bo
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA.
| | - Zhihui Cheng
- Horticulture College, Northwest A&F University, Yangling, 712100, China.
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA.
- USDA-ARS, Vegetable Crops Research Unit, 1575 Linden Drive, Madison, WI, 53706, USA.
| |
Collapse
|