1
|
Cai FM, Jiang S, Daly P, Bakhshi M, Cartwright K, Druzhinina IS. Guidelines toward ecologically-informed bioprospecting for microbial plastic degradation. Biotechnol Adv 2025; 82:108590. [PMID: 40306561 DOI: 10.1016/j.biotechadv.2025.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/24/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Biological degradation of plastics by microbial enzymes offers a sustainable alternative to traditional waste management methods that often pollute the environment. This review explores ecologically-informed bioprospecting for microorganisms possessing enzymes suitable for biological plastic waste treatment. Natural habitats enriched in plastic-like polymers, such as insect-derived polyesters, epicuticular microbial biofilms in the phyllosphere of plants in extreme environments, or aquatic ecosystems, are highlighted as promising reservoirs for bioprospecting. Anthropogenic habitats, including plastic-polluted soils and the plastisphere, have yielded potent enzymes such as PETases and cutinases, which are being exploited in biotechnology. However, bioprospecting in plastispheres and artificial environments frequently leads to the isolation of environmental opportunistic microorganisms, such as Pseudomonas aeruginosa, Aspergillus fumigatus, Parengyodontium album, or species of Fusarium, which are capable of becoming human and/or plant pathogens. These cases necessitate stringent biosecurity measures, including accurate molecular identification, ecological assessment, and containment protocols. Beyond advancing bioprospecting approaches toward a broader scope of relevant habitats, this review underscores the educational value of such screenings, specifically, in understudied natural habitats, emphasizing its potential to uncover novel enzymes and microorganisms and engage the next generation of researchers in interdisciplinary study integrating environmental microbiology, molecular biology, enzymology, polymer chemistry, and bioinformatics. Finally, we offer guidelines for microbial bioprospecting in various laboratory settings, ranging from standard environmental microbiology facilities to high-biosecurity facilities, thereby maximizing the diversity of scientists who may contribute to addressing urgent environmental challenges associated with plastic waste.
Collapse
Affiliation(s)
- Feng M Cai
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen 518107, China.
| | - Siqi Jiang
- Key Lab for Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Paul Daly
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Mounes Bakhshi
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey TW9 3AE, UK
| | - Kai Cartwright
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey TW9 3AE, UK
| | | |
Collapse
|
2
|
Lu M, Liang F, Liu L, Yin Y, Xu D, Zou H, Liu Y, Yang C. Functional characterization of cutinase genes NsCut1-NsCut4 in Neostagonosporella sichuanensis and their effects on fishscale bamboo. FRONTIERS IN PLANT SCIENCE 2025; 16:1564651. [PMID: 40265120 PMCID: PMC12011716 DOI: 10.3389/fpls.2025.1564651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/20/2025] [Indexed: 04/24/2025]
Abstract
Fishscale bamboo rhombic-spot, caused by Neostagonosporella sichuanensis, poses a significant threat to Phyllostachys heteroclada in Sichuan province. Based on genomic analysis, four cutinase genes, NsCut1-NsCut4, were identified, cloned, and functionally validated. Bioinformatics analyses revealed that the proteins encoded by these genes possess secretory functions, lack transmembrane domains, and contain conserved cutinase domains highly homologous to those in other fungi. Recombinant proteins expressed via a prokaryotic system exhibited strong hydrolytic activity against glycerol tributyrate and bamboo white cream at 40°C and pH 8.0, while signal peptide and subcellular localization analyses confirmed their secretory function and localization to the cell wall. Gene knockout experiments were performed to construct deletion strains ΔNsCut and corresponding complemented strains ΔNsCut+. Notably, ΔNsCut1 and ΔNsCut3 resulted in reduced pigmentation, decreased spore production, and increased sensitivity to NaCl, H2O2, and Congo red, along with reduced pathogenicity-indicating that these genes play key roles in metabolic and reproductive processes, oxidative stress responses, and the maintenance of cell wall integrity. In contrast, ΔNsCut2 and ΔNsCut4 did not exhibit significant differences compared to the wild type. This work advances our understanding of the role of cutinases in the pathogenic interaction between N. sichuanensis and P. heteroclada, providing a theoretical basis for further exploration of the pathogen's underlying mechanisms.
Collapse
Affiliation(s)
- Mengyao Lu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Fang Liang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Lijuan Liu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yanji Yin
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Dongxin Xu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Huan Zou
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yinggao Liu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Chunlin Yang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Harrigian F, LeBlanc N, Eriksen RL, Bush E, Salamanca LR, Salgado-Salazar C. Uncovering the Fungus Responsible for Stem and Root Rot of False Indigo: Pathogen Identification, New Disease Description, and Genome Analyses. PLANT DISEASE 2025; 109:921-930. [PMID: 39504142 DOI: 10.1094/pdis-07-24-1396-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Calonectria spp. can cause destructive diseases on forestry crops, legumes like soybean and peanut, and ornamentals. Species of Calonectria affecting ornamental plants are not well characterized or understood, although they have been widely documented as an issue in the ornamental industry. This research focused on the molecular identification, pathogenicity validation, and genome analysis of a Calonectria sp. isolate recovered from ornamental blue false indigo (Baptisia australis) plants showing disease symptoms of crown and root rot in a commercial nursery in Virginia. The fungus on B. australis was identified as C. fujianensis (Nectriaceae, Hypocreales), a member of the C. colhounii species complex, using multilocus sequencing. Pathogenicity tests were fulfilled by inoculating C. fujianensis conidia on B. australis seedlings, confirming a causal relationship between this pathogen and the disease symptoms observed. A 62.7 Mb high-quality hybrid genome assembly generated using Illumina and Nanopore data was obtained, contained in 16 contigs, 4 of which were complete chromosomes. A total of 750 effectors were found in the genome, similar to cutinase and pectinase virulence factors described from other Calonectria species' genomes. Characterization of this novel disease of B. australis advances our understanding of Calonectria as an important but poorly studied group of plant pathogens.
Collapse
Affiliation(s)
- Fiona Harrigian
- Crop Improvement and Protection Research Unit, U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Salinas, CA 93905, U.S.A
| | - Nicholas LeBlanc
- Crop Improvement and Protection Research Unit, U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Salinas, CA 93905, U.S.A
| | - Renée L Eriksen
- Crop Improvement and Protection Research Unit, U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Salinas, CA 93905, U.S.A
| | - Elizabeth Bush
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | | | - Catalina Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Beltsville, MD 20705, U.S.A
| |
Collapse
|
4
|
Kuźniak E, Gajewska E. Lipids and Lipid-Mediated Signaling in Plant-Pathogen Interactions. Int J Mol Sci 2024; 25:7255. [PMID: 39000361 PMCID: PMC11241471 DOI: 10.3390/ijms25137255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Plant lipids are essential cell constituents with many structural, storage, signaling, and defensive functions. During plant-pathogen interactions, lipids play parts in both the preexisting passive defense mechanisms and the pathogen-induced immune responses at the local and systemic levels. They interact with various components of the plant immune network and can modulate plant defense both positively and negatively. Under biotic stress, lipid signaling is mostly associated with oxygenated natural products derived from unsaturated fatty acids, known as oxylipins; among these, jasmonic acid has been of great interest as a specific mediator of plant defense against necrotrophic pathogens. Although numerous studies have documented the contribution of oxylipins and other lipid-derived species in plant immunity, their specific roles in plant-pathogen interactions and their involvement in the signaling network require further elucidation. This review presents the most relevant and recent studies on lipids and lipid-derived signaling molecules involved in plant-pathogen interactions, with the aim of providing a deeper insight into the mechanisms underpinning lipid-mediated regulation of the plant immune system.
Collapse
Affiliation(s)
- Elżbieta Kuźniak
- Department of Plant Physiology and Biochemistry, University of Lodz, 90-237 Łódź, Poland
| | - Ewa Gajewska
- Department of Plant Physiology and Biochemistry, University of Lodz, 90-237 Łódź, Poland
| |
Collapse
|
5
|
Xiao L, Liu Q, Cao X, Chen M, Zhang L, Yao Z, Zhao S. Detection of Secreted Effector Proteins from Phelipanche aegyptiaca During Invasion of Melon Roots. PHYTOPATHOLOGY 2023; 113:1548-1559. [PMID: 37454086 DOI: 10.1094/phyto-11-22-0441-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Parasites can interact with their host plants through the induction and delivery of secreted effector proteins that facilitate plant colonization by decomposing plant cell walls and inhibiting plant immune response to weaken the defense ability of the host. Yet effectors mediating parasitic plant-host interactions are poorly understood. Phelipanche aegyptiaca is an obligate root parasite plant causing severe yield and economic losses in agricultural fields worldwide. Host resistance against P. aegyptiaca occurred during the attachment period of parasitism. Comparative transcriptomics was used to assess resistant and susceptible interactions simultaneously between P. aegyptiaca and two contrasting melon cultivars. In total, 2,740 secreted proteins from P. aegyptiaca were identified here. Combined with transcriptome profiling, 209 candidate secreted effector proteins (CSEPs) were predicted, with functional annotations such as cell wall degrading enzymes, protease inhibitors, transferases, kinases, and elicitor proteins. A heterogeneous expression system in Nicotiana benthamiana was used to investigate the functions of 20 putatively effector genes among the CSEPs. Cluster 15140.0 can suppress BAX-triggered programmed cell death in N. benthamiana. These findings showed that the prediction of P. aegyptiaca effector proteins based on transcriptomic analysis and multiple bioinformatics software is effective and more accurate, providing insights into understanding the essential molecular nature of effectors and laying the foundation of revealing the parasite mechanism of P. aegyptiaca, which is helpful in understanding parasite-host plant interaction.
Collapse
Affiliation(s)
- Lifeng Xiao
- Xinjiang Production and Construction Corps, Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Qianqian Liu
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaolei Cao
- Xinjiang Production and Construction Corps, Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Meixiu Chen
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Lu Zhang
- Xinjiang Production and Construction Corps, Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhaoqun Yao
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Sifeng Zhao
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
6
|
Malafatti-Picca L, Bucioli EC, de Barros Chaves MR, de Castro AM, Valoni É, de Oliveira VM, Marsaioli AJ, Govone JS, de Franceschi de Angelis D, Brienzo M, Attili-Angelis D. Fungal Screening for Potential PET Depolymerization. Polymers (Basel) 2023; 15:polym15061581. [PMID: 36987362 PMCID: PMC10053415 DOI: 10.3390/polym15061581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 03/30/2023] Open
Abstract
Approximately 400 billion PET bottles are produced annually in the world, of which from 8 to 9 million tons are discarded in oceans. This requires developing strategies to urgently recycle them. PET recycling can be carried out using the microbial hydrolysis of polymers when monomers and oligomers are released. Exploring the metabolic activity of fungi is an environmentally friendly way to treat harmful polymeric waste and obtain the production of monomers. The present study addressed: (i) the investigation of potential of strains with the potential for the depolymerization of PET bottles from different manufacturers (crystallinity of 35.5 and 10.4%); (ii) the search for a culture medium that favors the depolymerization process; and (iii) gaining more knowledge on fungal enzymes that can be applied to PET recycling. Four strains (from 100 fungal strains) were found as promising for conversion into terephthalic acid from PET nanoparticles (npPET): Curvularia trifolii CBMAI 2111, Trichoderma sp. CBMAI 2071, Trichoderma atroviride CBMAI 2073, and Cladosporium cladosporioides CBMAI 2075. The fermentation assays in the presence of PET led to the release of terephthalic acid in concentrations above 12 ppm. Biodegradation was also confirmed using mass variation analyses (reducing mass), scanning electron microscopy (SEM) that showed evidence of material roughness, FTIR analysis that showed band modification, enzymatic activities detected for lipase, and esterase and cutinase, confirmed by monomers/oligomers quantification using high performance liquid chromatography (HPLC-UV). Based on the microbial strains PET depolymerization, the results are promising for the exploration of the selected microbial strain.
Collapse
Affiliation(s)
- Lusiane Malafatti-Picca
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil
| | - Elaine Cristina Bucioli
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil
| | - Michel Ricardo de Barros Chaves
- Coordination of Natural Sciences, Federal University of Maranhão (UFMA), Av. João Alberto, 700, Bacabal 65700-000, MA, Brazil
| | - Aline Machado de Castro
- Department of Biotechnology, R&D Center, PETROBRAS, Av. Horácio Macedo, 950, Ilha do Fundão, Rio de Janeiro 21941-915, RJ, Brazil
| | - Érika Valoni
- Department of Biotechnology, R&D Center, PETROBRAS, Av. Horácio Macedo, 950, Ilha do Fundão, Rio de Janeiro 21941-915, RJ, Brazil
| | - Valéria Maia de Oliveira
- Division of Microbial Resources, CPQBA, State University of Campinas (Unicamp), Rua Alexandre Cazellato, 999, Paulínia 13148-218, SP, Brazil
| | - Anita Jocelyne Marsaioli
- Institute of Chemistry, State University of Campinas (Unicamp), P.O. Box 6154, Campinas 13084-971, SP, Brazil
| | - José Silvio Govone
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil
| | - Dejanira de Franceschi de Angelis
- Department of Biochemistry and Microbiology, São Paulo State University (UNESP), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil
| | - Michel Brienzo
- Institute For Research in Bioenergy (IPBEN), São Paulo State University (UNESP), R. 10, 2527, Santana, Rio Claro 13500-230, SP, Brazil
| | - Derlene Attili-Angelis
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil
- Division of Microbial Resources, CPQBA, State University of Campinas (Unicamp), Rua Alexandre Cazellato, 999, Paulínia 13148-218, SP, Brazil
- Department of Biochemistry and Microbiology, São Paulo State University (UNESP), Av. 24-A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil
| |
Collapse
|
7
|
Wang S, Lu Z, Lang B, Wang X, Li Y, Chen J. Curvularia lunata and Curvularia Leaf Spot of Maize in China. ACS OMEGA 2022; 7:47462-47470. [PMID: 36591195 PMCID: PMC9798514 DOI: 10.1021/acsomega.2c03013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Curvularia leaf spot (CLS), primarily caused by Curvularia lunata (Wakker) Boedijn (C. lunata), is widely distributed in maize production regions in China. It occurs in all the developmental stages of maize and causes economic losses. The epidemic and yield loss estimation models have been constructed for the disease. C. lunata has obvious virulence differentiation and produces multiple virulence factors. CLS is managed by application of chemical and biological agents and by quantitative resistance conferred by 5 to 6 quantitative trait loci (QTL). This review summarizes research on the understanding of CLS biological characteristics, virulence factors of C. lunata, host resistance genetics, and disease management strategies in China.
Collapse
Affiliation(s)
- Shaoqing Wang
- School
of Agriculture and Biology, Shanghai Jiao
Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Key
Laboratory of Microbial Metabolism, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Ministry
of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Zhixiang Lu
- School
of Agriculture and Biology, Shanghai Jiao
Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Key
Laboratory of Microbial Metabolism, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Ministry
of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Bo Lang
- School
of Agriculture and Biology, Shanghai Jiao
Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Key
Laboratory of Microbial Metabolism, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Ministry
of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Xinhua Wang
- School
of Agriculture and Biology, Shanghai Jiao
Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Key
Laboratory of Microbial Metabolism, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Ministry
of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yaqian Li
- School
of Agriculture and Biology, Shanghai Jiao
Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Key
Laboratory of Microbial Metabolism, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Ministry
of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jie Chen
- School
of Agriculture and Biology, Shanghai Jiao
Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Key
Laboratory of Microbial Metabolism, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Ministry
of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
8
|
Altammar KA, Ling JG, Al-Bajalan HM, Chin IS, Mackeen MM, Mahadi NM, Murad AMA, Bakar FDA. Characterization of AnCUT3, a plastic-degrading paucimannose cutinase from Aspergillus niger expressed in Pichia pastoris. Int J Biol Macromol 2022; 222:2353-2367. [DOI: 10.1016/j.ijbiomac.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
|
9
|
Yan P, Yu J, Fang X, Li S, Han S, Lin T, Liu Y, Yang C, He F, Zhu T, Li S. Identification of the interacting proteins of Bambusa pervariabilis × Dendrocalamopsis grandis in response to the transcription factor ApCtf1β in Arthrinium phaeospermum. FRONTIERS IN PLANT SCIENCE 2022; 13:991077. [PMID: 36186076 PMCID: PMC9520005 DOI: 10.3389/fpls.2022.991077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Arthrinium phaeospermum is the main pathogen that causes Bambusa pervariabilis × Dendrocalamopsis grandis blight. It secretes the cutinase transcription factor ApCtf1β, which has been shown to play an important role in B. pervariabilis × D. grandis virulence. However, knowledge about the interaction target genes of ApCtf1β in B. pervariabilis × D. grandis remains limited. A cDNA library for the yeast two-hybrid system was constructed from B. pervariabilis × D. grandis shoots after 168 h treatment with A. phaeospermum. The library was identified as 1.20 × 107 cfu, with an average insert >1,000 bp in size and a 100% positive rate, providing a database for the subsequent molecular study of the interaction between A. phaeospermum and B. pervariabilis × D. grandis. The yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC), and glutathione-S-transferase (GST) pull-down assays were used to screen for and identify two ApCtf1β interacting target proteins, BDUbc and BDSKL1, providing a reliable theoretical basis to study the molecular mechanism underlying B. pervariabilis × D. grandis resistance in response to A. phaeospermum, which would, in turn, establish a platform to develop new strategies for the sustainable and effective control of the blight diseases of forest trees.
Collapse
Affiliation(s)
- Peng Yan
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Jiawen Yu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xinmei Fang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shuying Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shan Han
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tiantian Lin
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yinggao Liu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Chunlin Yang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Fang He
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu, China
| |
Collapse
|
10
|
Orrego A, Gavilán MC, Arévalos A, Ortíz B, Gaete Humada B, Pineda-Fretez A, Romero-Rodríguez MC, Flores Giubi ME, Kohli MM, Iehisa JCM. Identification of reference genes and their validation for gene expression analysis in phytopathogenic fungus Macrophomina phaseolina. PLoS One 2022; 17:e0272603. [PMID: 35930568 PMCID: PMC9355225 DOI: 10.1371/journal.pone.0272603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 07/23/2022] [Indexed: 11/19/2022] Open
Abstract
Macrophomina phaseolina is a soil-borne pathogenic fungus that infects a wide range of crop species and causes severe yield losses. Although the genome of the fungus has been sequenced, the molecular basis of its virulence has not been determined. Identification of up-regulated genes during fungal infection is important to understand the mechanism involved in its virulence. To ensure reliable quantification, expression of target genes needs to be normalized on the basis of certain reference genes. However, in the case of M. phaseolina, reference genes or their expression analysis have not been reported in the literature. Therefore, the objective of this study was to evaluate 12 candidate reference genes for the expression analysis of M. phaseolina genes by applying three different fungal growth conditions: a) during root and stem infection of soybean, b) in culture media with and without soybean leaf infusion and c) by inoculating a cut-stem. Based on BestKeeper, geNorm and NormFinder algorithms, CYP1 was identified as the best recommended reference gene followed by EF1β for expression analysis of fungal gene during soybean root infection. Besides Mp08158, CYP1 gene was found suitable when M. phaseolina was grown in potato-dextrose broth with leaf infusion. In the case of cut-stem inoculation, Mp08158 and Mp11185 genes were found to be most stable. To validate the selected reference genes, expression analysis of two cutinase genes was performed. In general, the expression patterns were similar when the target genes were normalized against most or least stable gene. However, in some cases different expression pattern can be obtained when least stable gene is used for normalization. We believe that the reference genes identified and validated in this study will be useful for gene expression analysis during host infection with M. phaseolina.
Collapse
Affiliation(s)
- Adriana Orrego
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - María Cecilia Gavilán
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - Aníbal Arévalos
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - Belén Ortíz
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - Belén Gaete Humada
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - Amiliana Pineda-Fretez
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - María Cristina Romero-Rodríguez
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - María Eugenia Flores Giubi
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - Man Mohan Kohli
- Cámara Paraguaya de Exportadores y Comercializadores de Cereales y Oleaginosas (CAPECO), Asunción, Paraguay
| | - Julio C. M. Iehisa
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
- * E-mail:
| |
Collapse
|
11
|
Sclerotinia sclerotiorum SsCut1 Modulates Virulence and Cutinase Activity. J Fungi (Basel) 2022; 8:jof8050526. [PMID: 35628781 PMCID: PMC9143608 DOI: 10.3390/jof8050526] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
The plant cuticle is one of the protective layers of the external surface of plant tissues. Plants use the cuticle layer to reduce water loss and resist pathogen infection. Fungi release cell wall-degrading enzymes to destroy the epidermis of plants to achieve the purpose of infection. Sclerotinia sclerotiorum secretes a large amount of cutinase to disrupt the cuticle layer of plants during the infection process. In order to further understand the role of cutinase in the pathogenic process of S. sclerotiorum, the S. sclerotiorum cutinsae 1 (SsCut1) gene was cloned and analyzed. The protein SsCut1 contains the conserved cutinase domain and a fungal cellulose-binding domain. RT-qPCR results showed that the expression of SsCut1 was significantly upregulated during infection. Split-Marker recombination was utilized for the deletion of the SsCut1 gene, ΔSsCut1 mutants showed reduced cutinase activity and virulence, but the deletion of the SsCut1 gene had no effect on the growth rate, colony morphology, oxalic acid production, infection cushion formation and sclerotial development. Complementation with the wild-type SsCut1 allele restored the cutinase activity and virulence to the wild-type level. Interestingly, expression of SsCut1 in plants can trigger defense responses, but it also enhanced plant susceptibility to SsCut1 gene knock-out mutants. Taken together, our finding demonstrated that the SsCut1 gene promotes the virulence of S. sclerotiorum by enhancing its cutinase activity.
Collapse
|
12
|
Soong YHV, Sobkowicz MJ, Xie D. Recent Advances in Biological Recycling of Polyethylene Terephthalate (PET) Plastic Wastes. Bioengineering (Basel) 2022; 9:98. [PMID: 35324787 PMCID: PMC8945055 DOI: 10.3390/bioengineering9030098] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/24/2022] Open
Abstract
Polyethylene terephthalate (PET) is one of the most commonly used polyester plastics worldwide but is extremely difficult to be hydrolyzed in a natural environment. PET plastic is an inexpensive, lightweight, and durable material, which can readily be molded into an assortment of products that are used in a broad range of applications. Most PET is used for single-use packaging materials, such as disposable consumer items and packaging. Although PET plastics are a valuable resource in many aspects, the proliferation of plastic products in the last several decades have resulted in a negative environmental footprint. The long-term risk of released PET waste in the environment poses a serious threat to ecosystems, food safety, and even human health in modern society. Recycling is one of the most important actions currently available to reduce these impacts. Current clean-up strategies have attempted to alleviate the adverse impacts of PET pollution but are unable to compete with the increasing quantities of PET waste exposed to the environment. In this review paper, current PET recycling methods to improve life cycle and waste management are discussed, which can be further implemented to reduce plastics pollution and its impacts on health and environment. Compared with conventional mechanical and chemical recycling processes, the biotechnological recycling of PET involves enzymatic degradation of the waste PET and the followed bioconversion of degraded PET monomers into value-added chemicals. This approach creates a circular PET economy by recycling waste PET or upcycling it into more valuable products with minimal environmental footprint.
Collapse
Affiliation(s)
- Ya-Hue Valerie Soong
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Margaret J. Sobkowicz
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| |
Collapse
|
13
|
Severn-Ellis AA, Schoeman MH, Bayer PE, Hane JK, Rees DJG, Edwards D, Batley J. Genome Analysis of the Broad Host Range Necrotroph Nalanthamala psidii Highlights Genes Associated With Virulence. FRONTIERS IN PLANT SCIENCE 2022; 13:811152. [PMID: 35283890 PMCID: PMC8914235 DOI: 10.3389/fpls.2022.811152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Guava wilt disease is caused by the fungus Nalanthamala psidii. The wilt disease results in large-scale destruction of orchards in South Africa, Taiwan, and several Southeast Asian countries. De novo assembly, annotation, and in-depth analysis of the N. psidii genome were carried out to facilitate the identification of characteristics associated with pathogenicity and pathogen evolution. The predicted secretome revealed a range of CAZymes, proteases, lipases and peroxidases associated with plant cell wall degradation, nutrient acquisition, and disease development. Further analysis of the N. psidii carbohydrate-active enzyme profile exposed the broad-spectrum necrotrophic lifestyle of the pathogen, which was corroborated by the identification of putative effectors and secondary metabolites with the potential to induce tissue necrosis and cell surface-dependent immune responses. Putative regulatory proteins including transcription factors and kinases were identified in addition to transporters potentially involved in the secretion of secondary metabolites. Transporters identified included important ABC and MFS transporters involved in the efflux of fungicides. Analysis of the repetitive landscape and the detection of mechanisms linked to reproduction such as het and mating genes rendered insights into the biological complexity and evolutionary potential of N. psidii as guava pathogen. Hence, the assembly and annotation of the N. psidii genome provided a valuable platform to explore the pathogenic potential and necrotrophic lifestyle of the guava wilt pathogen.
Collapse
Affiliation(s)
- Anita A. Severn-Ellis
- School of Biological Sciences, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
- Aquaculture Research and Development, Department of Primary Industries and Regional Development, Indian Ocean Marine Research Centre, Watermans Bay, WA, Australia
| | - Maritha H. Schoeman
- Institute for Tropical and Subtropical Crops, Agricultural Research Council, Nelspruit, South Africa
| | - Philipp E. Bayer
- School of Biological Sciences, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - James K. Hane
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - D. Jasper G. Rees
- Agricultural Research Council, Biotechnology Platform, Pretoria, South Africa
- Botswana University of Agriculture and Natural Resources, Gaborone, Botswana
| | - David Edwards
- School of Biological Sciences, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
14
|
Arya GC, Cohen H. The Multifaceted Roles of Fungal Cutinases during Infection. J Fungi (Basel) 2022; 8:199. [PMID: 35205953 PMCID: PMC8879710 DOI: 10.3390/jof8020199] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/13/2022] [Accepted: 02/13/2022] [Indexed: 01/25/2023] Open
Abstract
Cuticles cover the aerial epidermis cells of terrestrial plants and thus represent the first line of defence against invading pathogens, which must overcome this hydrophobic barrier to colonise the inner cells of the host plant. The cuticle is largely built from the cutin polymer, which consists of C16 and C18 fatty acids attached to a glycerol backbone that are further modified with terminal and mid-chain hydroxyl, epoxy, and carboxy groups, all cross-linked by ester bonds. To breach the cuticle barrier, pathogenic fungal species employ cutinases-extracellular secreted enzymes with the capacity to hydrolyse the ester linkages between cutin monomers. Herein, we explore the multifaceted roles that fungal cutinases play during the major four stages of infection: (i) spore landing and adhesion to the host plant cuticle; (ii) spore germination on the host plant cuticle; (iii) spore germ tube elongation and the formation of penetrating structures; and (iv) penetration of the host plant cuticle and inner tissue colonisation. Using previous evidence from the literature and a comprehensive molecular phylogenetic tree of cutinases, we discuss the notion whether the lifestyle of a given fungal species can predict the activity nature of its cutinases.
Collapse
Affiliation(s)
- Gulab Chand Arya
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion 7505101, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion 7505101, Israel
| |
Collapse
|
15
|
Abstract
Cutinases (EC 3.1.1.74) are serin esterases that belong to the α/β hydrolases superfamily and present in the Ser-His-Asp catalytic triad. They show characteristics between esterases and lipases. These enzymes hydrolyze esters and triacylglycerols and catalyze esterification and transesterification reactions. Cutinases are synthesize by plant pathogenic fungi, but some bacteria and plants have been found to produce cutinases as well. In nature they facilitate a pathogen’s invasion by hydrolyzing the cuticle that protects plants, but can be also used for saprophytic fungi as a way to nourish themselves. Cutinases can hydrolyze a wide range of substrates like esters, polyesters, triacylglycerols and waxes and that makes this enzyme very attractive for industrial purposes. This work discusses techniques of industrial interest such as immobilization and purification, as well as some of the most important uses of cutinases in industries.
Collapse
|
16
|
Chen X, Li P, Liu H, Chen X, Huang J, Luo C, Li G, Hsiang T, Collinge DB, Zheng L. A novel transcription factor UvCGBP1 regulates development and virulence of rice false smut fungus Ustilaginoidea virens. Virulence 2021; 12:1563-1579. [PMID: 34348597 PMCID: PMC8344781 DOI: 10.1080/21505594.2021.1936768] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ustilaginoidea virens, causing rice false smut (RFS) is an economically important ascomycetous fungal pathogen distributed in rice-growing regions worldwide. Here, we identified a novel transcription factor UvCGBP1 (Cutinase G-box binding protein) from this fungus, which is unique to ascomycetes. Deletion of UvCGBP1 affected development and virulence of U. virens. A total of 865 downstream target genes of UvCGBP1 was identified using ChIP-seq and the most significant KEGG enriched functional pathway was the MAPK signaling pathway. Approximately 36% of target genes contain the AGGGG (G-box) motif in their promoter. Among the targets, deletion of UvCGBP1 affected transcriptional and translational levels of UvPmk1 and UvSlt2, both of which were important in virulence. ChIP-qPCR, yeast one-hybrid and EMSA confirmed that UvCGBP1 can bind the promoter of UvPmk1 or UvSlt2. Overexpression of UvPmk1 in the ∆UvCGBP1-33 mutant restored partially its virulence and hyphae growth, indicating that UvCGBP1 could function via the MAPK pathway to regulate fungal virulence. Taken together, this study uncovered a novel regulatory mechanism of fungal virulence linking the MAPK pathway mediated by a G-box binding transcription factor, UvCGBP1.
Collapse
Affiliation(s)
- Xiaoyang Chen
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Pingping Li
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hao Liu
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaolin Chen
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Junbin Huang
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chaoxi Luo
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guotian Li
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - David B Collinge
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Lu Zheng
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
17
|
Liu JJ, Sniezko RA, Zamany A, Williams H, Omendja K, Kegley A, Savin DP. Comparative Transcriptomics and RNA-Seq-Based Bulked Segregant Analysis Reveals Genomic Basis Underlying Cronartium ribicola vcr2 Virulence. Front Microbiol 2021; 12:602812. [PMID: 33776951 PMCID: PMC7990074 DOI: 10.3389/fmicb.2021.602812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/01/2021] [Indexed: 12/25/2022] Open
Abstract
Breeding programs of five-needle pines have documented both major gene resistance (MGR) and quantitative disease resistance (QDR) to Cronartium ribicola (Cri), a non-native, invasive fungal pathogen causing white pine blister rust (WPBR). WPBR is one of the most deadly forest diseases in North America. However, Cri virulent pathotypes have evolved and can successfully infect and kill trees carrying resistance (R) genes, including vcr2 that overcomes MGR conferred by the western white pine (WWP, Pinus monticola) R gene (Cr2). In the absence of a reference genome, the present study generated a vcr2 reference transcriptome, consisting of about 20,000 transcripts with 1,014 being predicted to encode secreted proteins (SPs). Comparative profiling of transcriptomes and secretomes revealed vcr2 was significantly enriched for several gene ontology (GO) terms relating to oxidation-reduction processes and detoxification, suggesting that multiple molecular mechanisms contribute to pathogenicity of the vcr2 pathotype for its overcoming Cr2. RNA-seq-based bulked segregant analysis (BSR-Seq) revealed genome-wide DNA variations, including about 65,617 single nucleotide polymorphism (SNP) loci in 7,749 polymorphic genes shared by vcr2 and avirulent (Avcr2) pathotypes. An examination of the distribution of minor allele frequency (MAF) uncovered a high level of genomic divergence between vcr2 and Avcr2 pathotypes. By integration of extreme-phenotypic genome-wide association (XP-GWAS) analysis and allele frequency directional difference (AFDD) mapping, we identified a set of vcr2-associated SNPs within functional genes, involved in fungal virulence and other molecular functions. These included six SPs that were top candidate effectors with putative activities of reticuline oxidase, proteins with common in several fungal extracellular membrane (CFEM) domain or ferritin-like domain, polysaccharide lyase, rds1p-like stress responsive protein, and two Cri-specific proteins without annotation. Candidate effectors and vcr2-associated genes provide valuable resources for further deciphering molecular mechanisms of virulence and pathogenicity by functional analysis and the subsequent development of diagnostic tools for monitoring the virulence landscape in the WPBR pathosystems.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Richard A Sniezko
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| | - Arezoo Zamany
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Holly Williams
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Kangakola Omendja
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Angelia Kegley
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| | - Douglas P Savin
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| |
Collapse
|
18
|
Dong BZ, Zhu XQ, Fan J, Guo LY. The Cutinase Bdo_10846 Play an Important Role in the Virulence of Botryosphaeria dothidea and in Inducing the Wart Symptom on Apple Plant. Int J Mol Sci 2021; 22:ijms22041910. [PMID: 33673023 PMCID: PMC7918748 DOI: 10.3390/ijms22041910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/28/2022] Open
Abstract
Botryosphaeria dothidea is a pathogen with worldwide distribution, infecting hundreds of species of economically important woody plants. It infects and causes various symptoms on apple plants, including wart and canker on branches, twigs, and stems. However, the mechanism of warts formation is unclear. In this study, we investigated the mechanism of wart formation by observing the transection ultrastructure of the inoculated cortical tissues at various time points of the infection process and detecting the expression of genes related to the pathogen pathogenicity and plant defense response. Results revealed that wart induced by B. dothidea consisted of proliferous of phelloderm cells, the newly formed secondary phellem, and the suberized phelloderm cells surrounding the invading mycelia. The qRT-PCR analysis revealed the significant upregulation of apple pathogenesis-related and suberification-related genes and a pathogen cutinase gene Bdo_10846. The Bdo_10846 knockout transformants showed reduced cutinase activity and decreased virulence. Transient expression of Bdo_10846 in Nicotiana benthamiana induced ROS burst, callose formation, the resistance of N. benthamiana to Botrytis cinerea, and significant upregulation of the plant pathogenesis-related and suberification-related genes. Additionally, the enzyme activity is essential for the induction. Virus-induced gene silencing demonstrated that the NbBAK1 and NbSOBIR1 expression were required for the Bdo_10846 induced defense response in N. benthamiana. These results revealed the mechanism of wart formation induced by B. dothidea invasion and the important roles of the cutinase Bdo_10846 in pathogen virulence and in inducing plant immunity.
Collapse
|
19
|
Curtolo M, de Souza Pacheco I, Boava LP, Takita MA, Granato LM, Galdeano DM, de Souza AA, Cristofani-Yaly M, Machado MA. Wide-ranging transcriptomic analysis of Poncirus trifoliata, Citrus sunki, Citrus sinensis and contrasting hybrids reveals HLB tolerance mechanisms. Sci Rep 2020; 10:20865. [PMID: 33257732 PMCID: PMC7705011 DOI: 10.1038/s41598-020-77840-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/09/2020] [Indexed: 01/04/2023] Open
Abstract
Huanglongbing (HLB), caused mainly by ‘Candidatus Liberibacter asiaticus’ (CLas), is the most devastating citrus disease because all commercial species are susceptible. HLB tolerance has been observed in Poncirus trifoliata and their hybrids. A wide-ranging transcriptomic analysis using contrasting genotypes regarding HLB severity was performed to identify the genetic mechanism associated with tolerance to HLB. The genotypes included Citrus sinensis, Citrus sunki, Poncirus trifoliata and three distinct groups of hybrids obtained from crosses between C. sunki and P. trifoliata. According to bacterial titer and symptomatology studies, the hybrids were clustered as susceptible, tolerant and resistant to HLB. In P. trifoliata and resistant hybrids, genes related to specific pathways were differentially expressed, in contrast to C. sinensis, C. sunki and susceptible hybrids, where several pathways were reprogrammed in response to CLas. Notably, a genetic tolerance mechanism was associated with the downregulation of gibberellin (GA) synthesis and the induction of cell wall strengthening. These defense mechanisms were triggered by a class of receptor-related genes and the induction of WRKY transcription factors. These results led us to build a hypothetical model to understand the genetic mechanisms involved in HLB tolerance that can be used as target guidance to develop citrus varieties or rootstocks with potential resistance to HLB.
Collapse
Affiliation(s)
- Maiara Curtolo
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil. .,Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | - Inaiara de Souza Pacheco
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil.,Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Leonardo Pires Boava
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil
| | - Marco Aurélio Takita
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil
| | - Laís Moreira Granato
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil
| | - Diogo Manzano Galdeano
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil
| | | | | | - Marcos Antonio Machado
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil
| |
Collapse
|
20
|
Fu H, Chung K, Gai Y, Mao L, Li H. The basal transcription factor II H subunit Tfb5 is required for stress response and pathogenicity in the tangerine pathotype of Alternaria alternata. MOLECULAR PLANT PATHOLOGY 2020; 21:1337-1352. [PMID: 32776683 PMCID: PMC7488464 DOI: 10.1111/mpp.12982] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/25/2020] [Accepted: 07/20/2020] [Indexed: 05/16/2023]
Abstract
The basal transcription factor II H (TFIIH) is a multicomponent complex. In the present study, we characterized a TFIIH subunit Tfb5 by analysing loss- and gain-of-function mutants to gain a better understanding of the molecular mechanisms underlying stress resistance and pathogenicity in the citrus fungal pathogen Alternaria alternata. Tfb5 deficiency mutants (ΔAatfb5) decreased sporulation and pigmentation, and were impaired in the maintenance of colony surface hydrophobicity and cell wall integrity. ΔAatfb5 increased sensitivity to ultraviolet light, DNA-damaging agents, and oxidants. The expression of Aatfb5 was up-regulated in the wild type upon infection in citrus leaves, implicating the requirement of Aatfb5 in fungal pathogenesis. Biochemical and virulence assays revealed that ΔAatfb5 was defective in toxin production and cellwall-degrading enzymes, and failed to induce necrotic lesions on detached citrus leaves. Aatfb5 fused with green fluorescent protein (GFP) was localized in the cytoplasm and nucleus and physically interacted with another subunit, Tfb2, based on yeast two-hybrid and co-immunoprecipitation analyses. Transcriptome and Antibiotics & Secondary Metabolite Analysis Shell (antiSMASH) analyses revealed the positive and negative roles of Aatfb5 in the production of various secondary metabolites and in the regulation of many metabolic and biosynthetic processes in A. alternata. Aatfb5 may play a negative role in oxidative phosphorylation and a positive role in peroxisome biosynthesis. Two cutinase-coding genes (AaCut2 and AaCut15) required for full virulence were down-regulated in ΔAatfb5. Overall, this study expands our understanding of how A. alternata uses the basal transcription factor to deal with stress and achieve successful infection in the plant host.
Collapse
Affiliation(s)
- Huilan Fu
- Key Laboratory of Molecular Biology of Crop Pathogens and InsectsInstitute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Kuang‐Ren Chung
- Department of Plant PathologyCollege of Agriculture and Natural ResourcesNational Chung‐Hsing UniversityTaichungTaiwan
| | - Yunpeng Gai
- Key Laboratory of Molecular Biology of Crop Pathogens and InsectsInstitute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Lijuan Mao
- Analysis Center of Agrobiology and Environmental SciencesFaculty of Agriculture, Life and Environment SciencesZhejiang UniversityHangzhouChina
| | - Hongye Li
- Key Laboratory of Molecular Biology of Crop Pathogens and InsectsInstitute of BiotechnologyZhejiang UniversityHangzhouChina
| |
Collapse
|
21
|
Ma H, Zhang B, Gai Y, Sun X, Chung KR, Li H. Cell-Wall-Degrading Enzymes Required for Virulence in the Host Selective Toxin-Producing Necrotroph Alternaria alternata of Citrus. Front Microbiol 2019; 10:2514. [PMID: 31824437 PMCID: PMC6883767 DOI: 10.3389/fmicb.2019.02514] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
The necrotrophic fungal pathogen Alternaria alternata attacks many citrus species, causing brown spot disease. Its pathogenic capability depends primarily on the production of host-selective ACT toxin. In the current study a Ste12 transcription factor was characterized to be required for conidial formation and the production of cell-wall-degrading enzymes (CWDEs) in the tangerine pathotype of A. alternata. The Ste12 deficiency strain (ΔSte12) retained wild-type growth, ACT toxin production, and sensitivity to oxidative and osmotic stress. However, pathogenicity tests assayed on detached Dancy leaves revealed a marked reduction in virulence of ΔSte12. Transcriptome and quantitative RT-PCR analyses revealed that many genes associated with Carbohydrate-Active Enzymes (CAZymes) were downregulated in ΔSte12. Two cutinase-coding genes (AaCut3 and AaCut7) regulated by Ste12 were individually and simultaneously inactivated. The AaCut3 or AaCut7 deficiency strain unchanged in cutinase activities and incited wild-type lesions on Dancy leaves. However, the strain carrying an AaCut3 AaCut7 double mutation produced and secreted significantly fewer cutinases and incited smaller necrotic lesions than wild type. Not only is the host-selective toxin (HST) produced by A. alternata required for fungal penetration and lesion formation, but so too are CWDEs required for full virulence. Overall, this study expands our understanding of how A. alternata overcomes citrus physical barriers to carry out successful penetration and colonization.
Collapse
Affiliation(s)
- Haijie Ma
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Bin Zhang
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunpeng Gai
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xuepeng Sun
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Kuang-Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung-Hsing University, Taichung, Taiwan
| | - Hongye Li
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Lu L, Rong W, Massart S, Zhang Z. Genome-Wide Identification and Expression Analysis of Cutinase Gene Family in Rhizoctonia cerealis and Functional Study of an Active Cutinase RcCUT1 in the Fungal-Wheat Interaction. Front Microbiol 2018; 9:1813. [PMID: 30131789 PMCID: PMC6091245 DOI: 10.3389/fmicb.2018.01813] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
Wheat (Triticum aestivum L.) is a staple food of more than 50% of global population. Rhizoctonia cerealis is the causal agent of sharp eyespot, a devastating disease of cereal crops including wheat. Cutinases produced by fungal pathogens play important roles in host-pathogen compatible interactions, but little is known about cutinases in R. cerealis. In this study, we identified a total of six cutinase encoding genes from R. cerealis genome, designated as RcCUT1-RcCUT6, analyzed their expression patterns during the infection, and determined virulence role for RcCUT1. All the proteins, RcCUT1-RcCUT6, contain a highly conserved GYSKG motif and another conserved C-x(3)-D-x(2)-C-x(2)-[GS]-[GSD]-x(4)-[AP]-H motif in the carbohydrate esterase 5 domain. The RcCUT1, RcCUT2, RcCUT4, and RcCUT5 are predicted to be secreted proteins containing four cysteine residues. These six cutinase genes had different expression patterns during the fungal infection process to wheat, among which RcCUT1 was highly expressed across all the infection time points but RcCUT6 was not expressed at all and the others were expressed only at certain time points. Further, RcCUT1 was heterologously expressed in Escherichia coli to obtain a purified protein. The purified RcCUT1 was shown to possess the cutinase activity and be able to induce necrosis, H2O2 accumulation, and expression of defense-related genes when infiltrated into wheat and Nicotiana benthamiana leaves. In contrast, RcCUT1 protein with serine mutation at the first motif had no cutinase activity, consequently lost the ability to induce necrosis. Noticeably, application of the purified RcCUT1 with R. cerealis led to significantly higher levels of the disease in wheat leaves than application of the fungus alone. These results strongly suggest that RcCUT1 serves as a virulence factor for the fungus. This is the first investigation of the cutinase genes in R. cerealis and the findings provide an important insight into pathogenesis mechanisms of R. cerealis on wheat.
Collapse
Affiliation(s)
- Lin Lu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Rong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Integrated and Urban Phytopathology, Gembloux Agro-Bio Tech–University of Liège, Gembloux, Belgium
| | - Sebastien Massart
- Laboratory of Integrated and Urban Phytopathology, Gembloux Agro-Bio Tech–University of Liège, Gembloux, Belgium
| | - Zengyan Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
23
|
Shen Y, Liu N, Li C, Wang X, Xu X, Chen W, Xing G, Zheng W. The early response during the interaction of fungal phytopathogen and host plant. Open Biol 2018; 7:rsob.170057. [PMID: 28469008 PMCID: PMC5451545 DOI: 10.1098/rsob.170057] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/05/2017] [Indexed: 01/28/2023] Open
Abstract
Plants can be infected by a variety of pathogens, most of which can cause severe economic losses. The plants resist the invasion of pathogens via the innate or acquired immune system for surviving biotic stress. The associations between plants and pathogens are sophisticated beyond imaging and the interactions between them can occur at a very early stage after their touching each other. A number of researchers in the past decade have shown that many biochemical events appeared even as early as 5 min after their touching for plant disease resistance response. The early molecular interactions of plants and pathogens are likely to involve protein phosphorylation, ion fluxes, reactive oxygen species (ROS) and other signalling transduction. Here, we reviewed the recent progress in the study for molecular interaction response of fungal pathogens and host plant at the early infection stage, which included many economically important crop fungal pathogens such as cereal rust fungi, tomato Cladosporium fulvum, rice blast and so on. By dissecting the earlier infection stage of the diseases, the avirulent/virulent genes of pathogen or resistance genes of plant could be defined more clearly and accurately, which would undoubtedly facilitate fungal pathogenesis study and resistant crop breeding.
Collapse
Affiliation(s)
- Yilin Shen
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Na Liu
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Chuang Li
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Xin Wang
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Xiaomeng Xu
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Wan Chen
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Guozhen Xing
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Wenming Zheng
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| |
Collapse
|
24
|
Lopez D, Ribeiro S, Label P, Fumanal B, Venisse JS, Kohler A, de Oliveira RR, Labutti K, Lipzen A, Lail K, Bauer D, Ohm RA, Barry KW, Spatafora J, Grigoriev IV, Martin FM, Pujade-Renaud V. Genome-Wide Analysis of Corynespora cassiicola Leaf Fall Disease Putative Effectors. Front Microbiol 2018; 9:276. [PMID: 29551995 PMCID: PMC5840194 DOI: 10.3389/fmicb.2018.00276] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/07/2018] [Indexed: 12/26/2022] Open
Abstract
Corynespora cassiicola is an Ascomycetes fungus with a broad host range and diverse life styles. Mostly known as a necrotrophic plant pathogen, it has also been associated with rare cases of human infection. In the rubber tree, this fungus causes the Corynespora leaf fall (CLF) disease, which increasingly affects natural rubber production in Asia and Africa. It has also been found as an endophyte in South American rubber plantations where no CLF outbreak has yet occurred. The C. cassiicola species is genetically highly diverse, but no clear relationship has been evidenced between phylogenetic lineage and pathogenicity. Cassiicolin, a small glycosylated secreted protein effector, is thought to be involved in the necrotrophic interaction with the rubber tree but some virulent C. cassiicola isolates do not have a cassiicolin gene. This study set out to identify other putative effectors involved in CLF. The genome of a highly virulent C. cassiicola isolate from the rubber tree (CCP) was sequenced and assembled. In silico prediction revealed 2870 putative effectors, comprising CAZymes, lipases, peptidases, secreted proteins and enzymes associated with secondary metabolism. Comparison with the genomes of 44 other fungal species, focusing on effector content, revealed a striking proximity with phylogenetically unrelated species (Colletotrichum acutatum, Colletotrichum gloesporioides, Fusarium oxysporum, nectria hematococca, and Botrosphaeria dothidea) sharing life style plasticity and broad host range. Candidate effectors involved in the compatible interaction with the rubber tree were identified by transcriptomic analysis. Differentially expressed genes included 92 putative effectors, among which cassiicolin and two other secreted singleton proteins. Finally, the genomes of 35 C. cassiicola isolates representing the genetic diversity of the species were sequenced and assembled, and putative effectors identified. At the intraspecific level, effector-based classification was found to be highly consistent with the phylogenomic trees. Identification of lineage-specific effectors is a key step toward understanding C. cassiicola virulence and host specialization mechanisms.
Collapse
Affiliation(s)
- David Lopez
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR PIAF, Clermont-Ferrand, France
| | - Sébastien Ribeiro
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR PIAF, Clermont-Ferrand, France.,CIRAD, UMR AGAP, Clermont-Ferrand, France.,AGAP, Université Montpellier, CIRAD, Institut National de la Recherche Agronomique, Montpellier SupAgro, Montpellier, France
| | - Philippe Label
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR PIAF, Clermont-Ferrand, France
| | - Boris Fumanal
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR PIAF, Clermont-Ferrand, France
| | - Jean-Stéphane Venisse
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR PIAF, Clermont-Ferrand, France
| | - Annegret Kohler
- Institut National de la Recherche Agronomique, UMR INRA-Université de Lorraine "Interaction Arbres/Microorganismes", Champenoux, France
| | | | - Kurt Labutti
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Anna Lipzen
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Kathleen Lail
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Diane Bauer
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Robin A Ohm
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States.,Department of Microbiology, Utrecht University, Utrecht, Netherlands
| | - Kerrie W Barry
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Joseph Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Igor V Grigoriev
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Francis M Martin
- Institut National de la Recherche Agronomique, UMR INRA-Université de Lorraine "Interaction Arbres/Microorganismes", Champenoux, France
| | - Valérie Pujade-Renaud
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR PIAF, Clermont-Ferrand, France.,CIRAD, UMR AGAP, Clermont-Ferrand, France.,AGAP, Université Montpellier, CIRAD, Institut National de la Recherche Agronomique, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
25
|
Gui YJ, Zhang WQ, Zhang DD, Zhou L, Short DPG, Wang J, Ma XF, Li TG, Kong ZQ, Wang BL, Wang D, Li NY, Subbarao KV, Chen JY, Dai XF. A Verticillium dahliae Extracellular Cutinase Modulates Plant Immune Responses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:260-273. [PMID: 29068240 DOI: 10.1094/mpmi-06-17-0136-r] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cutinases have been implicated as important enzymes during the process of fungal infection of aerial plant organs. The function of cutinases in the disease cycle of fungal pathogens that invade plants through the roots has been less studied. Here, functional analysis of 13 cutinase (carbohydrate esterase family 5 domain-containing) genes (VdCUTs) in the highly virulent vascular wilt pathogen Verticillium dahliae Vd991 was performed. Significant sequence divergence in cutinase family members was observed in the genome of V. dahliae Vd991. Functional analyses demonstrated that only VdCUT11, as purified protein, induced cell death and triggered defense responses in Nicotiana benthamiana, cotton, and tomato plants. Virus-induced gene silencing showed that VdCUT11 induces plant defense responses in Nicotiana benthamania in a BAK1 and SOBIR-dependent manner. Furthermore, coinfiltration assays revealed that the carbohydrate-binding module family 1 protein (VdCBM1) suppressed VdCUT11-induced cell death and other defense responses in N. benthamiana. Targeted deletion of VdCUT11 in V. dahliae significantly compromised virulence on cotton plants. The cutinase VdCUT11 is an important secreted enzyme and virulence factor that elicits plant defense responses in the absence of VdCBM1.
Collapse
Affiliation(s)
- Yue-Jing Gui
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Wen-Qi Zhang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Dan-Dan Zhang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Lei Zhou
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Dylan P G Short
- 2 Department of Plant Pathology, University of California, Davis, U.S.A
| | - Jie Wang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Xue-Feng Ma
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Ting-Gang Li
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Zhi-Qiang Kong
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Bao-Li Wang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Dan Wang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Nan-Yang Li
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | | | - Jie-Yin Chen
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Xiao-Feng Dai
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| |
Collapse
|
26
|
An LRR receptor kinase regulates growth, development and pathogenesis in Phytophthora capsici. Microbiol Res 2017; 198:8-15. [DOI: 10.1016/j.micres.2017.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 11/27/2016] [Accepted: 01/23/2017] [Indexed: 11/20/2022]
|
27
|
Ye X, Liu H, Jin Y, Guo M, Huang A, Chen Q, Guo W, Zhang F, Feng L. Transcriptomic Analysis of Calonectria pseudoreteaudii during Various Stages of Eucalyptus Infection. PLoS One 2017; 12:e0169598. [PMID: 28072879 PMCID: PMC5224884 DOI: 10.1371/journal.pone.0169598] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 12/19/2016] [Indexed: 01/03/2023] Open
Abstract
Eucalyptus leaf blight caused by Calonectria spp. is a serious disease in Eucalyptus seedling and plantations. However, the molecular mechanisms of the infection process and pathogenesis of Calonectria to Eucalyptus is not well-studied. In this study, we analyzed the transcriptomes of C. pseudoreteaudii at three stages of Eucalyptus leaf infection, and in mycelium grown in potato dextrose broth using Illumina RNA-Seq technology. We identified 161 differentially expressed genes between C. pseudoreteaudii from leaf and mycelium grown in potato dextrose broth. GO and KEGG enrichment analyses of these genes suggested that they were mainly involved in oxidoreductase activity, hydrolase activity, and transmembrane transporter activity. Most of the differentially expressed genes at the early infection stage were upregulated. These upregulated genes were mainly involved in cell wall hydrolysis and toxin synthesis, suggesting a role for toxin and cell wall hydrolases in the establishment of Calonectria leaf blight. Genes related to detoxification of phytoalexins were continually upregulated during infection. The candidate effectors and putative pathogenicity determinants identified in this study will help in the functional analysis of C. pseudoreteaudii virulence and pathogenicity.
Collapse
Affiliation(s)
- Xiaozhen Ye
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Jinshan College, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Forestry Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongyi Liu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Forestry Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yajie Jin
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Forestry Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengmeng Guo
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Forestry Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Aizhen Huang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Forestry Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Quanzhu Chen
- Jinshan College, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Forestry Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenshuo Guo
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Forestry Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feiping Zhang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lizhen Feng
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Forestry Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail:
| |
Collapse
|