1
|
Gentile GM, Blue RE, Goda GA, Guzman BB, Szymanski RA, Lee EY, Engels NM, Hinkle ER, Wiedner HJ, Bishop AN, Harrison JT, Zhang H, Wehrens XH, Dominguez D, Giudice J. Alternative splicing of the Snap23 microexon is regulated by MBNL, QKI, and RBFOX2 in a tissue-specific manner and is altered in striated muscle diseases. RNA Biol 2025; 22:1-20. [PMID: 40207498 PMCID: PMC12064062 DOI: 10.1080/15476286.2025.2491160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/05/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
The reprogramming of alternative splicing networks during development is a hallmark of tissue maturation and identity. Alternative splicing of microexons (small, genomic regions ≤ 51 nucleotides) functionally regulate protein-protein interactions in the brain and is altered in several neuronal diseases. However, little is known about the regulation and function of alternatively spliced microexons in striated muscle. Here, we investigated alternative splicing of a microexon in the synaptosome-associated protein 23 (Snap23) encoded gene. We found that inclusion of this microexon is developmentally regulated and tissue-specific, as it occurs exclusively in adult heart and skeletal muscle. The alternative region is highly conserved in mammalian species and encodes an in-frame sequence of 11 amino acids. Furthermore, we showed that alternative splicing of this microexon is mis-regulated in mouse models of heart and skeletal muscle diseases. We identified the RNA-binding proteins (RBPs) quaking (QKI) and RNA binding fox-1 homolog 2 (RBFOX2) as the primary splicing regulators of the Snap23 microexon. We found that QKI and RBFOX2 bind downstream of the Snap23 microexon to promote its inclusion, and this regulation can be escaped when the weak splice donor is mutated to the consensus 5' splice site. Finally, we uncovered the interplay between QKI and muscleblind-like splicing regulator (MBNL) as an additional, but minor layer of Snap23 microexon splicing control. Our results are one of the few reports detailing microexon alternative splicing regulation during mammalian striated muscle development.
Collapse
Affiliation(s)
- Gabrielle M. Gentile
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R. Eric Blue
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Grant A. Goda
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bryan B. Guzman
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rachel A. Szymanski
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eunice Y. Lee
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nichlas M. Engels
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emma R. Hinkle
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah J. Wiedner
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aubriana N. Bishop
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan T. Harrison
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hua Zhang
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xander H.T. Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Daniel Dominguez
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- RNA Discovery Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- RNA Discovery Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Wang H, Liu Z, Yang H, Bai Y, Li Q, Qi X, Li D, Zhao X, Ma Y. Integrated transcriptomics and metabolomics reveal the molecular characteristics and metabolic regulatory mechanisms among different muscles in Minxian black fur sheep. BMC Genomics 2025; 26:412. [PMID: 40301745 PMCID: PMC12039146 DOI: 10.1186/s12864-025-11607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 04/16/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Mammalian skeletal muscle is comprised of heterogeneous fibers with various contractile and metabolic properties that affect muscle flavor. Thus, it is of great significance to identify and characterize the potential molecular characteristics and metabolic regulatory mechanisms associated with muscle fiber properties. RESULTS In this study, the muscle samples (Biceps femoris; longissimus dorsi; and infraspinatus) from Minxian black fur sheep were used to perform transcriptome and metabolome analyses. Then, the key genes regulating the metabolism of important flavor precursors (amino acids and lipids) were explored by integrating transcriptome and metabolome. Consequently, we identified 432 differentially expressed genes, which were mainly involved in muscle development and function maintenance (e.g., myofibril, myocyte differentiation, etc.), metabolism (e.g., fatty acid metabolism, arachidonic acid metabolism, PPAR signaling pathway, and PI3K-Akt signaling pathway, etc.), and homeostasis (e.g., regulation of actin cytoskeleton, ECM-receptor interaction, calcium signaling pathway, etc.). A total of 58 key genes affecting muscle fiber properties, including MYL2, HOXA/C/D, MYBPH8, MYH8, etc., were screened, which characterized the molecular differences in muscle fiber metabolic properties between oxidative and glycolytic muscle. Meanwhile, we identified 463 differentially accumulated metabolites. Except for glycerophospholipids, most flavor metabolites were higher in oxidative muscle. Subsequently, key genes highly related to flavor amino acids were identified by weighted gene co-expression network analysis, such as ALDH6A1, BCKDHB, SLC16A7, LDHB, etc. Based on KEGG enrichment analysis, a regulatory network with both lipid metabolism and its crosstalk with other metabolic pathways was constructed. CONCLUSIONS In conclusion, this study provides an in-depth understanding of the molecular mechanism of differences in muscle fiber properties among different muscles of Minxian black fur sheep, and also lays a foundation for further exploration of the regulatory mechanism of key genes on flavor metabolites.
Collapse
Affiliation(s)
- Huihui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China
| | - Zilong Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hai Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yaqin Bai
- Animal Husbandry Technology Extension Station of Gansu Province, Lanzhou, 730030, China
| | - Qiao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xingcai Qi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Dengpan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xingxu Zhao
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China.
| |
Collapse
|
3
|
Zhou M, Ling C, Xiao H, Zhang Z. Identification of Gene Expression and Splicing QTLs in Porcine Muscle Associated with Meat Quality Traits. Animals (Basel) 2025; 15:1209. [PMID: 40362025 PMCID: PMC12071002 DOI: 10.3390/ani15091209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Understanding the genetic regulation of gene expression and splicing in muscle tissues is critical for elucidating the molecular mechanisms of meat quality traits. In this study, we integrated large-scale whole-genome sequencing and strand-specific RNA-seq data from 582 F2 hybrid pigs (White Duroc × Erhualian) to characterize the expression and splicing quantitative trait loci (eQTLs/sQTL) in longissimus dorsi muscle. We identified 11,058 cis-eQTL-associated genes (eGenes) and 5139 cis-sQTL-associated genes (sGenes), of which 29% of eGenes and 80% of sGenes were previously unreported in the PigGTEx database. Functional analyses revealed distinct genomic features: eQTLs were enriched near transcription start sites (TSSs) and associated with active TSS-proximal transcribed regions and enhancers, whereas sQTLs clustered at splice junctions, underscoring their distinct roles in gene expression and splicing regulation. Colocalization analysis of e/sQTLs with GWAS signals prioritized PHKG1 as a key candidate gene (PPH4 > 0.9) for glycogen metabolism. Notably, we confirmed that an sQTL-driven alternative splicing event in exon 10 of PHKG1 was significantly correlated with phenotypic variation (R = -0.39, p = 9.5 × 10-21). Collectively, this study provides novel insights into the genetic regulation of gene expression and alternative splicing in porcine muscle tissue, advancing our understanding of the molecular mechanisms underlying economically important meat quality traits.
Collapse
Affiliation(s)
- Meng Zhou
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation Technology, Jiangxi Agricultural University, Nanchang 330045, China; (C.L.); (H.X.); (Z.Z.)
| | | | | | | |
Collapse
|
4
|
Zeng Q, Du ZQ. Advances in the discovery of genetic elements underlying longissimus dorsi muscle growth and development in the pig. Anim Genet 2023; 54:709-720. [PMID: 37796678 DOI: 10.1111/age.13365] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 07/08/2023] [Accepted: 07/08/2023] [Indexed: 10/07/2023]
Abstract
As a major source of protein in human diets, pig meat plays a crucial role in ensuring global food security. Key determinants of meat production refer to the chemical and physical compositions or characteristics of muscle fibers, such as the number, hypertrophy potential, fiber-type conversion and intramuscular fat deposition. However, the growth and formation of muscle fibers comprises a complex process under spatio-temporal regulation, that is, the intermingled and concomitant proliferation, differentiation, migration and fusion of myoblasts. Recently, with the fast and continuous development of next-generation sequencing technology, the integration of quantitative trait loci mapping with genome-wide association studies (GWAS) has greatly helped animal geneticists to discover and explore thousands of functional or causal genetic elements underlying muscle growth and development. However, owing to the underlying complex molecular mechanisms, challenges to in-depth understanding and utilization remain, and the cost of large-scale sequencing, which requires integrated analyses of high-throughput omics data, is high. In this review, we mainly elaborate on research advances in integrative analyses (e.g. GWAS, omics) for identifying functional genes or genomic elements for longissimus dorsi muscle growth and development for different pig breeds, describing several successful transcriptome analyses and functional genomics cases, in an attempt to provide some perspective on the future functional annotation of genetic elements for muscle growth and development in pigs.
Collapse
Affiliation(s)
- Qingjie Zeng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
5
|
Wu X, Zhou X, Chu M, Guo X, Pei J, Xiong L, Ma X, Bao P, Liang C, Yan P. Whole transcriptome analyses and comparison reveal the metabolic differences between oxidative and glycolytic skeletal muscles of yak. Meat Sci 2022; 194:108948. [PMID: 36058093 DOI: 10.1016/j.meatsci.2022.108948] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022]
Abstract
Mammalian skeletal muscle is composed of various muscle fibers that exhibit different physiological and metabolic features. Muscle fiber type composition has significant influences on the meat quality of livestock. In this study, we comprehensively analyzed the whole transcriptome profiles of the oxidative muscle biceps femoris (BF) and the glycolytic muscle obliquus externus abdominis (OEA) of yak. A total of 1436 mRNAs, 1172 lncRNAs, and 218 circRNAs were differentially expressed in the oxidative muscles compared with the glycolytic muscles. KEGG annotation showed that differentially expressed mRNAs regulated by lncRNA and circRNA were mainly involved in PPAR signaling pathway, citrate cycle (TCA cycle), and PI3K-Akt signaling pathway, which reflect the different metabolic properties between oxidative and glycolytic muscles. In addition, regulatory networks associated with muscle fiber type conversion and mitochondria energy metabolism in muscles were constructed. Our study provides new evidence for a better understanding of the molecular mechanisms underlying skeletal muscle fiber determination and meat quality traits of yak.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Xuelan Zhou
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Jie Pei
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Lin Xiong
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Xiaoming Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.
| |
Collapse
|
6
|
Wen Y, Li S, Bao G, Wang J, Liu X, Hu J, Zhao F, Zhao Z, Shi B, Luo Y. Comparative Transcriptome Analysis Reveals the Mechanism Associated With Dynamic Changes in Meat Quality of the Longissimus Thoracis Muscle in Tibetan Sheep at Different Growth Stages. Front Vet Sci 2022; 9:926725. [PMID: 35873690 PMCID: PMC9298548 DOI: 10.3389/fvets.2022.926725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Tibetan sheep are mainly distributed in the Qinghai–Tibet Plateau. Its meat is not only essential for the local people but also preferred by the non-inhabitant of this plateau also. To investigate the salient development features and molecular mechanism of the meat difference of LT muscle caused by different growth stages in Tibetan sheep, the carcass performance, meat quality, and comparative transcriptome analysis were performed for investigating the potential molecular mechanism of the meat quality difference of the LT muscle caused by four growth stages [4-months old (4 months), 1.5-years old (1.5 years), 3.5-years old (3.5 years), and 6-years old (6 years)] in the Tibetan sheep. The shear force increased with the increase of age (p < 0.05) while the intramuscular fat (IMF) was the highest at 1.5 y. The AMPK signaling pathway was significantly enriched in the four comparative groups. The weighted gene co-expression network analysis (WGCNA) results showed that the hub genes P4HA2, FBXL4, and PPARA were identified to regulate the meat quality. In summary, 1.5 years was found to be the most suitable slaughter age of the Tibetan sheep which ensured better meat tenderness and higher IMF content. Moreover, the genes LIPE, LEP, ADIPOQ, SCD, and FASN may regulate the transformation of the muscle fiber types through the AMPK signaling pathway, further affecting the meat quality.
Collapse
Affiliation(s)
- Yuliang Wen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Gaoliang Bao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
7
|
Rivera-Araya J, Heine T, Chávez R, Schlömann M, Levicán G. Transcriptomic analysis of chloride tolerance in Leptospirillum ferriphilum DSM 14647 adapted to NaCl. PLoS One 2022; 17:e0267316. [PMID: 35486621 PMCID: PMC9053815 DOI: 10.1371/journal.pone.0267316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 04/06/2022] [Indexed: 11/29/2022] Open
Abstract
Chloride ions are toxic for most acidophilic microorganisms. In this study, the chloride tolerance mechanisms in the acidophilic iron-oxidizing bacterium Leptospirillum ferriphilum DSM 14647 adapted to 180 mM NaCl were investigated by a transcriptomic approach. Results showed that 99 genes were differentially expressed in the adapted versus the non-adapted cultures, of which 69 and 30 were significantly up-regulated or down-regulated, respectively. Genes that were up-regulated include carbonic anhydrase, cytochrome c oxidase (ccoN) and sulfide:quinone reductase (sqr), likely involved in intracellular pH regulation. Towards the same end, the cation/proton antiporter CzcA (czcA) was down-regulated. Adapted cells showed a higher oxygen consumption rate (2.2 x 10−9 ppm O2 s-1cell-1) than non-adapted cells (1.2 x 10−9 ppm O2 s-1cell-1). Genes coding for the antioxidants flavohemoprotein and cytochrome c peroxidase were also up-regulated. Measurements of the intracellular reactive oxygen species (ROS) level revealed that adapted cells had a lower level than non-adapted cells, suggesting that detoxification of ROS could be an important strategy to withstand NaCl. In addition, data analysis revealed the up-regulation of genes for Fe-S cluster biosynthesis (iscR), metal reduction (merA) and activation of a cellular response mediated by diffusible signal factors (DSFs) and the second messenger c-di-GMP. Several genes related to the synthesis of lipopolysaccharide and peptidoglycan were consistently down-regulated. Unexpectedly, the genes ectB, ectC and ectD involved in the biosynthesis of the compatible solutes (hydroxy)ectoine were also down-regulated. In line with these findings, although hydroxyectoine reached 20 nmol mg-1 of wet biomass in non-adapted cells, it was not detected in L. ferriphilum adapted to NaCl, suggesting that this canonical osmotic stress response was dispensable for salt adaptation. Differentially expressed transcripts and experimental validations suggest that adaptation to chloride in acidophilic microorganisms involves a multifactorial response that is different from the response in other bacteria studied.
Collapse
Affiliation(s)
- Javier Rivera-Araya
- Biology Department, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Thomas Heine
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Renato Chávez
- Biology Department, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Michael Schlömann
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Gloria Levicán
- Biology Department, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
- * E-mail:
| |
Collapse
|
8
|
Muniz MMM, Simielli Fonseca LF, Scalez DCB, Vega AS, dos Santos Silva DB, Ferro JA, Chardulo AL, Baldi F, Cánovas A, de Albuquerque LG. Characterization of novel
lncRNA
muscle expression profiles associated with meat quality in beef cattle. Evol Appl 2022; 15:706-718. [PMID: 35505883 PMCID: PMC9046762 DOI: 10.1111/eva.13365] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to identify novel lncRNA differentially expressed (DE) between divergent animals for beef tenderness and marbling traits in Nellore cattle. Longissimus thoracis muscle samples from the 20 most extreme bulls (of 80 bulls set) for tenderness, tender (n = 10) and tough (n = 10) groups, and marbling trait, high (n = 10) and low (n = 10) groups were used to perform transcriptomic analysis using RNA‐Sequencing. For tenderness, 29 lncRNA were DE (p‐value ≤ 0.01) in tough beef animals in relation to tender beef animals. We observed that genic lncRNAs, for example, lncRNA_595.1, were overlapping exonic part of the PICK gene, while lncRNA_3097.2 and lncRNA_3129.5 overlapped intronic part of the genes GADL1 and PSMD6. The lncRNA associated with PICK1, GADL1, and PMD6 genes were enriched in the pathways associated with the ionotropic glutamate receptor, gamma‐aminobutyric acid synthesis, and the ubiquitin–proteasome pathway. For marbling, 50 lncRNA were DE (p‐value ≤ 0.01) in high marbling group compared with low marbling animals. The genic lncRNAs, such as lncRNA_3191.1, were overlapped exonic part of the ITGAL gene, and the lncRNA_512.1, lncRNA_3721.1, and lncRNA_41.4 overlapped intronic parts of the KRAS and MASP1 genes. The KRAS and ITGAL genes were enriched in pathways associated with integrin signaling, which is involved in intracellular signals in response to the extracellular matrix, including cell form, mobility, and mediates progression through the cell cycle. In addition, the lincRNAs identified to marbling trait were associated with several genes related to calcium binding, muscle hypertrophy, skeletal muscle, lipase, and oxidative stress response pathways that seem to play a role important in the physiological processes related to meat quality. These findings bring new insights to better understand the biology mechanisms involved in the gene regulation of these traits, which will be valuable for a further investigation of the interactions between lncRNA and mRNAs, and of how these interactions may affect meat quality traits.
Collapse
Affiliation(s)
- Maria Malane Magalhães Muniz
- São Paulo State University (Unesp) School of Agricultural and Veterinarian Sciences Jaboticabal SP Brazil
- Centre for Genetic Improvement of Livestock Department of Animal Biosciences University of Guelph Guelph Canada
| | | | | | - Aroa Suarez Vega
- Centre for Genetic Improvement of Livestock Department of Animal Biosciences University of Guelph Guelph Canada
| | | | - Jesus Aparecido Ferro
- São Paulo State University (Unesp) School of Agricultural and Veterinarian Sciences Jaboticabal SP Brazil
- National Council for Scientific and Technological Development (CNPq) Brazil
| | - Artur Loyola Chardulo
- São Paulo State University (Unesp) College of Veterinary and Animal Science Botucatu SP Brazil
- National Council for Scientific and Technological Development (CNPq) Brazil
| | - Fernando Baldi
- São Paulo State University (Unesp) School of Agricultural and Veterinarian Sciences Jaboticabal SP Brazil
- National Council for Scientific and Technological Development (CNPq) Brazil
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock Department of Animal Biosciences University of Guelph Guelph Canada
| | - Lucia Galvão de Albuquerque
- São Paulo State University (Unesp) School of Agricultural and Veterinarian Sciences Jaboticabal SP Brazil
- National Council for Scientific and Technological Development (CNPq) Brazil
| |
Collapse
|
9
|
Nonneman D, Keel BN, Lindholm-Perry AK, Rohrer G, Wheeler TL, Shackelford SD, King DA. Transcriptomic analysis for pork color – the ham halo effect in biceps femoris. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.13050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Pork color is a major indicator of product quality that guides consumerpurchasing decisions. Recently, industry has received an increase in consumercomplaints about the lightness and non-uniformity of ham color, primarilylighter color in the periphery termed “ham halo” that is not caused bymanufacturing procedures. This effect is seen in fresh and processed hams andthe outer, lighter muscle is associated with lower myoglobin concentration, pHand type I fibers. The objective of this study was to identify differences ingene expression profiles between light and normal colored portions of biceps femoris muscle from pork hams.RNA-sequencing was performed for paired light and normal colored muscle samplesfrom 10 animals showing the ham halo effect. Over 50 million paired-end reads(2x75bp) per library were obtained. An average of 99.74% of trimmed high-qualityreads were mapped to the Sscrofa 11.1 genome assembly. Differentially expressedgenes (DEGs) were identified using both the DESeq2 and GFOLD software packages.A total of 14,049 genes were expressed in bicepsfemoris; 13,907 were expressed in both light and normal muscle, while 56and 86 genes were only expressed in light and normal muscle, respectively. Analysiswith DESeq2 identified 392 DEGs with 359 genes being more highly expressed innormal colored muscle. A total of 61 DEGs were identified in the DESeq2analysis and also were identified in at least 7 of the 10 individual animalanalyses. All 61 of these DEGs were up-regulated in normal colored muscle. Geneontology (GO) enrichment analysis of DEGs identified the transition betweenfast and slow fibers, and skeletal muscle adaptation and contraction as themost significant biological process terms. The evaluation of gene expression byRNA-Seq identified DEGs between regions of the biceps femoris with the ham halo effect that are associated with thevariation in pork color.
Collapse
Affiliation(s)
- Dan Nonneman
- US Meat Animal Research Center Reproduction Research Unit
| | | | | | - Gary Rohrer
- US Meat Animal Research Center Reproduction Research Unit
| | - Tommy L. Wheeler
- USDA, Agricultural Research Service Meat Safety and Quality Research Unit, U.S. Meat Animal Research Center
| | | | - D. Andy King
- USDA, Agricultural Research Service U.S. Meat Animal Research Center
| |
Collapse
|
10
|
Renzini A, Riera CS, Minic I, D’Ercole C, Lozanoska-Ochser B, Cedola A, Gigli G, Moresi V, Madaro L. Metabolic Remodeling in Skeletal Muscle Atrophy as a Therapeutic Target. Metabolites 2021; 11:517. [PMID: 34436458 PMCID: PMC8398298 DOI: 10.3390/metabo11080517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is a highly responsive tissue, able to remodel its size and metabolism in response to external demand. Muscle fibers can vary from fast glycolytic to slow oxidative, and their frequency in a specific muscle is tightly regulated by fiber maturation, innervation, or external causes. Atrophic conditions, including aging, amyotrophic lateral sclerosis, and cancer-induced cachexia, differ in the causative factors and molecular signaling leading to muscle wasting; nevertheless, all of these conditions are characterized by metabolic remodeling, which contributes to the pathological progression of muscle atrophy. Here, we discuss how changes in muscle metabolism can be used as a therapeutic target and review the evidence in support of nutritional interventions and/or physical exercise as tools for counteracting muscle wasting in atrophic conditions.
Collapse
Affiliation(s)
- Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Carles Sánchez Riera
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Isidora Minic
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Chiara D’Ercole
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Biliana Lozanoska-Ochser
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Alessia Cedola
- Institute of Nanotechnology, c/o Dipartimento di Fisica, National Research Council (CNR-NANOTEC), Sapienza University of Rome, 00185 Rome, Italy;
| | - Giuseppe Gigli
- Institute of Nanotechnology, c/o Campus Ecotekne, National Research Council (CNR-NANOTEC), Monteroni, 73100 Lecce, Italy;
| | - Viviana Moresi
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
- Institute of Nanotechnology, c/o Dipartimento di Fisica, National Research Council (CNR-NANOTEC), Sapienza University of Rome, 00185 Rome, Italy;
| | - Luca Madaro
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| |
Collapse
|
11
|
Myofiber stretch induces tensile and shear deformation of muscle stem cells in their native niche. Biophys J 2021; 120:2665-2678. [PMID: 34087215 PMCID: PMC8390894 DOI: 10.1016/j.bpj.2021.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 05/02/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022] Open
Abstract
Muscle stem cells (MuSCs) are requisite for skeletal muscle regeneration and homeostasis. Proper functioning of MuSCs, including activation, proliferation, and fate decision, is determined by an orchestrated series of events and communication between MuSCs and their niche. A multitude of biochemical stimuli are known to regulate MuSC fate and function. However, in addition to biochemical factors, it is conceivable that MuSCs are subjected to mechanical forces during muscle stretch-shortening cycles because of myofascial connections between MuSCs and myofibers. MuSCs respond to mechanical forces in vitro, but it remains to be proven whether physical forces are also exerted on MuSCs in their native niche and whether they contribute to the functioning and fate of MuSCs. MuSC deformation in their native niche resulting from mechanical loading of ex vivo myofiber bundles was visualized utilizing mT/mG double-fluorescent Cre-reporter mouse and multiphoton microscopy. MuSCs were subjected to 1 h pulsating fluid shear stress (PFSS) with a peak shear stress rate of 6.5 Pa/s. After PFSS treatment, nitric oxide, messenger RNA (mRNA) expression levels of genes involved in regulation of MuSC proliferation and differentiation, ERK 1/2, p38, and AKT activation were determined. Ex vivo stretching of extensor digitorum longus and soleus myofiber bundles caused compression as well as tensile and shear deformation of MuSCs in their niche. MuSCs responded to PFSS in vitro with increased nitric oxide production and an upward trend in iNOS mRNA levels. PFSS enhanced gene expression of c-Fos, Cdk4, and IL-6, whereas expression of Wnt1, MyoD, Myog, Wnt5a, COX2, Rspo1, Vangl2, Wnt10b, and MGF remained unchanged. ERK 1/2 and p38 MAPK signaling were also upregulated after PFSS treatment. We conclude that MuSCs in their native niche are subjected to force-induced deformations due to myofiber stretch-shortening. Moreover, MuSCs are mechanoresponsive, as evidenced by PFSS-mediated expression of factors by MuSCs known to promote proliferation.
Collapse
|
12
|
Huang B, Jiao Y, Zhu Y, Ning Z, Ye Z, Li QX, Hu C, Wang C. Mdfi Promotes C2C12 Cell Differentiation and Positively Modulates Fast-to-Slow-Twitch Muscle Fiber Transformation. Front Cell Dev Biol 2021; 9:605875. [PMID: 33553177 PMCID: PMC7862576 DOI: 10.3389/fcell.2021.605875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022] Open
Abstract
Muscle development requires myoblast differentiation and muscle fiber formation. Myod family inhibitor (Mdfi) inhibits myogenic regulatory factors in NIH3T3 cells, but how Mdfi regulates myoblast myogenic development is still unclear. In the present study, we constructed an Mdfi-overexpression (Mdfi-OE) C2C12 cell line by the CRISPR/Cas9 system and performed RNA-seq on Mdfi-OE and wild-type (WT) C2C12 cells. The RNA-seq results showed that the calcium signaling pathway was the most significant. We also established the regulatory networks of Mdfi-OE on C2C12 cell differentiation and muscle fiber type transformation and identified hub genes. Further, both RNA-seq and experimental verification demonstrated that Mdfi promoted C2C12 cell differentiation by upregulating the expression of Myod, Myog, and Myosin. We also found that the positive regulation of Mdfi on fast-to-slow-twitch muscle fiber transformation is mediated by Myod, Camk2b, and its downstream genes, such as Pgc1a, Pdk4, Cs, Cox4, Acadm, Acox1, Cycs, and Atp5a1. In conclusion, our results demonstrated that Mdfi promotes C2C12 cell differentiation and positively modulates fast-to-slow-twitch muscle fiber transformation. These findings further our understanding of the regulatory mechanisms of Mdfi in myogenic development and muscle fiber type transformation. Our results suggest potential therapeutic targets for muscle- and metabolic-related diseases.
Collapse
Affiliation(s)
- Bo Huang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yiren Jiao
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yifan Zhu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zuocheng Ning
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zijian Ye
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Chingyuan Hu
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Chong Wang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Hettige P, Tahir U, Nishikawa KC, Gage MJ. Comparative analysis of the transcriptomes of EDL, psoas, and soleus muscles from mice. BMC Genomics 2020; 21:808. [PMID: 33213377 PMCID: PMC7678079 DOI: 10.1186/s12864-020-07225-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Individual skeletal muscles have evolved to perform specific tasks based on their molecular composition. In general, muscle fibers are characterized as either fast-twitch or slow-twitch based on their myosin heavy chain isoform profiles. This approach made sense in the early days of muscle studies when SDS-PAGE was the primary tool for mapping fiber type. However, Next Generation Sequencing tools permit analysis of the entire muscle transcriptome in a single sample, which allows for more precise characterization of differences among fiber types, including distinguishing between different isoforms of specific proteins. We demonstrate the power of this approach by comparing the differential gene expression patterns of extensor digitorum longus (EDL), psoas, and soleus from mice using high throughput RNA sequencing. RESULTS EDL and psoas are typically classified as fast-twitch muscles based on their myosin expression pattern, while soleus is considered a slow-twitch muscle. The majority of the transcriptomic variability aligns with the fast-twitch and slow-twitch characterization. However, psoas and EDL exhibit unique expression patterns associated with the genes coding for extracellular matrix, myofibril, transcription, translation, striated muscle adaptation, mitochondrion distribution, and metabolism. Furthermore, significant expression differences between psoas and EDL were observed in genes coding for myosin light chain, troponin, tropomyosin isoforms, and several genes encoding the constituents of the Z-disk. CONCLUSIONS The observations highlight the intricate molecular nature of skeletal muscles and demonstrate the importance of utilizing transcriptomic information as a tool for skeletal muscle characterization.
Collapse
Affiliation(s)
- Pabodha Hettige
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA.,UMass Movement Center, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Uzma Tahir
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Kiisa C Nishikawa
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Matthew J Gage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA. .,UMass Movement Center, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
14
|
Fernández-Barroso MÁ, Caraballo C, Silió L, Rodríguez C, Nuñez Y, Sánchez-Esquiliche F, Matos G, García-Casco JM, Muñoz M. Differences in the Loin Tenderness of Iberian Pigs Explained through Dissimilarities in Their Transcriptome Expression Profile. Animals (Basel) 2020; 10:ani10091715. [PMID: 32971875 PMCID: PMC7552750 DOI: 10.3390/ani10091715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The Iberian pig is the most representative autochthonous breed of the Mediterranean region with unique genetic and phenotypic characteristics. The breed has been successfully preserved by its high-quality meat and high-priced products. Tenderness is one of the most relevant meat quality traits, and meat tenderization is influenced by genetic and environmental effects such as pre-slaughter handling and post-mortem conditions. Tenderness could be included in Iberian pig breeding programs, mainly focused on the improvement of premium-cuts percentage, in order to avoid the meat quality decline. A better biological understanding of this trait is needed. In the current study, we analyze the transcriptome of pigs divergent for Warner–Bratzler shear force through RNA-seq technique for the identification, characterization and quantification of candidate genes involved in biological pathways, networks and functions affecting meat tenderness. Abstract Tenderness is one of the most important meat quality traits and it can be measured through shear force with the Warner–Bratzler test. In the current study, we use the RNA-seq technique to analyze the transcriptome of Longissimus dorsi (LD) muscle in two groups of Iberian pigs (Tough and Tender) divergent for shear force breeding values. We identified 200 annotated differentially expressed genes (DEGs) and 245 newly predicted isoforms. The RNAseq expression results of 10 genes were validated with quantitative PCR (qPCR). Functional analyses showed an enrichment of DE genes in biological processes related to proteolysis (CTSC, RHOD, MYH8, ACTC1, GADD45B, CASQ2, CHRNA9 and ANKRD1), skeletal muscle tissue development (ANKRD1, DMD, FOS and MSTN), lipid metabolism (FABP3 and PPARGC1A) and collagen metabolism (COL14A1). The upstream analysis revealed a total of 11 transcription regulatory factors that could regulate the expression of some DEGs. Among them, IGF1, VGLL3 and PPARG can be highlighted since they regulate the expression of genes involved in biological pathways that could affect tenderness. The experiment revealed a set of candidate genes and regulatory factors suggestive to search polymorphisms that could be incorporated in a breeding program for improving meat tenderness.
Collapse
Affiliation(s)
- Miguel Ángel Fernández-Barroso
- Centro Nacional de I+D del Cerdo Ibérico (CENIDCI), INIA, 06300 Zafra, Spain; (C.C.); (J.M.G.-C.)
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain; (L.S.); (C.R.); (Y.N.); (M.M.)
- Correspondence:
| | - Carmen Caraballo
- Centro Nacional de I+D del Cerdo Ibérico (CENIDCI), INIA, 06300 Zafra, Spain; (C.C.); (J.M.G.-C.)
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain; (L.S.); (C.R.); (Y.N.); (M.M.)
| | - Luis Silió
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain; (L.S.); (C.R.); (Y.N.); (M.M.)
| | - Carmen Rodríguez
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain; (L.S.); (C.R.); (Y.N.); (M.M.)
| | - Yolanda Nuñez
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain; (L.S.); (C.R.); (Y.N.); (M.M.)
| | | | - Gema Matos
- Sánchez Romero Carvajal—Jabugo, SRC, 21290 Huelva, Spain; (F.S.-E.); (G.M.)
| | - Juan María García-Casco
- Centro Nacional de I+D del Cerdo Ibérico (CENIDCI), INIA, 06300 Zafra, Spain; (C.C.); (J.M.G.-C.)
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain; (L.S.); (C.R.); (Y.N.); (M.M.)
| | - María Muñoz
- Centro Nacional de I+D del Cerdo Ibérico (CENIDCI), INIA, 06300 Zafra, Spain; (C.C.); (J.M.G.-C.)
| |
Collapse
|
15
|
Yu S, Wang G, Liao J, Tang M, Chen J. Identification of differentially expressed genes associated with egg production in black-boned chicken. Br Poult Sci 2020; 61:3-7. [PMID: 32134329 DOI: 10.1080/00071668.2020.1736268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
1. Muchuan black-bone chicken is well known in China for its meat quality and medicinal properties; however, its egg-laying performance is not ideal. To better understand the molecular mechanisms of black-boned chicken egg-laying, high-throughput RNA sequencing was performed to compare differences in the pituitary transcriptome between three high-rate (group H) and three low-rate (group L) egg production chickens. 2. In total, 171 differentially expressed genes (DEGs) were identified between the two groups, of which 113 were upregulated and 58 were downregulated in group L. Some of these genes are known to be related to hormone secretion or the regulation of reproductive processes; these include prolactin-releasing hormone (PRLH), distal-less homeobox 6 (DLX6), interferon regulatory factor 4 (IRF4), and cilia and flagella associated protein 69 (CFAP69). Notably, expression pattern analysis indicated that both PRLH and DLX6 may influence egg-laying performance. 3. The dataset provided a foundation for discovering important genes and pathways involved in the chicken egg-laying process, and may help to improve understanding of the molecular mechanisms of chicken reproduction.
Collapse
Affiliation(s)
- S Yu
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - G Wang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - J Liao
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - M Tang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - J Chen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| |
Collapse
|
16
|
miRNA-mRNA network regulation in the skeletal muscle fiber phenotype of chickens revealed by integrated analysis of miRNAome and transcriptome. Sci Rep 2020; 10:10619. [PMID: 32606372 PMCID: PMC7326969 DOI: 10.1038/s41598-020-67482-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/08/2020] [Indexed: 12/23/2022] Open
Abstract
Skeletal muscle fibers are primarily categorized into oxidative and glycolytic fibers, and the ratios of different myofiber types are important factors in determining livestock meat quality. However, the molecular mechanism for determining muscle fiber types in chickens was hardly understood. In this study, we used RNA sequencing to systematically compare mRNA and microRNA transcriptomes of the oxidative muscle sartorius (SART) and glycolytic muscle pectoralis major (PMM) of Chinese Qingyuan partridge chickens. Among the 44,705 identified mRNAs in the two types of muscles, 3,457 exhibited significantly different expression patterns, including 2,364 up-regulated and 1,093 down-regulated mRNAs in the SART. A total of 698 chicken miRNAs were identified, including 189 novel miRNAs, among which 67 differentially expressed miRNAs containing 42 up-regulated and 25 down-regulated miRNAs in the SART were identified. Furthermore, function enrichment showed that the differentially expressed mRNAs and miRNAs were involved in energy metabolism, muscle contraction, and calcium, peroxisome proliferator-activated receptor (PPAR), insulin and adipocytokine signaling. Using miRNA-mRNA integrated analysis, we identified several candidate miRNA-gene pairs that might affect muscle fiber performance, viz, gga-miR-499-5p/SOX6 and gga-miR-196-5p/CALM1, which were supported by target validation using the dual-luciferase reporter system. This study revealed a mass of candidate genes and miRNAs involved in muscle fiber type determination, which might help understand the molecular mechanism underlying meat quality traits in chickens.
Collapse
|
17
|
Song Y, Yang X, Yang S, Wang J. Transcriptome sequencing and functional analysis of Sedum lineare Thunb. upon salt stress. Mol Genet Genomics 2019; 294:1441-1453. [DOI: 10.1007/s00438-019-01587-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
|
18
|
López ME, Benestan L, Moore J, Perrier C, Gilbey J, Di Genova A, Maass A, Diaz D, Lhorente J, Correa K, Neira R, Bernatchez L, Yáñez JM. Comparing genomic signatures of domestication in two Atlantic salmon ( Salmo salar L.) populations with different geographical origins. Evol Appl 2019; 12:137-156. [PMID: 30622641 PMCID: PMC6304691 DOI: 10.1111/eva.12689] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 06/29/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022] Open
Abstract
Selective breeding and genetic improvement have left detectable signatures on the genomes of domestic species. The elucidation of such signatures is fundamental for detecting genomic regions of biological relevance to domestication and improving management practices. In aquaculture, domestication was carried out independently in different locations worldwide, which provides opportunities to study the parallel effects of domestication on the genome of individuals that have been selected for similar traits. In this study, we aimed to detect potential genomic signatures of domestication in two independent pairs of wild/domesticated Atlantic salmon populations of Canadian and Scottish origins, respectively. Putative genomic regions under divergent selection were investigated using a 200K SNP array by combining three different statistical methods based either on allele frequencies (LFMM, Bayescan) or haplotype differentiation (Rsb). We identified 337 and 270 SNPs potentially under divergent selection in wild and hatchery populations of Canadian and Scottish origins, respectively. We observed little overlap between results obtained from different statistical methods, highlighting the need to test complementary approaches for detecting a broad range of genomic footprints of selection. The vast majority of the outliers detected were population-specific but we found four candidate genes that were shared between the populations. We propose that these candidate genes may play a role in the parallel process of domestication. Overall, our results suggest that genetic drift may have override the effect of artificial selection and/or point toward a different genetic basis underlying the expression of similar traits in different domesticated strains. Finally, it is likely that domestication may predominantly target polygenic traits (e.g., growth) such that its genomic impact might be more difficult to detect with methods assuming selective sweeps.
Collapse
Affiliation(s)
- Maria E. López
- Facultad de Ciencias Veterinarias y PecuariasUniversidad de ChileSantiagoChile
- Facultad de Ciencias AgronómicasUniversidad de ChileSantiagoChile
| | - Laura Benestan
- IBISInstitut de Biologie Intégrative et des SystèmesUniversité LavalQuébec CityQuébecCanada
| | - Jean‐Sebastien Moore
- IBISInstitut de Biologie Intégrative et des SystèmesUniversité LavalQuébec CityQuébecCanada
| | - Charles Perrier
- Centre d’Écologie Fonctionnelle et ÉvolutiveUnité Mixte de Recherche CNRS 5175MontpellierFrance
| | - John Gilbey
- Marine Scotland ScienceFreshwater Fisheries LaboratoryFaskallyPitlochryUK
| | - Alex Di Genova
- Laboratory of Bioinformatics and Mathematics of the GenomeCenter for Mathematical Modeling (UMI 2807 CNRS) and Center for Genome Regulation (Fondap 15090007)Universidad de ChileSantiagoChile
| | - Alejandro Maass
- Laboratory of Bioinformatics and Mathematics of the GenomeCenter for Mathematical Modeling (UMI 2807 CNRS) and Center for Genome Regulation (Fondap 15090007)Universidad de ChileSantiagoChile
| | - Diego Diaz
- Laboratory of Bioinformatics and Mathematics of the GenomeCenter for Mathematical Modeling (UMI 2807 CNRS) and Center for Genome Regulation (Fondap 15090007)Universidad de ChileSantiagoChile
| | | | | | - Roberto Neira
- Facultad de Ciencias AgronómicasUniversidad de ChileSantiagoChile
| | - Louis Bernatchez
- IBISInstitut de Biologie Intégrative et des SystèmesUniversité LavalQuébec CityQuébecCanada
| | - José M. Yáñez
- Facultad de Ciencias Veterinarias y PecuariasUniversidad de ChileSantiagoChile
- AquainnovoPuerto MonttChile
- Núcleo Milenio INVASALConcepciónChile
| |
Collapse
|
19
|
Guo X, Li M, Gao P, Cao G, Zhang W, Liu M, Wang H, Qin B, Liu J, Wang L, Li B, Han J. Identification of candidate genes of growth traits in pigs using RNA-sequencing. ITALIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1080/1828051x.2018.1507628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Xiaohong Guo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Meng Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Pengfei Gao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Guoqing Cao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Wanfeng Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Min Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Haizhen Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Benyuan Qin
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jianfeng Liu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Bugao Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Junwen Han
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
20
|
Shang P, Wang Z, Chamba Y, Zhang B, Zhang H, Wu C. A comparison of prenatal muscle transcriptome and proteome profiles between pigs with divergent growth phenotypes. J Cell Biochem 2018; 120:5277-5286. [PMID: 30302803 DOI: 10.1002/jcb.27802] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
The growth of pigs is an important economic trait that involves multiple genes and coordinated regulatory mechanisms. The growth rate and potential of skeletal muscles are largely decided by embryonic myofiber development. Tibetan pig (TP) that is a mini-type breed has a divergent phenotype in growth rate and adult body weight with Wujin pig (WJ) and large White pig (LW). In the current study, the transcriptome (using RNA-seq) and proteome (using the isobaric tag for relative and absolute quantification [iTRAQ]) data from the prenatal muscle tissues were analyzed to identify the genes related to postnatal growth rate and growth potential in pigs. In the RNA-seq experiment, 19 626 genes were detected in the embryonic muscle tissues, and 3626 unique differentially expressed genes (DEGs) were identified in TP in comparison to that in LW and WJ. In the iTRAQ experiment, 2474 proteins were detected, and 735 unique differentially expressed proteins (DEPs) were identified in TP in comparison to that in LW and WJ. Combining the DEGs and DEPs, 209 genes were found to be differentially expressed, consistently at both the messenger RNA and protein levels, between TP and the other two breeds; these are mainly involved in 2-oxocarboxylic acid metabolism, citrate cycle, and biosynthesis of amino acids. Of these, 20 genes that were related to myoblast differentiation and muscle fiber formation might have important roles in determining the postnatal growth rate and potential body weight in pigs. Our results provide new candidate genes and insights into the molecular mechanisms involved muscle growth traits in pigs.
Collapse
Affiliation(s)
- Peng Shang
- Laboratory National Engineering For Animal Breeding/Beijing Key Laboratory for Animal Genetic Improvement, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China.,Department of animal husbandry, College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China
| | - Zhixiu Wang
- Laboratory National Engineering For Animal Breeding/Beijing Key Laboratory for Animal Genetic Improvement, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China.,Department of Animal Genetics and Breeding, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yangzom Chamba
- Department of animal husbandry, College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China
| | - Bo Zhang
- Laboratory National Engineering For Animal Breeding/Beijing Key Laboratory for Animal Genetic Improvement, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Hao Zhang
- Laboratory National Engineering For Animal Breeding/Beijing Key Laboratory for Animal Genetic Improvement, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Changxin Wu
- Laboratory National Engineering For Animal Breeding/Beijing Key Laboratory for Animal Genetic Improvement, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Li B, Weng Q, Dong C, Zhang Z, Li R, Liu J, Jiang A, Li Q, Jia C, Wu W, Liu H. A Key Gene, PLIN1, Can Affect Porcine Intramuscular Fat Content Based on Transcriptome Analysis. Genes (Basel) 2018; 9:genes9040194. [PMID: 29617344 PMCID: PMC5924536 DOI: 10.3390/genes9040194] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 12/20/2022] Open
Abstract
Intramuscular fat (IMF) content is an important indicator for meat quality evaluation. However, the key genes and molecular regulatory mechanisms affecting IMF deposition remain unclear. In the present study, we identified 75 differentially expressed genes (DEGs) between the higher (H) and lower (L) IMF content of pigs using transcriptome analysis, of which 27 were upregulated and 48 were downregulated. Notably, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the DEG perilipin-1 (PLIN1) was significantly enriched in the fat metabolism-related peroxisome proliferator-activated receptor (PPAR) signaling pathway. Furthermore, we determined the expression patterns and functional role of porcine PLIN1. Our results indicate that PLIN1 was highly expressed in porcine adipose tissue, and its expression level was significantly higher in the H IMF content group when compared with the L IMF content group, and expression was increased during adipocyte differentiation. Additionally, our results confirm that PLIN1 knockdown decreases the triglyceride (TG) level and lipid droplet (LD) size in porcine adipocytes. Overall, our data identify novel candidate genes affecting IMF content and provide new insight into PLIN1 in porcine IMF deposition and adipocyte differentiation.
Collapse
Affiliation(s)
- Bojiang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China.
| | - Qiannan Weng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China.
| | - Chao Dong
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China.
| | - Zengkai Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China.
| | - Rongyang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China.
| | - Jingge Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China.
| | - Aiwen Jiang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China.
| | - Qifa Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China.
| | - Chao Jia
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China.
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China.
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China.
| |
Collapse
|
22
|
Jingting S, Qin X, Yanju S, Ming Z, Yunjie T, Gaige J, Zhongwei S, Jianmin Z. Oxidative and glycolytic skeletal muscles show marked differences in gene expression profile in Chinese Qingyuan partridge chickens. PLoS One 2017; 12:e0183118. [PMID: 28813489 PMCID: PMC5558948 DOI: 10.1371/journal.pone.0183118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/28/2017] [Indexed: 12/17/2022] Open
Abstract
Oxidative and glycolytic myofibers have different structures and metabolic characteristics and their ratios are important in determining poultry meat quality. However, the molecular mechanisms underlying their differences are unclear. In this study, global gene expression profiling was conducted in oxidative skeletal muscle (obtained from the soleus, or SOL) and glycolytic skeletal muscle (obtained from the extensor digitorum longus, or EDL) of Chinese Qingyuan partridge chickens, using the Agilent Chicken Gene Expression Chip. A total of 1224 genes with at least 2-fold differences were identified (P < 0.05), of which 654 were upregulated and 570 were downregulated in SOL. GO, KEGG pathway, and co-expressed gene network analyses suggested that PRKAG3, ATP2A2, and PPARGC1A might play important roles in myofiber composition. The function of PPARGC1A gene was further validated. PPARGC1A mRNA expression levels were higher in SOL than in EDL muscles throughout the early postnatal development stages. In myoblast cells, shRNA knockdown of PPARGC1A significantly inhibited some muscle development and transition-related genes, including PPP3CA, MEF2C, and SM (P < 0.01 or P < 0.05), and significantly upregulated the expression of FWM (P < 0.05). Our study demonstrates strong transcriptome differences between oxidative and glycolytic myofibers, and the results suggest that PPARGC1A is a key gene involved in chicken myofiber composition and transition.
Collapse
Affiliation(s)
- Shu Jingting
- Key laboratory for poultry genetics and breeding of Jiangsu province, Institute of Poultry Science, Chinese Academy of Agricultural Science, Yangzhou, Jiangsu, China
| | - Xiao Qin
- Key laboratory for poultry genetics and breeding of Jiangsu province, Institute of Poultry Science, Chinese Academy of Agricultural Science, Yangzhou, Jiangsu, China
| | - Shan Yanju
- Key laboratory for poultry genetics and breeding of Jiangsu province, Institute of Poultry Science, Chinese Academy of Agricultural Science, Yangzhou, Jiangsu, China
| | - Zhang Ming
- Key laboratory for poultry genetics and breeding of Jiangsu province, Institute of Poultry Science, Chinese Academy of Agricultural Science, Yangzhou, Jiangsu, China
| | - Tu Yunjie
- Key laboratory for poultry genetics and breeding of Jiangsu province, Institute of Poultry Science, Chinese Academy of Agricultural Science, Yangzhou, Jiangsu, China
| | - Ji Gaige
- Key laboratory for poultry genetics and breeding of Jiangsu province, Institute of Poultry Science, Chinese Academy of Agricultural Science, Yangzhou, Jiangsu, China
| | - Sheng Zhongwei
- Key laboratory for poultry genetics and breeding of Jiangsu province, Institute of Poultry Science, Chinese Academy of Agricultural Science, Yangzhou, Jiangsu, China
| | - Zou Jianmin
- Key laboratory for poultry genetics and breeding of Jiangsu province, Institute of Poultry Science, Chinese Academy of Agricultural Science, Yangzhou, Jiangsu, China
| |
Collapse
|
23
|
Li B, Dong C, Li P, Ren Z, Wang H, Yu F, Ning C, Liu K, Wei W, Huang R, Chen J, Wu W, Liu H. Identification of candidate genes associated with porcine meat color traits by genome-wide transcriptome analysis. Sci Rep 2016; 6:35224. [PMID: 27748458 PMCID: PMC5066258 DOI: 10.1038/srep35224] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/26/2016] [Indexed: 12/16/2022] Open
Abstract
Meat color is considered to be the most important indicator of meat quality, however, the molecular mechanisms underlying traits related to meat color remain mostly unknown. In this study, to elucidate the molecular basis of meat color, we constructed six cDNA libraries from biceps femoris (Bf) and soleus (Sol), which exhibit obvious differences in meat color, and analyzed the whole-transcriptome differences between Bf (white muscle) and Sol (red muscle) using high-throughput sequencing technology. Using DEseq2 method, we identified 138 differentially expressed genes (DEGs) between Bf and Sol. Using DEGseq method, we identified 770, 810, and 476 DEGs in comparisons between Bf and Sol in three separate animals. Of these DEGs, 52 were overlapping DEGs. Using these data, we determined the enriched GO terms, metabolic pathways and candidate genes associated with meat color traits. Additionally, we mapped 114 non-redundant DEGs to the meat color QTLs via a comparative analysis with the porcine quantitative trait loci (QTL) database. Overall, our data serve as a valuable resource for identifying genes whose functions are critical for meat color traits and can accelerate studies of the molecular mechanisms of meat color formation.
Collapse
Affiliation(s)
- Bojiang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Dong
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pinghua Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhuqing Ren
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Key Lab of Agriculture Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Han Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fengxiang Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Caibo Ning
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaiqing Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Wei
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruihua Huang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
24
|
Hao Y, Feng Y, Yang P, Cui Y, Liu J, Yang C, Gu X. Transcriptome analysis reveals that constant heat stress modifies the metabolism and structure of the porcine longissimus dorsi skeletal muscle. Mol Genet Genomics 2016; 291:2101-2115. [PMID: 27561287 DOI: 10.1007/s00438-016-1242-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/18/2016] [Indexed: 12/31/2022]
Abstract
Exposure to high ambient temperatures is detrimental to pig rearing and porcine meat quality. Deep molecular sequencing allows for genomic characterization of porcine skeletal muscles and helps understand how the genomic landscape may impact meat quality. To this end, we performed mRNA-seq to molecularly dissect the impact of heat stress on porcine skeletal muscles, longissimus dorsi. Sixteen castrated, male DLY pigs [which are crossbreeds between Duroc (D) boars and Landrace (L) × Yorkshire (Y) sows, 79.0 ± 1.5 kg BW] were evenly split into two groups that were subjected to either control (CON) (22 °C; 55 % humidity) or constant heat stress (H30; 30 °C; 55 % humidity) conditions for 21 days. Seventy-eight genes were found to be differentially expressed, of which 37 were up-regulated and 41 were down-regulated owing to constant heat stress. We predicted 5247 unknown genes and 6108 novel transcribed units attributed to alternative splicing (AS) events in the skeletal muscle. Furthermore, 30,761 and 31,360 AS events were observed in the CON and H30 RNA-seq libraries, respectively. The differentially expressed genes in the porcine skeletal muscles were involved in glycolysis, lactate metabolism, lipid metabolism, cellular defense, and stress responses. Additionally, the expression levels of these genes were associated with variations in meat quality between the CON and H30 groups, indicating that heat stress modulated genes crucial to skeletal muscle development and metabolism. Our transcriptomic analysis provides valuable information for understanding the molecular mechanisms governing porcine skeletal muscle development. Such insights may lead to innovative strategies to improve meat quality of pigs under heat stress.
Collapse
Affiliation(s)
- Yue Hao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuejin Feng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Peige Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanjun Cui
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiru Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Veterinary and Animal Science, Shenyang Agricultural University, Shenyang, 110866, China
| | - Chunhe Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
25
|
Talbot J, Maves L. Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:518-34. [PMID: 27199166 DOI: 10.1002/wdev.230] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 12/13/2022]
Abstract
Skeletal muscle fibers are classified into fiber types, in particular, slow twitch versus fast twitch. Muscle fiber types are generally defined by the particular myosin heavy chain isoforms that they express, but many other components contribute to a fiber's physiological characteristics. Skeletal muscle fiber type can have a profound impact on muscle diseases, including certain muscular dystrophies and sarcopenia, the aging-induced loss of muscle mass and strength. These findings suggest that some muscle diseases may be treated by shifting fiber type characteristics either from slow to fast, or fast to slow phenotypes, depending on the disease. Recent studies have begun to address which components of muscle fiber types mediate their susceptibility or resistance to muscle disease. However, for many diseases it remains largely unclear why certain fiber types are affected. A substantial body of work has revealed molecular pathways that regulate muscle fiber type plasticity and early developmental muscle fiber identity. For instance, recent studies have revealed many factors that regulate muscle fiber type through modulating the activity of the muscle regulatory transcription factor MYOD1. Future studies of muscle fiber type development in animal models will continue to enhance our understanding of factors and pathways that may provide therapeutic targets to treat muscle diseases. WIREs Dev Biol 2016, 5:518-534. doi: 10.1002/wdev.230 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jared Talbot
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|