1
|
Feng X, Ma Y, Liang Q, Jin Y, Wang X, Wang J, Liu F, Zhang X, Shao D, Sun J, Zhu QH, Xue F. Deletion of GhSCY2D Causes Impaired Chloroplast Development and Temperature-Dependent Leaf Yellowing in Cotton (Gossypium hirsutum L.). PLANT, CELL & ENVIRONMENT 2025. [PMID: 40123339 DOI: 10.1111/pce.15476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/15/2025] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
Leaf colour mutants play an important role in understanding chlorophyll metabolism and photosynthesis. In this study, we characterised a temperature-sensitive yellow leaf cotton mutant. Genome re-sequencing and comparison identified a 10.327 Kb deletion on the D12 chromosome (D12:670726-681053) in the mutant. The deletion region contains two annotated genes, GH_D12G0047 and GH_D12G0048. Investigations integrating gene mapping, comparative transcriptome analysis, gene annotation, virus-induced gene silencing and gene complementation, found deletion of GH_D12G0047 or GhSCY2D, a crucial constituent of the Sec2 complex essential for the function of chloroplasts, being responsible for the yellow leaf phenotype. The yellow leaf mutant had disrupted chloroplast structure and hindered chlorophyll synthesis when temperature was below 28°C but regained normal green leaf colour at 32°C. By analysing the transcriptome data and hormonal level changes of the mutant under conditions of 25°C and 32°C, it was found that the jasmonic acid signalling pathway and GhSCY2 work in concert to maintain the structural integrity of chloroplasts. The outcomes of the study reveal the indispensable role of GhSCY2 and jasmonic acid in sustaining chloroplast homoeostasis, providing new insights into the regulation of cotton leaf colour and paving the way for advancement in high photosynthetic efficiency breeding strategies.
Collapse
Affiliation(s)
- Xiaokang Feng
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Yanmei Ma
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Qian Liang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Yanlong Jin
- College of Life Sciences, Fudan University, Shanghai, China
| | - Xuefeng Wang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Jianhang Wang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Feng Liu
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Xinyu Zhang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Dongnan Shao
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | | | - Fei Xue
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| |
Collapse
|
2
|
Fan L, Hou Y, Zheng L, Shi H, Liu Z, Wang Y, Li S, Liu L, Guo M, Yang Z, Liu J. Characterization and fine mapping of a yellow leaf gene regulating chlorophyll biosynthesis and chloroplast development in cotton (Gossypium arboreum). Gene 2023; 885:147712. [PMID: 37579958 DOI: 10.1016/j.gene.2023.147712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Chlorophyll biosynthesis and chloroplast development are essential for photosynthesis and plant growth. Gossypium arboreum, a valuable source of genetic variation for cotton improvement, remains poorly studied for the mechanisms regulating chlorophyll biosynthesis and chloroplast development. Here we created a G. arboreum etiolated leaf and stuntedness (els) mutant that displayed a distinct yellow color of leaves, bracts and stems throughout the whole growth, where chlorophyll accumulation in leaves was reduced and chloroplast development was delayed. The GaCHLH gene, which encodes the H subunit of magnesium chelatase (Mg-chelatase), was screened by MutMap and KASP analysis. Compared to GaCHLH, the gene Gachlh of the mutant had a single nucleotide transition (G to A) at 1549 bp, which causes the substitution of a glycine (G) by a serine (S) at the 517th amino acid, resulting in an abnormal secondary structure of the Gachlh protein. GaCHLH-silenced SXY1 and ZM24 plants exhibited a lower GaCHLH expression level, a lower chlorophyll content, and the yellow-leaf phenotype. Gachlh expression affected the expression of key genes in the tetrapyrrole pathway. GaCHLH and Gachlh were located in the chloroplasts and that alteration of the mutation site did not affect the final target position. The BiFC assay result indicated that Gachlh could not bind to GaCHLD properly, which prevented the assembly of Mg-chelatase and thus led to the failure of chlorophyll synthesis. In this study, the Gachlh gene of G. arboreum els was finely localized and identified for the first time, providing new insights into the chlorophyll biosynthesis pathway in cotton.
Collapse
Affiliation(s)
- Liqiang Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yan Hou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lei Zheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Beijing 100081, China
| | - Huiyun Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhao Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuxuan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shengdong Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Le Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengzhen Guo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832003, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| |
Collapse
|
3
|
Gebremeskel H, Umer MJ, Hongju Z, Li B, Shengjie Z, Yuan P, Xuqiang L, Nan H, Wenge L. Genetic mapping and molecular characterization of the delayed green gene dg in watermelon ( Citrullus lanatus). FRONTIERS IN PLANT SCIENCE 2023; 14:1152644. [PMID: 37152178 PMCID: PMC10158938 DOI: 10.3389/fpls.2023.1152644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
Leaf color mutants are common in higher plants that can be used as markers in crop breeding and are important tools in understanding regulatory mechanisms of chlorophyll biosynthesis and chloroplast development. Genetic analysis was performed by evaluating F1, F2 and BC1 populations derived from two parental lines (Charleston gray with green leaf color and Houlv with delayed green leaf color), suggesting that a single recessive gene controls the delayed green leaf color. In this study, the delayed green mutant showed a conditional pale green leaf color at the early leaf development but turned to green as the leaf development progressed. Delayed green leaf plants showed reduced pigment content, photosynthetic, chlorophyll fluorescence parameters, and impaired chloroplast development compared with green leaf plants. The delayed green (dg) locus was mapped to 7.48 Mb on chromosome 3 through bulk segregant analysis approach, and the gene controlling delayed green leaf color was narrowed to 53.54 kb between SNP130 and SNP135 markers containing three candidate genes. Sequence alignment of the three genes indicated that there was a single SNP mutation (G/A) in the coding region of ClCG03G010030 in the Houlv parent, which causes an amino acid change from Arginine to Lysine. The ClCG03G010030 gene encoded FtsH extracellular protease protein family is involved in early delayed green leaf development. The expression level of ClCG03G010030 was significantly reduced in delayed green leaf plants than in green leaf plants. These results indicated that the ClCG03G010030 might control watermelon green leaf color and the single SNP variation in ClCG03G010030 may result in early delayed green leaf color development during evolutionary process.
Collapse
Affiliation(s)
- Haileslassie Gebremeskel
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Department of Horticulture, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Muhammad Jawad Umer
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhu Hongju
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Bingbing Li
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhao Shengjie
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Pingli Yuan
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lu Xuqiang
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - He Nan
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Liu Wenge
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- *Correspondence: Liu Wenge,
| |
Collapse
|
4
|
Wu CJ, Wang J, Zhu J, Ren J, Yang YX, Luo T, Xu LX, Zhou QH, Xiao XF, Zhou YX, Luo S. Molecular Characterization of Mg-Chelatase CHLI Subunit in Pea ( Pisum sativum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:821683. [PMID: 35145539 PMCID: PMC8821089 DOI: 10.3389/fpls.2022.821683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/03/2022] [Indexed: 05/28/2023]
Abstract
As a rate-limiting enzyme for chlorophyll biosynthesis, Mg-chelatase is a promising target for improving photosynthetic efficiency. It consists of CHLH, CHLD, and CHLI subunits. In pea (Pisum sativum L.), two putative CHLI genes (PsCHLI1 and PsCHLI2) were revealed recently by the whole genome sequencing, but their molecular features are not fully characterized. In this study, PsCHLI1 and PsCHLI2 cDNAs were identified by PCR-based cloning and sequencing. Phylogenetic analysis showed that PsCHLIs were derived from an ancient duplication in legumes. Both PsCHLIs were more highly expressed in leaves than in other organs and downregulated by abscisic acid and heat treatments, while PsCHLI1 was more highly expressed than PsCHLI2. PsCHLI1 and PsCHLI2 encode 422- and 417-amino acid proteins, respectively, which shared 82% amino acid identity and were located in chloroplasts. Plants with a silenced PsCHLI1 closely resembled PsCHLI1 and PsCHLI2 double-silenced plants, as both exhibited yellow leaves with barely detectable Mg-chelatase activity and chlorophyll content. Furthermore, plants with a silenced PsCHLI2 showed no obvious phenotype. In addition, the N-terminal fragment of PsCHLI1 (PsCHLI1N, Val63-Cys191) and the middle fragment of PsCHLI1 (PsCHLI1M, Gly192-Ser336) mediated the formation of homodimers and the interaction with CHLD, respectively, while active PsCHLI1 was only achieved by combining PsCHLI1N, PsCHLI1M, and the C-terminal fragment of PsCHLI1 (Ser337-Ser422). Taken together, PsCHLI1 is the key CHLI subunit, and its peptide fragments are essential for maintaining Mg-chelatase activity, which can be used to improve photosynthetic efficiency by manipulating Mg-chelatase in pea.
Collapse
Affiliation(s)
- Cai-jun Wu
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Jie Wang
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Jun Zhu
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Jing Ren
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - You-xin Yang
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Tao Luo
- Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| | - Lu-xi Xu
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Qing-hong Zhou
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Xu-feng Xiao
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Yu-xin Zhou
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Sha Luo
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
5
|
Gao J, Shi Y, Wang W, Wang YH, Yang H, Shi QH, Chen JP, Sun YR, Cai LW. Genome sequencing identified novel mechanisms underlying virescent mutation in upland cotton Gossypiuma hirsutum. BMC Genomics 2021; 22:498. [PMID: 34217203 PMCID: PMC8254239 DOI: 10.1186/s12864-021-07810-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/14/2021] [Indexed: 08/26/2023] Open
Abstract
Background Virescent mutation broadly exists in plants and is an ideal experimental material to investigate regulatory mechanisms underlying chlorophyll synthesis, photosynthesis and plant growth. Up to date, the molecular mechanisms in two virescent mutations have been clarified in cottons (Gossypiuma hirsutum). A virescent mutation has been found in the cotton strain Sumian 22, and the underlying molecular mechanisms have been studied. Methods The virescent mutant and wild type (WT) of Sumian 22 were cross-bred, and the F1 population were self-pollinated to calculate the segregation ratio. Green and yellow leaves from F2 populations were subjected to genome sequencing and bulked-segregant analysis was performed to screen mutations. Real-time quantitative PCR (RT-qPCR) were performed to identify genes in relations to chlorophyll synthesis. Intermediate products for chlorophyll synthesis were determined to validate the RT-qPCR results. Results The segregation ratio of green and virescent plants in F2 population complied with 3:1. Compared with WT, a 0.34 Mb highly mutated interval was identified on the chromosome D10 in mutant, which contained 31 genes. Among them, only ABCI1 displayed significantly lower levels in mutant than in WT. Meanwhile, the contents of Mg-protoporphyrin IX, protochlorophyllide, chlorophyll a and b were all significantly lower in mutant than in WT, which were consistent with the inhibited levels of ABCI1. In addition, a mutation from A to T at the -317 bp position from the start codon of ABCI1 was observed in the genome sequence of mutant. Conclusions Inhibited transcription of ABCI1 might be the mechanism causing virescent mutation in Sumian 22 cotton, which reduced the transportation of protoporphyrin IX to plastid, and then inhibited Mg-protoporphyrin IX, Protochlorophyllide and finally chlorophyll synthesis. These results provided novel insights into the molecular mechanisms underlying virescent mutation in cotton. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07810-z.
Collapse
Affiliation(s)
- Jin Gao
- Jiangsu Coastal Area Institute of Agricultural Sciences/Observation and Experimental Station of Saline Land of Costal Area, Ministry of Agriculture, Yancheng, 224002, Jiangsu, People's Republic of China
| | - Yang Shi
- Jiangsu Coastal Area Institute of Agricultural Sciences/Observation and Experimental Station of Saline Land of Costal Area, Ministry of Agriculture, Yancheng, 224002, Jiangsu, People's Republic of China
| | - Wei Wang
- Jiangsu Coastal Area Institute of Agricultural Sciences/Observation and Experimental Station of Saline Land of Costal Area, Ministry of Agriculture, Yancheng, 224002, Jiangsu, People's Republic of China
| | - Yong-Hui Wang
- Jiangsu Coastal Area Institute of Agricultural Sciences/Observation and Experimental Station of Saline Land of Costal Area, Ministry of Agriculture, Yancheng, 224002, Jiangsu, People's Republic of China
| | - Hua Yang
- Jiangsu Coastal Area Institute of Agricultural Sciences/Observation and Experimental Station of Saline Land of Costal Area, Ministry of Agriculture, Yancheng, 224002, Jiangsu, People's Republic of China
| | - Qing-Hua Shi
- Jiangsu Coastal Area Institute of Agricultural Sciences/Observation and Experimental Station of Saline Land of Costal Area, Ministry of Agriculture, Yancheng, 224002, Jiangsu, People's Republic of China
| | - Jian-Ping Chen
- Jiangsu Coastal Area Institute of Agricultural Sciences/Observation and Experimental Station of Saline Land of Costal Area, Ministry of Agriculture, Yancheng, 224002, Jiangsu, People's Republic of China
| | - Yan-Ru Sun
- Jiangsu Coastal Area Institute of Agricultural Sciences/Observation and Experimental Station of Saline Land of Costal Area, Ministry of Agriculture, Yancheng, 224002, Jiangsu, People's Republic of China
| | - Li-Wang Cai
- Jiangsu Coastal Area Institute of Agricultural Sciences/Observation and Experimental Station of Saline Land of Costal Area, Ministry of Agriculture, Yancheng, 224002, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Ma Q, Wang N, Ma L, Lu J, Wang H, Wang C, Yu S, Wei H. The Cotton BEL1-Like Transcription Factor GhBLH7-D06 Negatively Regulates the Defense Response against Verticillium dahliae. Int J Mol Sci 2020; 21:E7126. [PMID: 32992496 PMCID: PMC7582620 DOI: 10.3390/ijms21197126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 01/16/2023] Open
Abstract
Verticillium wilt will seriously affect cotton yield and fiber quality. BEL1-Like transcription factors are involved in the regulation of secondary cell wall (SCW) formation, especially the biosynthesis of lignin that also plays a key role in cotton disease resistance. However, there is no report on the role of BEL1-Like transcription factor in the regulation of plant biological stress. In this study, tissue expression pattern analysis showed that a BEL1-Like transcription factor GhBLH7-D06 was predominantly expressed in vascular tissues and the SCW thickening stage of fiber development, while its expression could also respond to Verticillium dahliae infection and the phytohormone MeJA treatment, which indicated that GhBLH7-D06 might be involved in the defense response of Verticillium wilt. Using virus-induced gene silencing (VIGS) technology, we found silencing the expression of GhBLH7-D06 could enhance the resistance of cotton plants to Verticillium wilt, and the acquisition of resistance might be mainly due to the significant overexpression of genes related to lignin biosynthesis and JA signaling pathway, which also proves that GhBLH7-D06 negatively regulates the resistance of cotton to Verticillium wilt. Based on the results of yeast two-hybrid (Y2H) library screening and confirmation by bimolecular fluorescence complementary (BiFC) experiment, we found an Ovate Family Protein (OFP) transcription factor GhOFP3-D13 which was also a negative regulator of cotton Verticillium wilt resistance could that interacts with GhBLH7-D06. Furthermore, the dual-luciferase reporter assay and yeast one-hybrid (Y1H) experiment indicated that GhBLH7-D06 could target binding to the promoter region of GhPAL-A06 to suppress its expression and eventually lead to the inhibition of lignin biosynthesis. In general, the GhBLH7-D06/GhOFP3-D13 complex can negatively regulate resistance to Verticillium wilt of cotton by inhibiting lignin biosynthesis and JA signaling pathway.
Collapse
Affiliation(s)
- Qiang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, China; (Q.M.); (L.M.); (J.L.); (H.W.); (C.W.)
| | - Nuohan Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China;
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, China; (Q.M.); (L.M.); (J.L.); (H.W.); (C.W.)
| | - Jianhua Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, China; (Q.M.); (L.M.); (J.L.); (H.W.); (C.W.)
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, China; (Q.M.); (L.M.); (J.L.); (H.W.); (C.W.)
| | - Congcong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, China; (Q.M.); (L.M.); (J.L.); (H.W.); (C.W.)
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, China; (Q.M.); (L.M.); (J.L.); (H.W.); (C.W.)
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, China; (Q.M.); (L.M.); (J.L.); (H.W.); (C.W.)
| |
Collapse
|
7
|
Zhang K, Li Y, Zhu W, Wei Y, Njogu MK, Lou Q, Li J, Chen J. Fine Mapping and Transcriptome Analysis of Virescent Leaf Gene v-2 in Cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2020; 11:570817. [PMID: 33101337 PMCID: PMC7545910 DOI: 10.3389/fpls.2020.570817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/04/2020] [Indexed: 05/24/2023]
Abstract
Leaf color mutants are the ideal materials to explore the pathways of chlorophyll metabolism, chloroplast development and photosynthesis system. In this study, a new virescent leaf mutant 104Y was identified by spontaneous mutation, whose cotyledon and upper five true leaves were yellow color. The yellow true leaves gradually turned green from top to bottom with increased chlorophyll contents. Genetic analysis indicated that the virescent leaf was controlled by one single recessive gene v-2, which was accurately mapped into 36.0-39.7 Mb interval on chromosome 3 by using BSA-seq and linkage analysis. Fine mapping analysis further narrowed v-2 into 73-kb genomic region including eight genes with BC1 and F2 populations. Through BSA-seq and cDNA sequencing analysis, only one nonsynonymous mutation existed in the Csa3G890020 gene encoding auxin F-box protein was identified, which was predicted as the candidate gene controlling virescent leaf. Comparative transcriptome analysis and quantitative real-time PCR analysis revealed that the expression level of Csa3G890020 was not changed between EC1 and 104Y. However, RNA-seq analysis identified that the key genes involved in chlorophyll biosynthesis and auxin signaling transduction network were mainly down-regulated in 104Y compared with EC1, which indicated that the regulatory functions of Csa3G890020 could be performed at post-transcriptional level rather than transcriptional level. This is the first report to map-based clone an auxin F-box protein gene related to virescent leaf in cucumber. The results will exhibit a new insight into the chlorophyll biosynthesis regulated by auxin signaling transduction network.
Collapse
Affiliation(s)
- Kaijing Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Ying Li
- Nanjing Vegetable Science Research Institute, Nanjing, China
| | - Wenwei Zhu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yifan Wei
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Martin Kagiki Njogu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Qunfeng Lou
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ji Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jinfeng Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Mao G, Wei H, Hu W, Ma Q, Zhang M, Wang H, Yu S. Fine mapping and molecular characterization of the virescent gene vsp in Upland cotton (Gossypium hirsutum). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2069-2086. [PMID: 30953093 DOI: 10.1007/s00122-019-03338-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/26/2019] [Indexed: 05/24/2023]
Abstract
The vsp gene was fine mapped to a 353.7-kb region, and a 201-bp deletion that affected chloroplast development and chlorophyll biosynthesis was found in the candidate gene GhPUR4. Virescent mutations can be used as marker traits in heterosis breeding and can also be used to research chloroplast development, chlorophyll biosynthesis and photosynthesis mechanisms. Here, we obtained a light-sensitive virescent mutant, vsp, that has reduced chlorophyll (Chl) content and abnormal chloroplast development. Then, the virescent space (vsp) gene in the vsp mutant was preliminarily mapped to a 38.32-Mb region of chromosome D04 using a high-density SNP genetic map with a total length of 5384.33 cM and 4472 bin markers. Furthermore, the vsp gene was narrowed down to a 353.7-kb region that contains 15 candidate genes using 484 virescent individuals from an F2 population. Sequence analysis of genes in this region showed that a 201-bp deletion was present in the Gh_D04G1108 (GhPUR4) gene in the vsp mutant. The 201-bp deletion of Gh_D04G1108 caused the deletion of 67 AAs in the GhPUR4 protein. Virus-induced gene silencing (VIGS) of GhPUR4 in normal plants caused reduced GhPUR4 gene expression levels, reduced Chl content, abnormal chloroplast development and virescent true leaves. This study could help us unravel the function of GhPUR4 in chloroplast development and Chl biosynthesis at the early developmental stages of the true leaves in cotton, which could promote the research and application of virescent mutations in cotton heterosis breeding.
Collapse
Affiliation(s)
- Guangzhi Mao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Wei Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Qiang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|