1
|
Zhang RR, Wang YH, Peng XF, Sun YJ, Zhang N, Xiong AS. DcNCED2 promotes ABA synthesis via carotenoid degradation and enhances drought resistance in carrot. PLANT CELL REPORTS 2025; 44:75. [PMID: 40097853 DOI: 10.1007/s00299-025-03467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
KEY MESSAGE Carrot DcNCED2 gene can improve the activity of antioxidant substances, enhance the drought tolerance of plant, and play regulatory roles in the degradation of carotenoids and the synthesis of ABA. Carrot (Daucus carota L.) is a biennial root vegetable crop of Apiaceae. In the process of growth and development, carrot is always subjected to drought stress, resulting in the decline of yield and quality. 9-cis-epoxycarotenoid dioxygenase (NCED) is an important rate-limiting enzyme in the pathway of carotenoid degradation and ABA synthesis, which can directly affect the drought resistance of plants. It is scientifically important to study the molecular mechanism of carrot DcNCED gene in response to drought stress. In this study, expression specificity analysis of DcNCED2 gene showed that the expression level of DcNCED2 gene reached the highest value at 60-75 d after sowing. DcNCED2 gene was transferred into Arabidopsis thaliana and carrot by constructing plant overexpression vector. The transgenic A. thaliana was found to exhibit a drought-tolerant phenotype with longer root length, higher SOD and POD activities, lower MDA content, higher ABA content and related gene expression, and lower lutein and β-carotene content. The results indicated that DcNCED2 gene could improve the drought tolerance of the seedling. The ABA content in leaf of overexpressed DcNCED2 carrot was significantly increased, while the contents of lutein, α-carotene and β-carotene were decreased compared with the wild carrot. The changes of expression levels of most related genes were consistent with the above results. These results indicated that DcNCED2 gene could promote the degradation of carotenoids and the synthesis of ABA in carrot leaves and thus achieve the regulation of abiotic stress in carrot plants.
Collapse
Affiliation(s)
- Rong-Rong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xue-Feng Peng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu-Jie Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Liu W, Xu S, Ou C, Liu X, Zhuang F, Deng XW. T2T genomes of carrot and Alternaria dauci and their utility for understanding host-pathogen interactions during carrot leaf blight disease. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1643-1661. [PMID: 39374101 DOI: 10.1111/tpj.17049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024]
Abstract
Carrot (Daucus carota) is one of the most popular and nutritious vegetable crops worldwide. However, significant yield losses occur every year due to leaf blight, a disease caused by a fungal pathogen (Alternaria dauci). Past research on resistance to leaf blight disease in carrots has been slow because of the low-quality genome assemblies of both carrot and the pathogen. Here, we report the greatly improved assemblies and annotations of telomere-to-telomere (T2T) reference genomes of carrot DH13M14 (451.04 Mb) and A. dauci A2016 (34.91 Mb). Compared with the previous carrot genome versions, our assembly featured notable improvements in genome size, continuity, and completeness of centromeres and telomeres. In addition, we generated a time course transcriptomic atlas during the infection of carrots by A. dauci and captured their dynamic gene expression reprogramming during the interaction process. During infection, A. dauci genes encoding effectors and enzymes responsible for the degradation of plant cell wall components, e.g., cellulose and pectin, were identified, which appeared to increase pathogenic ability through upregulation. In carrot, the coordinated gene expression of components of pattern- and effector-triggered immunity (PTI and ETI) in response to A. dauci attack was characterized. The biosynthesis or signal transduction of plant hormones, including JA, SA, and ethylene, was also involved in the carrot response to A. dauci. This work provides a foundation for understanding A. dauci pathogenic progression and carrot defense mechanisms to improve carrot resistance to leaf blight disease. The Carrot Database (CDB) developed also provides a useful resource for the carrot community.
Collapse
Affiliation(s)
- Wenwen Liu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, 261325, China
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Shiyao Xu
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Chenggang Ou
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Xing Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Feiyun Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Xing Wang Deng
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, 261325, China
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
3
|
Sun M, Qiao HX, Yang T, Zhao P, Zhao JH, Luo JM, Luan HY, Li X, Wu SC, Xiong AS. Hydrogen sulfide alleviates cadmium stress in germinating carrot seeds by promoting the accumulation of proline. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154357. [PMID: 39316927 DOI: 10.1016/j.jplph.2024.154357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Carrot (Daucus carota L.), a widely cultivated economically vegetable from the Apiaceae family, is grown globally. However, carrots can be adversely impacted by cadmium (Cd) pollution in the soil due to its propensity to accumulate in the fleshy root, thus impeding carrot growth and posing health hazards to consumers. Given the potential of hydrogen sulfide (H2S) to improve plant resistance against Cd stress, we treated germinating carrot seeds with varying concentrations of sodium hydrosulfide (NaHS), aiming to alleviate the toxic impacts of Cd stress on carrot seed germination. The results revealed that carrot seeds treated with a concentration of 0.25 mM NaHS displayed better seed germination-associated characteristics compared to seeds treated with NaHS concentrations of 0.1 mM and 0.5 mM. Further investigation revealed a rise in the expression levels of L-cysteine desulfhydrase and D-cysteine desulfhydrase, along with enhanced activity of L-cysteine desulfhydrase and D-cysteine desulfhydrase among the NaHS treatment group, thereby leading to H2S accumulation. Moreover, NaHS treatment triggered the expression of pyrroline-5-carboxylate synthase and pyrroline-5-carboxylate reductase and promoted the accumulation of endogenous proline, while the contents of soluble sugar and soluble protein increased correspondingly. Interestingly, since the application of exogenous proline did not influence the accumulation of endogenous H2S, suggesting that H2S served as the upstream regulator of proline. Histochemical staining and biochemical indices revealed that NaHS treatment led to elevated antioxidant enzyme activity, alongside a suppression of superoxide anion and hydrogen peroxide generation. Furthermore, high performance liquid chromatography analysis revealed that NaHS treatment reduced Cd2+ uptake, thereby promoting germination rate, seed vitality, and hypocotyl length of carrot seeds under Cd stress. Overall, our findings shed light on the application of NaHS to enhance carrot resistance against Cd stress and lay a foundation for exploring the regulatory role of H2S in plants responding to Cd stress.
Collapse
Affiliation(s)
- Miao Sun
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Huan-Xuan Qiao
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Tao Yang
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Peng Zhao
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Jun-Hao Zhao
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Jia-Ming Luo
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Hai-Ye Luan
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Xiang Li
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Sheng-Cai Wu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
4
|
Pei Y, Leng L, Sun W, Liu B, Feng X, Li X, Chen S. Whole-genome sequencing in medicinal plants: current progress and prospect. SCIENCE CHINA. LIFE SCIENCES 2024; 67:258-273. [PMID: 37837531 DOI: 10.1007/s11427-022-2375-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/23/2023] [Indexed: 10/16/2023]
Abstract
Advancements in genomics have dramatically accelerated the research on medicinal plants, and the development of herbgenomics has promoted the "Project of 1K Medicinal Plant Genome" to decipher their genetic code. However, it is difficult to obtain their high-quality whole genomes because of the prevalence of polyploidy and/or high genomic heterozygosity. Whole genomes of 123 medicinal plants were published until September 2022. These published genome sequences were investigated in this review, covering their classification, research teams, ploidy, medicinal functions, and sequencing strategies. More than 1,000 institutes or universities around the world and 50 countries are conducting research on medicinal plant genomes. Diploid species account for a majority of sequenced medicinal plants. The whole genomes of plants in the Poaceae family are the most studied. Almost 40% of the published papers studied species with tonifying, replenishing, and heat-cleaning medicinal effects. Medicinal plants are still in the process of domestication as compared with crops, thereby resulting in unclear genetic backgrounds and the lack of pure lines, thus making their genomes more difficult to complete. In addition, there is still no clear routine framework for a medicinal plant to obtain a high-quality whole genome. Herein, a clear and complete strategy has been originally proposed for creating a high-quality whole genome of medicinal plants. Moreover, whole genome-based biological studies of medicinal plants, including breeding and biosynthesis, were reviewed. We also advocate that a research platform of model medicinal plants should be established to promote the genomics research of medicinal plants.
Collapse
Affiliation(s)
- Yifei Pei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Baocai Liu
- Institute of Agricultural Bioresource, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Xue Feng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
5
|
Wang YH, Liu PZ, Liu H, Zhang RR, Liang Y, Xu ZS, Li XJ, Luo Q, Tan GF, Wang GL, Xiong AS. Telomere-to-telomere carrot ( Daucus carota) genome assembly reveals carotenoid characteristics. HORTICULTURE RESEARCH 2023; 10:uhad103. [PMID: 37786729 PMCID: PMC10541555 DOI: 10.1093/hr/uhad103] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/08/2023] [Indexed: 10/04/2023]
Abstract
Carrot (Daucus carota) is an Apiaceae plant with multi-colored fleshy roots that provides a model system for carotenoid research. In this study, we assembled a 430.40 Mb high-quality gapless genome to the telomere-to-telomere (T2T) level of "Kurodagosun" carrot. In total, 36 268 genes were identified and 34 961 of them were functionally annotated. The proportion of repeat sequences in the genome was 55.3%, mainly long terminal repeats. Depending on the coverage of the repeats, 14 telomeres and 9 centromeric regions on the chromosomes were predicted. A phylogenetic analysis showed that carrots evolved early in the family Apiaceae. Based on the T2T genome, we reconstructed the carotenoid metabolic pathway and identified the structural genes that regulate carotenoid biosynthesis. Among the 65 genes that were screened, 9 were newly identified. Additionally, some gene sequences overlapped with transposons, suggesting replication and functional differentiation of carotenoid-related genes during carrot evolution. Given that some gene copies were barely expressed during development, they might be functionally redundant. Comparison of 24 cytochrome P450 genes associated with carotenoid biosynthesis revealed the tandem or proximal duplication resulting in expansion of CYP gene family. These results provided molecular information for carrot carotenoid accumulation and contributed to a new genetic resource.
Collapse
Affiliation(s)
- Ya-Hui Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Pei-Zhuo Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Rong-Rong Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yi Liang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in North China, Beijing 100097, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiao-Jie Li
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in North China, Beijing 100097, China
| | - Qing Luo
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550025, China
| | - Guo-Fei Tan
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550025, China
| | - Guang-Long Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
6
|
Jia M, Zhu SQ, Wang YH, Liu JX, Tan SS, Liu H, Shu S, Tao JP, Xiong AS. Morphological characteristics, anatomical structure, and dynamic change of ascorbic acid under different storage conditions of celery. PROTOPLASMA 2023; 260:21-33. [PMID: 35396652 DOI: 10.1007/s00709-022-01760-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Ascorbic acid (AsA) is a crucial antioxidant in vegetables. Celery (Apium graveolens L.) is a vegetable of Apiaceae and is rich in AsA. Till now, the effects of different storage conditions on celery morphological characteristics, anatomical features, and antioxidant accumulation are unclear. Here, the celery cvs. 'Sijixiaoxiangqin' and 'Liuhehuangxinqin' were selected as experimental materials, and the two celery plants grown for 65 days were harvested from soils and stored in light at room temperature (25 °C), darkness at low temperature (4 °C), and darkness at room temperature (25 °C) for 0, 6, 24, 30, 48, and 54 h, respectively. The results showed that celery in darkness had better water retention capacity than celery in light. Morphological changes in celery mesophyll, leaf veins, and petioles were the least in darkness at low temperature (4 °C). The weight loss rate and wilting degree in darkness at low temperature (4 °C) were the lowest, and the AsA content remained at a high level. The expression patterns of GDP-D-mannose pyrophosphorylase (AgGMP) and L-galactose dehydrogenase (AgGalDH) were similar to the change of AsA content. The results indicated that low temperature and dark was the optimized storage condition for 'Sijixiaoxiangqin' and 'Liuhehuangxinqin' celery. AgGMP and AgGalDH genes may play an important role in the accumulation of AsA in celery. This paper will provide potential references for prolonging the shelf life of celery and other horticultural crops.
Collapse
Affiliation(s)
- Min Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Sheng-Qi Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shan-Shan Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Sheng Shu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Suqian Academy of Protected Horticultures, Suqian, 223800, China
| | - Jian-Ping Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
7
|
Wang XR, Wang YH, Jia M, Zhang RR, Liu H, Xu ZS, Xiong AS. The phytochrome-interacting factor DcPIF3 of carrot plays a positive role in drought stress by increasing endogenous ABA level in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111367. [PMID: 35788027 DOI: 10.1016/j.plantsci.2022.111367] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 05/22/2023]
Abstract
The phytochrome-interacting factor (PIF) subfamily of basic helix-loop-helix (bHLH) transcription factors plays a critical role in plant growth and development. However, there has been no detailed report on the PIFs in carrot. In this study, we present the identification and characterization of DcPIF gene family in carrot (Daucus carota L.). Phylogenetic analysis indicated that PIFs from carrot and other five plant species could be divided into four groups supported by similar gene structure and motif analysis. Expression profiles showed that all DcPIF genes were tissue-specific and could be induced by drought or abscisic acid (ABA) treatment except DcPIF7.1, among which DcPIF3 was the most responsive. The DcPIF3-overexpressed Arabidopsis plants exhibited more tolerance to drought stress, with higher antioxidant capacity and lower malondialdehyde content after drought treatment than wild type plants. Further stress tolerance assays revealed that DcPIF3 plays a positive role in drought stress by increasing endogenous ABA level and promoting the expression of ABA-related genes. Our results can enrich the understanding of DcPIF family genes and lay a foundation for further investigation of DcPIF3 function to defend against drought stress in carrot.
Collapse
Affiliation(s)
- Xin-Rui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Min Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Rong-Rong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
8
|
Shibaya T, Kuroda C, Tsuruoka H, Minami C, Obara A, Nakayama S, Kishida Y, Fujii T, Isobe S. Identification of QTLs for root color and carotenoid contents in Japanese orange carrot F 2 populations. Sci Rep 2022; 12:8063. [PMID: 35577860 PMCID: PMC9110420 DOI: 10.1038/s41598-022-11544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/18/2022] [Indexed: 11/21/2022] Open
Abstract
Carrot is a major source of provitamin A in a human diet. Two of the most important traits for carrot breeding are carotenoid contents and root color. To examine genomic regions related to these traits and develop DNA markers for carrot breeding, we performed an association analysis based on a general liner model using genome-wide single nucleotide polymorphism (SNPs) in two F2 populations, both derived from crosses of orange root carrots bred in Japan. The analysis revealed 21 significant quantitative trait loci (QTLs). To validate the detection of the QTLs, we also performed a QTL analysis based on a composite interval mapping of these populations and detected 32 QTLs. Eleven of the QTLs were detected by both the association and QTL analyses. The physical position of some QTLs suggested two possible candidate genes, an Orange (Or) gene for visual color evaluation, and the α- and β-carotene contents and a chromoplast-specific lycopene β-cyclase (CYC-B) gene for the β/α carotene ratio. A KASP marker developed on the Or distinguished a quantitative color difference in a different, related breeding line. The detected QTLs and the DNA marker will contribute to carrot breeding and the understanding of carotenoid biosynthesis and accumulation in orange carrots.
Collapse
Affiliation(s)
- Taeko Shibaya
- Fujii Seed Co. Ltd., Fujii Seed, 2-12-38 Juso-higashi, Yodogawa-ku, Osaka, 532-0023, Japan.
| | - Chika Kuroda
- Fujii Seed Co. Ltd., Fujii Seed, 2-12-38 Juso-higashi, Yodogawa-ku, Osaka, 532-0023, Japan
| | - Hisano Tsuruoka
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Chiharu Minami
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Akiko Obara
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | | | - Yoshie Kishida
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Takayoshi Fujii
- Fujii Seed Co. Ltd., Fujii Seed, 2-12-38 Juso-higashi, Yodogawa-ku, Osaka, 532-0023, Japan
| | - Sachiko Isobe
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| |
Collapse
|
9
|
Li T, Liu JX, Deng YJ, Xu ZS, Xiong AS. Overexpression of a carrot BCH gene, DcBCH1, improves tolerance to drought in Arabidopsis thaliana. BMC PLANT BIOLOGY 2021; 21:475. [PMID: 34663216 PMCID: PMC8522057 DOI: 10.1186/s12870-021-03236-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/28/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Carrot (Daucus carota L.), an important root vegetable, is very popular among consumers as its taproot is rich in various nutrients. Abiotic stresses, such as drought, salt, and low temperature, are the main factors that restrict the growth and development of carrots. Non-heme carotene hydroxylase (BCH) is a key regulatory enzyme in the β-branch of the carotenoid biosynthesis pathway, upstream of the abscisic acid (ABA) synthesis pathway. RESULTS In this study, we characterized a carrot BCH encoding gene, DcBCH1. The expression of DcBCH1 was induced by drought treatment. The overexpression of DcBCH1 in Arabidopsis thaliana resulted in enhanced tolerance to drought, as demonstrated by higher antioxidant capacity and lower malondialdehyde content after drought treatment. Under drought stress, the endogenous ABA level in transgenic A. thaliana was higher than that in wild-type (WT) plants. Additionally, the contents of lutein and β-carotene in transgenic A. thaliana were lower than those in WT, whereas the expression levels of most endogenous carotenogenic genes were significantly increased after drought treatment. CONCLUSIONS DcBCH1 can increase the antioxidant capacity and promote endogenous ABA levels of plants by regulating the synthesis rate of carotenoids, thereby regulating the drought resistance of plants. These results will help to provide potential candidate genes for plant drought tolerance breeding.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Yuan-Jie Deng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
10
|
Dong Y, Gao M, Qiu W, Song Z. Uptake of microplastics by carrots in presence of As (III): Combined toxic effects. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125055. [PMID: 33482507 DOI: 10.1016/j.jhazmat.2021.125055] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/25/2020] [Accepted: 01/04/2021] [Indexed: 05/06/2023]
Abstract
Current research on the migration of microplastics into plants is in its most important phase; however, there is no such research on root vegetables, even though the edible parts of root vegetables are in direct contact with microplastics. Considering arsenic (As)-containing groundwater used in hydroponics and the degradation of plastic materials in hydroponic facilities, we investigated the impacts of As and polystyrene (PS) microplastics on carrot growth. We found that PS microplastics sized 1 µm can enter carrot roots and accumulate in the intercellular layer but are unable to enter the cells; those sized 0.2 µm can migrate to the leaves. Larger microplastics can enter the roots (PS particles sized 1219.7 nm) and leaves (607.2 nm) in presence of As (III). Gaussian analysis shows that As increases the negatively charged area of PS and causes a greater amount of microplastics to enter the carrot. As also causes cell walls to distort and deform, allowing PS particles (< 200 nm) to enter the cells. PS and 4 mg L-1 As can induce oxidative bursts in carrot tissue, reducing the carrot quality. Moreover, As exacerbates the effect of PS on carrots. Molecular docking results show that the presence of PS in carrots destroys the tertiary structure of pectin methyl esterase and causes carrots to lose their crispness. These findings indicate that plastic material in hydroponic facilities can be leached to crops. Microplastics produced by the degradation of such materials not only reduce the nutritional value of carrots, leading to economic losses, but also pose potential risks to human health. The presence of As in the hydroponic solution results in more PS entering the carrot tissue and even the cells, bringing greater health threats for the consumers.
Collapse
Affiliation(s)
- Youming Dong
- Agro-Environmental Protection Institute, Ministry of Agriculture of China, Tianjin 300191, China
| | - Minling Gao
- Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Weiwen Qiu
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
| | - Zhengguo Song
- Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China.
| |
Collapse
|
11
|
Khadr A, Wang GL, Wang YH, Zhang RR, Wang XR, Xu ZS, Tian YS, Xiong AS. Effects of auxin (indole-3-butyric acid) on growth characteristics, lignification, and expression profiles of genes involved in lignin biosynthesis in carrot taproot. PeerJ 2020; 8:e10492. [PMID: 33354430 PMCID: PMC7731654 DOI: 10.7717/peerj.10492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022] Open
Abstract
Carrot is an important root vegetable crop abundant in bioactive compounds including carotenoids, vitamins, and dietary fibers. Carrot intake and its products are gradually growing owing to its high antioxidant activity. Auxins are a class of plant hormones that control many processes of plant growth and development. Yet, the effects of exogenous application of auxin on lignin biosynthesis and gene expression profiles of lignin-related genes in carrot taproot are still unclear. In order to investigate the effect of exogenous indole-3-butyric acid (IBA) on lignin-related gene profiles, lignin accumulation, anatomical structures and morphological characteristics in carrot taproots, carrots were treated with different concentrations of IBA (0, 50, 100, and 150 µM). The results showed that IBA application significantly improved the growth parameters of carrot. The 100 or 150 µM IBA treatment increased the number and area of xylem vessels, whereas transcript levels of lignin-related genes were restricted, resulting in a decline in lignin content in carrot taproots. The results indicate that taproot development and lignin accumulation may be influenced by the auxin levels within carrot plants.
Collapse
Affiliation(s)
- Ahmed Khadr
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Guang-Long Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Rong-Rong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xin-Rui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yong-Sheng Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Xu Z, Yang Q, Feng K, Yu X, Xiong A. DcMYB113, a root-specific R2R3-MYB, conditions anthocyanin biosynthesis and modification in carrot. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1585-1597. [PMID: 31910327 PMCID: PMC7292547 DOI: 10.1111/pbi.13325] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 05/12/2023]
Abstract
Purple carrots, the original domesticated carrots, accumulate highly glycosylated and acylated anthocyanins in root and/or petiole. Previously, a quantitative trait locus (QTL) for root-specific anthocyanin pigmentation was genetically mapped to chromosome 3 of carrot. In this study, an R2R3-MYB gene, namely DcMYB113, was identified within this QTL region. DcMYB113 expressed in the root of 'Purple haze', a carrot cultivar with purple root and nonpurple petiole, but not in the roots of two carrot cultivars with a purple root and petiole (Deep purple and Cosmic purple) and orange carrot 'Kurodagosun', which appeared to be caused by variation in the promoter region. The function of DcMYB113 from 'Purple haze' was verified by transformation in 'Cosmic purple' and 'Kurodagosun', resulting in anthocyanin biosynthesis. Transgenic 'Kurodagosun' carrying DcMYB113 driven by the CaMV 35S promoter had a purple root and petiole, while transgenic 'Kurodagosun' expressing DcMYB113 driven by its own promoter had a purple root and nonpurple petiole, suggesting that root-specific expression of DcMYB113 was determined by its promoter. DcMYB113 could activate the expression of DcbHLH3 and structural genes related to anthocyanin biosynthesis. DcUCGXT1 and DcSAT1, which were confirmed to be responsible for anthocyanins glycosylation and acylation, respectively, were also activated by DcMYB113. The WGCNA identified several genes co-expressed with anthocyanin biosynthesis and the results indicated that DcMYB113 may regulate anthocyanin transport. Our findings provide insight into the molecular mechanism underlying root-specific anthocyanin biosynthesis and further modification in carrot and even other root crops.
Collapse
Affiliation(s)
- Zhi‐Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementMinistry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East ChinaCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Qing‐Qing Yang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementMinistry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East ChinaCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm EnhancementMinistry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East ChinaCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Xiao Yu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementMinistry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East ChinaCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Ai‐Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm EnhancementMinistry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East ChinaCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
13
|
Hoang NV, Park C, Kamran M, Lee JY. Gene Regulatory Network Guided Investigations and Engineering of Storage Root Development in Root Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:762. [PMID: 32625220 PMCID: PMC7313660 DOI: 10.3389/fpls.2020.00762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/13/2020] [Indexed: 05/23/2023]
Abstract
The plasticity of plant development relies on its ability to balance growth and stress resistance. To do this, plants have established highly coordinated gene regulatory networks (GRNs) of the transcription factors and signaling components involved in developmental processes and stress responses. In root crops, yields of storage roots are mainly determined by secondary growth driven by the vascular cambium. In relation to this, a dynamic yet intricate GRN should operate in the vascular cambium, in coordination with environmental changes. Despite the significance of root crops as food sources, GRNs wired to mediate secondary growth in the storage root have just begun to emerge, specifically with the study of the radish. Gene expression data available with regard to other important root crops are not detailed enough for us directly to infer underlying molecular mechanisms. Thus, in this review, we provide a general overview of the regulatory programs governing the development and functions of the vascular cambium in model systems, and the role of the vascular cambium on the growth and yield potential of the storage roots in root crops. We then undertake a reanalysis of recent gene expression data generated for major root crops and discuss common GRNs involved in the vascular cambium-driven secondary growth in storage roots using the wealth of information available in Arabidopsis. Finally, we propose future engineering schemes for improving root crop yields by modifying potential key nodes in GRNs.
Collapse
Affiliation(s)
- Nam V. Hoang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Chulmin Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Muhammad Kamran
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Young Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
14
|
Hao JN, Wang YH, Duan AQ, Liu JX, Feng K, Xiong AS. NAC Family Transcription Factors in Carrot: Genomic and Transcriptomic Analysis and Responses to Abiotic Stresses. DNA Cell Biol 2020; 39:816-827. [PMID: 32175765 DOI: 10.1089/dna.2019.5208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Carrot is an annual or biennial herbaceous plant of the Apiaceae family. Carrot is an important vegetable, and its fresh taproot, which contains rich nutrients, is the main edible part. In the life cycle of carrot, NAC family transcription factors (TFs) are involved in almost all physiological processes. The function of NAC TFs in carrot remains unclear. In this study, 73 NAC family TF members in carrot were identified and characterized using transcriptome and genome databases. These members were divided into 14 subfamilies. Multiple sequence alignment was performed, and the conserved domains, common motifs, phylogenetic tree, and interaction network of DcNAC proteins were predicted and analyzed. Results showed that the same group of NAC proteins of carrot had high similarity. Eight DcNAC genes were selected to detect their expression profiles under abiotic stress treatments. The expression levels of the selected DcNAC genes significantly increased under treatments with low temperature, high temperature, drought, and salt stress. Results provide potentially useful information for further analysis of the roles of DcNAC transcription factors in carrot.
Collapse
Affiliation(s)
- Jian-Nan Hao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China.,Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China.,Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ao-Qi Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China.,Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China.,Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China.,Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China.,Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Uncu AO, Uncu AT. High-throughput simple sequence repeat (SSR) mining saturates the carrot (Daucus carota L.) genome with chromosome-anchored markers. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1701551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Ayse Ozgur Uncu
- Department of Biotechnology, Faculty of Science, Necmettin Erbakan University, Meram, Turkey
| | - Ali Tevfik Uncu
- Department of Molecular Biology & Genetics, Faculty of Science, Necmettin Erbakan University, Meram, Turkey
| |
Collapse
|
16
|
Que F, Hou XL, Wang GL, Xu ZS, Tan GF, Li T, Wang YH, Khadr A, Xiong AS. Advances in research on the carrot, an important root vegetable in the Apiaceae family. HORTICULTURE RESEARCH 2019; 6:69. [PMID: 31231527 PMCID: PMC6544626 DOI: 10.1038/s41438-019-0150-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/04/2019] [Accepted: 03/27/2019] [Indexed: 05/11/2023]
Abstract
Carrots (Daucus carota L.), among the most important root vegetables in the Apiaceae family, are cultivated worldwide. The storage root is widely utilized due to its richness in carotenoids, anthocyanins, dietary fiber, vitamins and other nutrients. Carrot extracts, which serve as sources of antioxidants, have important functions in preventing many diseases. The biosynthesis, metabolism, and medicinal properties of carotenoids in carrots have been widely studied. Research on hormone regulation in the growth and development of carrots has also been widely performed. Recently, with the development of high-throughput sequencing technology, many efficient tools have been adopted in carrot research. A large amount of sequence data has been produced and applied to improve carrot breeding. A genome editing system based on CRISPR/Cas9 was also constructed for carrot research. In this review, we will briefly summarize the origins, genetic breeding, resistance breeding, genome editing, omics research, hormone regulation, and nutritional composition of carrots. Perspectives about future research work on carrots are also briefly provided.
Collapse
Affiliation(s)
- Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Xi-Lin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, 223003 Huaian, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Guo-Fei Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Ahmed Khadr
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
- Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| |
Collapse
|
17
|
Xu ZS, Feng K, Xiong AS. CRISPR/Cas9-Mediated Multiply Targeted Mutagenesis in Orange and Purple Carrot Plants. Mol Biotechnol 2019; 61:191-199. [PMID: 30644027 DOI: 10.1007/s12033-018-00150-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) system has been successfully used for precise genome editing in many plant species, including in carrot cells, very recently. However, no stable gene-editing carrot plants were obtained with CRISPR/Cas9 system to date. In the present study, four sgRNA expression cassettes, individually driven by four different promoters and assembled in a single CRISPR/Cas9 vector, were transformed into carrots using Agrobacterium-mediated genetic transformation. Four sites of DcPDS and DcMYB113-like genes were chosen as targets. Knockout of DcPDS in orange carrot 'Kurodagosun' resulted in the generation of albino carrot plantlets, with about 35.3% editing efficiency. DcMYB113-like was also successfully edited in purple carrot 'Deep purple', resulting in purple depigmented carrot plants, with about 36.4% rate of mutation. Sequencing analyses showed that insertion, deletion, and substitution occurred in the target sites, generating heterozygous, biallelic, and chimeric mutations. The highest efficiency of mutagenesis was observed in the sites targeted by AtU6-29-driven sgRNAs in both DcPDS- and DcMYB113-like-knockout T0 plants, which always induced double-strand breaks in the target sites. Our results proved that CRISPR/Cas9 system could be for generating stable gene-editing carrot plants.
Collapse
Affiliation(s)
- Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
18
|
Que F, Khadr A, Wang GL, Li T, Wang YH, Xu ZS, Xiong AS. Exogenous brassinosteroids altered cell length, gibberellin content, and cellulose deposition in promoting carrot petiole elongation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:110-120. [PMID: 30466576 DOI: 10.1016/j.plantsci.2018.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/13/2018] [Accepted: 10/10/2018] [Indexed: 05/21/2023]
Abstract
Brassinosteroid (BR) is a predominant plant hormone in regulating cell elongation and cell size. BR-deficient mutants display reduced plant growth and dwarfism in Arabidopsis and rice. In carrot, BRs promote petiole elongation, but its underlying mechanism involving exogenous BR remains unknown. Here, weighted gene co-expression network analysis and promoter region analysis were adopted to identify the potential genes that interacted with DcBZR1/BES1. Bioactive gibberellin (GA) level and cellulose deposition were also determined in the control and treated plants. Quantitative real-time PCR was performed to detect the expression profiles of GA biosynthesis-related genes, GA signaling genes, and cellulose synthase genes. Bioactive GA level and cellulose deposition were upregulated after the petioles were treated with 24-epibrassinolide (24-EBL). The most putative DcBZR1/BES1 genes were clustered in yellow module. The expression level of DCAR_009411 (a GA5-like gene) was significantly induced after 3 h of treatment. The expression levels of DCAR_019754 and DCAR_013973 (CESA-like genes) were also significantly induced after 3 h of 24-EBL treatment. Our results suggested that the effect of BR on carrot petiole growth was quick. These results also provided potential insights into the mechanism by which BRs modulate GA and cellulose synthesis to promote cell elongation in carrot petioles.
Collapse
Affiliation(s)
- Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ahmed Khadr
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Faculty of Agriculture, Damanhour University, Egypt
| | - Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|