1
|
Aldehoff AS, Türkowsky D, Lohmann P, Homsi MN, Rolle-Kampczyk U, Ueberham E, Lehmann J, Bergen MV, Jehmlich N, Haange SB. Revealing novel protein interaction partners of glyphosate in Escherichia coli. ENVIRONMENT INTERNATIONAL 2025; 195:109243. [PMID: 39733591 DOI: 10.1016/j.envint.2024.109243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/20/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Despite all debates about its safe use, glyphosate remains the most widely applied active ingredient in herbicide products, with renewed approval in the European Union until 2033. Non-target organisms are commonly exposed to glyphosate as a matter of its mode of application, with its broader environmental and biological impacts remaining under investigation. Glyphosate displays structural similarity to phosphoenolpyruvate (PEP), thereby competitively inhibiting the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), crucial for the synthesis of aromatic amino acids in plants, fungi, bacteria, and archaea. Most microbes, including the gut bacterium Escherichia coli (E. coli), possess a glyphosate-sensitive class I EPSPS, making them vulnerable to glyphosate's effects. Yet, little is known about glyphosate's interactions with other bacterial proteins or its broader modes of action at the proteome level. Here, we employed a quantitative proteomics and thermal proteome profiling (TPP) approach to identify novel protein binding partners of glyphosate in the E. coli proteome. Glyphosate exposure significantly altered amino acid synthesizing pathways. The abundance of shikimate pathway proteins was increased, suggesting a compensatory mechanism. Extracellular riboflavin concentrations were elevated upon glyphosate exposure, while intracellular levels remained stable. Beyond the target enzyme EPSPS, thermal proteome profiling indicated an effect of glyphosate on the thermal stability of certain proteins, including AroH and ProA, indicating interactions. Similar to the competitive binding between PEP and glyphosate at EPSPS, one reason for the interaction of AroH and ProA with the herbicide could be a high structural similarity between their substrates and glyphosate. Overall, glyphosate induced metabolic disturbances in E. coli, extending beyond its primary target, thereby providing new insights into glyphosate's broader impact on microbial systems.
Collapse
Affiliation(s)
- Alix Sarah Aldehoff
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Dominique Türkowsky
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Patrick Lohmann
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Masun Nabhan Homsi
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Elke Ueberham
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Department Preclinical Development and Validation, Leipzig, Germany
| | - Jörg Lehmann
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Department Preclinical Development and Validation, Leipzig, Germany; Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Leipzig-Frankfurt-Hannover, Germany
| | - Martin von Bergen
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany; Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany.
| | - Sven-Bastiaan Haange
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| |
Collapse
|
2
|
Ospino K, Spira B. Glyphosate affects persistence and tolerance but not antibiotic resistance. BMC Microbiol 2023; 23:61. [PMID: 36882692 PMCID: PMC9990207 DOI: 10.1186/s12866-023-02804-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Glyphosate is a herbicide widely used in food production that blocks the synthesis of aromatic amino acids in plants and in microorganisms and also induces the accumulation of the alarmone (p)ppGpp. The purpose of this study was to investigate whether glyphosate affects the resistance, tolerance or persistence of bacteria towards three different classes of antibiotics and the possible role of (p)ppGpp in this activity. Glyphosate did not affect the minimum inhibitory concentration of the tested antibiotics, but enhanced bacterial tolerance and/or persistence towards them. The upshift in ciprofloxacin and kanamycin tolerance was partially dependent on the presence of relA that promotes (p)ppGpp accumulation in response to glyphosate. Conversely, the strong increase in ampicillin tolerance caused by glyphosate was independent of relA. We conclude that by inducing aromatic amino acid starvation glyphosate contributes to the temporary increase in E. coli tolerance or persistence, but does not affect antibiotic resistance.
Collapse
Affiliation(s)
- Katia Ospino
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Beny Spira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Guo J, Song X, Li R, Zhang Q, Zheng S, Li Q, Tao B. Isolation of a degrading strain of Fusarium verticillioides and bioremediation of glyphosate residue. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 182:105031. [PMID: 35249652 DOI: 10.1016/j.pestbp.2021.105031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Glyphosate is a broad-spectrum and nonselective organophosphorus herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), an enzyme in the shikimate pathway in plants. A glyphosate-resistant fungus identified as Fusarium verticillioides was screened from soil subjected to long-term glyphosate application, and this fungus could grow in inorganic salt medium containing 90 mmol/L glyphosate. The optimum culture conditions identified via the response surface curve method were 28 °C and pH 7.0. The target gene epsps was cloned in this study, and the open reading frame contained 1170 nucleotides and putatively encoded 389 amino acid residues. Phylogenetic analysis showed that this gene belonged to class I, genes naturally sensitive to glyphosate. q-PCR confirmed that the relative expression level of the epsps gene was low, and no significant difference in expression was observed among different glyphosate concentrations at 12 h or 48 h. On day 28, the degradation by Fusarium verticillioides C-2 of sterilized soil and unsterilized soil supplemented with 60 mg/kg glyphosate reached 72.17% and 89.07%, respectively, and a significant difference was observed between the treatments with and without the glyphosate-degrading strain. The recovery of soil dehydrogenase activity after the addition of Fusarium verticillioides was significantly higher than that in the absence of the degrading fungus on the 28th day. The results showed that C-2 is a highly effective glyphosate-degrading strain with bioremediation potential for glyphosate-contaminated soil.
Collapse
Affiliation(s)
- Jing Guo
- College of Agronomy, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Xiuli Song
- Lingnan Normal University, ZhanJiang 524048, Guang Dong, PR China
| | - Rongxing Li
- College of Agronomy, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Qi Zhang
- College of Agronomy, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Shengwei Zheng
- College of Agronomy, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Qiucheng Li
- College of Agronomy, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Bo Tao
- College of Agronomy, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| |
Collapse
|
4
|
Guo J, Song X, Zheng C, Sun S, Zhuang B, Tao B. Transcriptome analysis and identification of candidate genes involved in glyphosate resistance in the fungus Fusarium verticillioides. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:658-669. [PMID: 34218722 DOI: 10.1080/03601234.2021.1936990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glyphosate is a broad-spectrum herbicide that has been widely used for nonselective weed control in soybean fields. In the present study, RNA-seq of an Fusarium verticillioides isolate exhibiting resistance to 120 mM glyphosate revealed gene expression occurring in the presence of glyphosate and led to the identification and screening of candidate genes. A transcriptome analysis revealed 5,548 and 5,361 differentially expressed genes (DEGs) in the glyphosate resistant (GR) Fusarium verticillioides isolate treated with 45 and 90 mM glyphosate, respectively. The gene ontology (GO) pathways associated with these differentially expressed genes primarily included metabolic process, amine metabolic process, cellular aromatic compound metabolism and stress response. The primary Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways included biosynthesis of secondary metabolites, carbon metabolism, glycolysis/gluconeogenesis, and nitrogen metabolism. The glyphosate degradation-related gene fv04, which belongs to the 3-isopropylalate dehydratase of the aconitase superfamily, was cloned to generate the prokaryotic expression vector pET-29b-fv04, which could be stably expressed in E. coli and promote the degradation of 52.3% of 500 mg/L glyphosate in 72 h. The results of the present study provide new ideas and insights for the acquisition of glyphosate resistance resources.
Collapse
Affiliation(s)
- Jing Guo
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Xiuli Song
- Lingnan Normal University, Zhan Jiang, Guang Dong, PR China
| | - Caiyue Zheng
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Shiqi Sun
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Baolong Zhuang
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Bo Tao
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| |
Collapse
|
5
|
Borges MPDS, Silva DV, Souza MDF, Silva TS, Teófilo TMDS, da Silva CC, Pavão QS, Passos ABRDJ, Dos Santos JB. Glyphosate effects on tree species natives from Cerrado and Caatinga Brazilian biome: Assessing sensitivity to two ways of contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144113. [PMID: 33486169 DOI: 10.1016/j.scitotenv.2020.144113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Glyphosate is applied for dissection in no-till and post-emergence management in transgenic crops in agricultural fields near the Cerrado and Caatinga biomes. These biomes together represent 33.8% of the Brazilian territory, contributing to the maintenance of great world diversity in flora and fauna. Despite actions to protect them, the proximity with agricultural areas and intense use of glyphosate puts at risk the preservation of native vegetation due to the contamination via herbicide transport processes. Our objectives were: i) to determine the sensitivity of native species from the Cerrado and Caatinga to glyphosate contamination via drift and groundwater; ii) evaluate the level of sensitivity to glyphosate among the different organs of plants. The highest intoxications (upper 80%) were observed for Bauhinia cheilantha, Mimosa caesalpiniaefolia, Mimosa tenuiflora and Amburana cearensis due to drift simullation. The species with 90% of total dry matter reduction were Bauhinia cheilantha, Enterolobium contortisiliquum, Mimosa caesalpiniaefolia, Mimosa tenuiflora, Tabebuia aurea. B. cheilantha and M. tenuiflora are most affected by exposure to glyphosate drift, with 50% of total dry matter reduction when exposed to doses below 444,0 g ha-1. Leaf growth is more sensitive to glyphosate for drift exposure for most species. Hymenaea courbaril is an exception, with greater sensitivity to root growth (50% dry matter reduction at doses below 666,0 g ha-1). B. cheilantha is the species most sensitive to drift exposure; however, it showed complete tolerance to contamination in subsurface waters. Other species such as Anadenanthera macrocarpa and M. caesalpiniifolia are also sensitive to drift, but without reach 90% of total dry matter reduction. A. macrocarpa, M. caesalpiniifolia and T. aurea were tolerant to contamination by subsurface water. The differential tolerance of trees confirms glyphosate's potential as a species selection agent in the Cerrado and Caatinga biomes.
Collapse
Affiliation(s)
- Maiara Pinheiro da Silva Borges
- Universidade Federal Rural do Semi-Árido, Agricultural Science Center, Av. Francisco Mota, 572, Costa e Silva, CEP 59625-900 Mossoró, RN, Brazil.
| | - Daniel Valadão Silva
- Universidade Federal Rural do Semi-Árido, Agricultural Science Center, Av. Francisco Mota, 572, Costa e Silva, CEP 59625-900 Mossoró, RN, Brazil
| | - Matheus de Freitas Souza
- Universidade Federal Rural do Semi-Árido, Agricultural Science Center, Av. Francisco Mota, 572, Costa e Silva, CEP 59625-900 Mossoró, RN, Brazil
| | - Tatiane Severo Silva
- Universidade Federal Rural do Semi-Árido, Agricultural Science Center, Av. Francisco Mota, 572, Costa e Silva, CEP 59625-900 Mossoró, RN, Brazil
| | - Taliane Maria da Silva Teófilo
- Universidade Federal Rural do Semi-Árido, Agricultural Science Center, Av. Francisco Mota, 572, Costa e Silva, CEP 59625-900 Mossoró, RN, Brazil
| | - Cydianne Cavalcante da Silva
- Universidade Federal Rural do Semi-Árido, Agricultural Science Center, Av. Francisco Mota, 572, Costa e Silva, CEP 59625-900 Mossoró, RN, Brazil
| | - Quésia Sá Pavão
- Universidade Federal Rural do Semi-Árido, Agricultural Science Center, Av. Francisco Mota, 572, Costa e Silva, CEP 59625-900 Mossoró, RN, Brazil
| | - Ana Beatriz Rocha de Jesus Passos
- Universidade Federal Rural do Semi-Árido, Agricultural Science Center, Av. Francisco Mota, 572, Costa e Silva, CEP 59625-900 Mossoró, RN, Brazil
| | - José Barbosa Dos Santos
- Universidade Federal dos Vales do Jequitinhonha e Mucuri - Campus JK, Agricultural Science Center, Rodovia MGT 367, Km 583, n° 5000, Alto da Jacuba, CEP: 39100-000 Diamantina, MG, Brazil
| |
Collapse
|
6
|
Spira B, Ospino K. Diversity in E. coli (p)ppGpp Levels and Its Consequences. Front Microbiol 2020; 11:1759. [PMID: 32903406 PMCID: PMC7434938 DOI: 10.3389/fmicb.2020.01759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022] Open
Abstract
(p)ppGpp is at the core of global bacterial regulation as it controls growth, the most important aspect of life. It would therefore be expected that at least across a species the intrinsic (basal) levels of (p)ppGpp would be reasonably constant. On the other hand, the historical contingency driven by the selective pressures on bacterial populations vary widely resulting in broad genetic polymorphism. Given that (p)ppGpp controls the expression of many genes including those involved in the bacterial response to environmental challenges, it is not surprising that the intrinsic levels of (p)ppGpp would also vary considerably. In fact, null mutations or less severe genetic polymorphisms in genes associated with (p)ppGpp synthesis and hydrolysis are common. Such variation can be observed in laboratory strains, in natural isolates as well as in evolution experiments. High (p)ppGpp levels result in low growth rate and high tolerance to environmental stresses. Other aspects such as virulence and antimicrobial resistance are also influenced by the intrinsic levels of (p)ppGpp. A case in point is the production of Shiga toxin by certain E. coli strains which is inversely correlated to (p)ppGpp basal level. Conversely, (p)ppGpp concentration is positively correlated to increased tolerance to different antibiotics such as β-lactams, vancomycin, and others. Here we review the variations in intrinsic (p)ppGpp levels and its consequences across the E. coli species.
Collapse
Affiliation(s)
- Beny Spira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Katia Ospino
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Stasi R, Neves HI, Spira B. Phosphate uptake by the phosphonate transport system PhnCDE. BMC Microbiol 2019; 19:79. [PMID: 30991951 PMCID: PMC6469041 DOI: 10.1186/s12866-019-1445-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/26/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Phosphate is a fundamental nutrient for all creatures. It is thus not surprising that a single bacterium carries different transport systems for this molecule, each usually operating under different environmental conditions. The phosphonate transport system of E. coli K-12 is cryptic due to an 8 bp insertion in the phnE ORF. RESULTS Here we report that an E. coli K-12 strain carrying the triple knockout ΔpitA Δpst Δugp reverted the phnE mutation when plated on complex medium containing phosphate as the main phosphorus source. It is also shown that PhnCDE takes up orthophosphate with transport kinetics compatible with that of the canonical transport system PitA and that Pi-uptake via PhnCDE is sufficient to enable bacterial growth. Ugp, a glycerol phosphate transporter, is unable to take up phosphate. CONCLUSIONS The phosphonate transport system, which is normally cryptic in E. coli laboratory strains is activated upon selection in rich medium and takes up orthophosphate in the absence of the two canonical phosphate-uptake systems. Based on these findings, the PhnCDE system can be considered a genuine phosphate transport system.
Collapse
Affiliation(s)
- Raffaele Stasi
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo-SP, Brazil
| | - Henrique Iglesias Neves
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo-SP, Brazil
| | - Beny Spira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo-SP, Brazil.
| |
Collapse
|