1
|
Song X, Ge L, Wang K, Wang N, Wang X. Transcriptome and Small-RNA Sequencing Reveals the Response Mechanism of Brassica napus to Waterlogging Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:1340. [PMID: 40364369 PMCID: PMC12073736 DOI: 10.3390/plants14091340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025]
Abstract
Rapeseed (Brassica napus) is highly susceptible to waterlogging during the seedling stage; however, most of the studies on its gene expression under waterlogging stress have focused on transcriptional regulation, with little work conducted on post-transcriptional regulation to date. To elucidate this regulatory network, comparative transcriptome and miRNA analyses in the leaves and roots of rapeseed Zhongshuang11 (ZS11) were performed. Differentially expressed genes (DEGs) and miRNAs (DEmiRNAs) were identified by comparing the normal planting condition (the control group, CKT) with waterlogging treatment (WLT). DEGs identified in leaves and roots were enriched in different metabolic pathways, indicating their distinct mechanisms in response to waterlogging stress. In total, 68 and 82 DEmiRNAs were identified in leaves and roots, respectively, predicted to target 543 and 2122 DEGs in each tissue. Among these, 12 and 9 transcription factors (TFs) were exclusively targeted by DEmiRNAs in leaves and roots, respectively. Notably, six upregulated TFs in leaves were associated with the ethylene response and were predicted targets of bna-miR172 family members, and four TFs in roots participated in the ethylene response pathway. Furthermore, bna-miR169, along with novel-miR-23108 and novel-miR-42624 family members, played crucial roles in waterlogging response of rapeseed. Combining with the determination results of ethylene and jasmonic acid content, a preliminary model of miRNA-mediated gene expression regulation in rapeseed response to waterlogging stress was developed. These findings advance our understanding of transcriptional regulation under waterlogging and lay a theoretical foundation for improving rapeseed waterlogging tolerance.
Collapse
Affiliation(s)
- Xianshuai Song
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China (K.W.)
| | - Lan Ge
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China (K.W.)
| | - Kaifeng Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China (K.W.)
| | - Nian Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China (K.W.)
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China (K.W.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
2
|
Estrada R, Rodriguez L, Romero Y, Arteaga L, Ruelas-Calloapaza D, Oha-Humpiri F, Flores N, Coila P, Arbizu CI. Profiling of Known and Novel microRNAs in an Oleaginous Crop Native to the Amazon Basin, Sacha Inchi ( Plukenetia volubilis), Through smallRNA-Seq. Genes (Basel) 2025; 16:417. [PMID: 40282379 PMCID: PMC12026887 DOI: 10.3390/genes16040417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play crucial roles in regulating tissue-specific gene expression and plant development. This study explores the identification and functional characterization of miRNAs in Plukenetia volubilis (sacha inchi), an economically and nutritionally significant crop native to the Amazon basin, across three organs: root, stem, and leaf. METHODS Small RNA libraries were sequenced on the Illumina Novaseq 6000 platform, yielding high-quality reads that facilitated the discovery of known and novel miRNAs using miRDeep-P. RESULTS A total of 277 miRNAs were identified, comprising 71 conserved and 206 novel miRNAs, across root, stem, and leaf tissues. In addition, differential expression analysis using DESeq2 identified distinct miRNAs exhibiting tissue-specific regulation. Notably, novel miRNAs like novel_1, novel_88, and novel_189 showed significant roles in processes such as auxin signaling, lignin biosynthesis, and stress response. Functional enrichment analysis of miRNA target genes revealed pathways related to hormonal regulation, structural reinforcement, and environmental adaptation, highlighting tissue-specific functions. The Principal Component Analysis and PERMANOVA confirmed clear segregation of miRNA expression profiles among tissues, underlining organ-specific regulation. Differential expression patterns emphasized unique regulatory roles in each organ: roots prioritized stress response and nutrient uptake, leaves focused on photosynthesis and UV protection, and stems contributed to structural integrity and nutrient transport, suggesting evolutionary adaptations in P. volubilis. CONCLUSIONS This study identified novel miRNA-mediated networks that regulate developmental and adaptive processes in P. volubilis, underscoring its molecular adaptations for resilience and productivity. By characterizing both conserved and novel miRNAs, the findings lay a foundation for genetic improvement and molecular breeding strategies aimed at enhancing agronomic traits, stress tolerance, and the production of bioactive compounds.
Collapse
Affiliation(s)
- Richard Estrada
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (L.R.); (Y.R.); (L.A.)
- Instituto de Investigación en Bioinformática y Bioestadística (BIOINFO), Lima 15024, Peru
| | - Lila Rodriguez
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (L.R.); (Y.R.); (L.A.)
- Instituto de Investigación en Bioinformática y Bioestadística (BIOINFO), Lima 15024, Peru
| | - Yolanda Romero
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (L.R.); (Y.R.); (L.A.)
- Instituto de Investigación en Bioinformática y Bioestadística (BIOINFO), Lima 15024, Peru
| | - Linda Arteaga
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (L.R.); (Y.R.); (L.A.)
- Instituto de Investigación en Bioinformática y Bioestadística (BIOINFO), Lima 15024, Peru
| | - Domingo Ruelas-Calloapaza
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano de Puno, Puno 21001, Peru; (D.R.-C.); (N.F.); (P.C.)
| | - Filiberto Oha-Humpiri
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Micaela Bastidas de Apurímac, Abancay 03001, Peru;
| | - Nils Flores
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano de Puno, Puno 21001, Peru; (D.R.-C.); (N.F.); (P.C.)
| | - Pedro Coila
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano de Puno, Puno 21001, Peru; (D.R.-C.); (N.F.); (P.C.)
| | - Carlos I. Arbizu
- Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas 01001, Peru
- Centro de Investigación en Germoplasma Vegetal y Mejoramiento Genético de Plantas (CIGEMP), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas 01001, Peru
| |
Collapse
|
3
|
Zhang Y, Zhen S, Zhang C, Zhang J, Shangguan X, Lu J, Wu Q, Dirk LMA, Downie AB, Wang G, Zhao T, Fu J. Natural variation of CT2 affects the embryo/kernel weight ratio in maize. J Genet Genomics 2025; 52:432-440. [PMID: 39343093 DOI: 10.1016/j.jgg.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/22/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Embryo size is a critical trait determining not only grain yield but also the nutrition of the maize kernel. Up to the present, only a few genes have been characterized affecting the maize embryo/kernel ratio. Here, we identify 63 genes significantly associated with maize embryo/kernel weight ratio using a genome-wide association study (GWAS). The peak GWAS signal shows that the natural variation in Zea mays COMPACT PLANT2 (CT2), encoding the heterotrimeric G protein α subunit, is significantly associated with the Embryo/Kernel Weight Ratio (EKWR). Further analyses show that a missense mutation of CT2 increases its enzyme activity and associates with EKWR. The function of CT2 on affecting embryo/kernel weight ratio is further validated by the characterization of two ct2 mutants, for which EKWR is significantly decreased. Subsequently, the key downstream genes of CT2 are identified by combining the differential expression analysis of the ct2 mutant and quantitative trait transcript analysis in the GWAS population. In addition, the allele frequency spectrum shows that CT2 was under selective pressure during maize domestication. This study provides important genetic insights into the natural variation of maize embryo/kernel weight ratio, which could be applied in future maize breeding programs to improve grain yield and nutritional content.
Collapse
Affiliation(s)
- Yumin Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sihan Zhen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Seed Science and Technology Research Center, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; School of Management Science and Real Estate, Chongqing University, Chonging 400045, China
| | - Chunxia Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoqing Shangguan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiawen Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingyu Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lynnette M A Dirk
- Department of Horticulture, Seed Biology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - A Bruce Downie
- Department of Horticulture, Seed Biology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Guoying Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianyong Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Junjie Fu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
4
|
Yadav P, Priyam P, Yadav G, Yadav A, Jain R, Sunderam S, Sharma MK, Kaur I, Dhaka N. Identification of lncRNAs regulating seed traits in Brassica juncea and development of a comprehensive seed omics database. Funct Integr Genomics 2024; 24:189. [PMID: 39404887 DOI: 10.1007/s10142-024-01470-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/05/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
Brassica juncea is a crucial oilseed crop, and its seeds possess high economic value as they are a source of edible oil. In order to understand the role of long non coding RNAs (lncRNAs) in the regulation of seed development, we carried out computational analysis using transcriptome data of developing seeds of two contrasting genotypes of B. juncea, Pusajaikisan (PJK) and Early Heera 2 (EH2). The seeds were sampled at three stages, 15, 30, and 45 days after pollination. We identified 1,539 lncRNAs, of which 809 were differentially expressed. We also carried out extensive characterization and functional analysis of seed lncRNAome. The expression patterns were analysed using k-means clustering, and the targets were analysed using pathway, transcription factor, and GO enrichment, as well as ortholog information. We shortlisted a total of 25 robust lncRNA candidates for seed size, oil content, and seed coat color. We also identified 4 lncRNAs as putative precursors of miRNAs regulating seed development. Moreover, a total of 28 miRNA-lncRNA-mRNA regulatory networks regulating seed traits were identified. We also developed a comprehensive database, (BrassIca juncea database or "BIJ" ( https://bij.cuh.ac.in/ ), which provides seed omics as well as other functional genomics and genetics data in an easily accessible form. These candidate lncRNAs are suitable for including in crop improvement programs through molecular breeding, as well as for future validations through genome editing. Together, the knowledge of these candidate lncRNAs and availability of BIJ database shall leverage the crop improvement efforts in B. juncea.
Collapse
Affiliation(s)
- Pinky Yadav
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Prachi Priyam
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Garima Yadav
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Abhinandan Yadav
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Rubi Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Satyam Sunderam
- Amity Institute of Information Technology, Noida, Uttar Pradesh, India
| | | | - Inderjeet Kaur
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India.
| |
Collapse
|
5
|
Long Y, Wang C, Liu C, Li H, Pu A, Dong Z, Wei X, Wan X. Molecular mechanisms controlling grain size and weight and their biotechnological breeding applications in maize and other cereal crops. J Adv Res 2024; 62:27-46. [PMID: 37739122 PMCID: PMC11331183 DOI: 10.1016/j.jare.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Cereal crops are a primary energy source for humans. Grain size and weight affect both evolutionary fitness and grain yield of cereals. Although studies on gene mining and molecular mechanisms controlling grain size and weight are constantly emerging in cereal crops, only a few systematic reviews on the underlying molecular mechanisms and their breeding applications are available so far. AIM OF REVIEW This review provides a general state-of-the-art overview of molecular mechanisms and targeted strategies for improving grain size and weight of cereals as well as insights for future yield-improving biotechnology-assisted breeding. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, the evolution of research on grain size and weight over the last 20 years is traced based on a bibliometric analysis of 1158 publications and the main signaling pathways and transcriptional factors involved are summarized. In addition, the roles of post-transcriptional regulation and photosynthetic product accumulation affecting grain size and weight in maize and rice are outlined. State-of-the-art strategies for discovering novel genes related to grain size and weight in maize and other cereal crops as well as advanced breeding biotechnology strategies being used for improving yield including marker-assisted selection, genomic selection, transgenic breeding, and genome editing are also discussed.
Collapse
Affiliation(s)
- Yan Long
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Cheng Wang
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Chang Liu
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Huangai Li
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Aqing Pu
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Zhenying Dong
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xun Wei
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| |
Collapse
|
6
|
Chakraborty A, Singh B, Pandey V, Parida SK, Bhatia S. MicroRNA164e suppresses NAC100 transcription factor-mediated synthesis of seed storage proteins in chickpea. THE NEW PHYTOLOGIST 2024; 242:2652-2668. [PMID: 38649769 DOI: 10.1111/nph.19770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
Development of protein-enriched chickpea varieties necessitates an understanding of specific genes and key regulatory circuits that govern the synthesis of seed storage proteins (SSPs). Here, we demonstrated the novel involvement of Ca-miR164e-CaNAC100 in regulating SSP synthesis in chickpea. Ca-miRNA164e was significantly decreased during seed maturation, especially in high-protein accessions. The miRNA was found to directly target the transactivation conferring C-terminal region of a nuclear-localized transcription factor, CaNAC100 as revealed using RNA ligase-mediated-rapid amplification of cDNA ends and target mimic assays. The functional role of CaNAC100 was demonstrated through seed-specific overexpression (NACOE) resulting in significantly augmented seed protein content (SPC) consequential to increased SSP transcription. Further, NACOE lines displayed conspicuously enhanced seed weight but reduced numbers and yield. Conversely, a downregulation of CaNAC100 and SSP transcripts was evident in seed-specific overexpression lines of Ca-miR164e that culminated in significantly lowered SPC. CaNAC100 was additionally demonstrated to transactivate the SSP-encoding genes by directly binding to their promoters as demonstrated using electrophoretic mobility shift and dual-luciferase reporter assays. Taken together, our study for the first time established a distinct role of CaNAC100 in positively influencing SSP synthesis and its critical regulation by CamiR164e, thereby serving as an understanding that can be utilized for developing SPC-rich chickpea varieties.
Collapse
Affiliation(s)
- Anirban Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Baljinder Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Vimal Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| |
Collapse
|
7
|
Zhang YC, Yuan C, Chen YQ. Noncoding RNAs and their roles in regulating the agronomic traits of crops. FUNDAMENTAL RESEARCH 2023; 3:718-726. [PMID: 38933294 PMCID: PMC11197796 DOI: 10.1016/j.fmre.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Molecular breeding is one of the most effective methods for improving the performance of crops. Understanding the genome features of crops, especially the physiological functions of individual genes, is of great importance to molecular breeding. Evidence has shown that genomes of both animals and plants transcribe numerous non-coding RNAs, which are involved in almost every aspect of development. In crops, an increasing number of studies have proven that non-coding RNAs are new genetic resources for regulating crop traits. In this review, we summarize the current knowledge of non-coding RNAs, which are potential crop trait regulators, and focus on the functions of long non-coding RNAs (lncRNAs) in determining crop grain yield, phased small-interfering RNAs (phasiRNAs) in regulating fertility, small interfering RNAs (siRNAs) and microRNAs (miRNAs) in facilitating plant immune response and disease resistance, and miRNAs mediating nutrient and metal stress. Finally, we also discuss the next-generation method for ncRNA application in crop domestication and breeding.
Collapse
Affiliation(s)
- Yu-Chan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chao Yuan
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yue-Qin Chen
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Wang C, Li H, Long Y, Dong Z, Wang J, Liu C, Wei X, Wan X. A Systemic Investigation of Genetic Architecture and Gene Resources Controlling Kernel Size-Related Traits in Maize. Int J Mol Sci 2023; 24:1025. [PMID: 36674545 PMCID: PMC9865405 DOI: 10.3390/ijms24021025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Grain yield is the most critical and complex quantitative trait in maize. Kernel length (KL), kernel width (KW), kernel thickness (KT) and hundred-kernel weight (HKW) associated with kernel size are essential components of yield-related traits in maize. With the extensive use of quantitative trait locus (QTL) mapping and genome-wide association study (GWAS) analyses, thousands of QTLs and quantitative trait nucleotides (QTNs) have been discovered for controlling these traits. However, only some of them have been cloned and successfully utilized in breeding programs. In this study, we exhaustively collected reported genes, QTLs and QTNs associated with the four traits, performed cluster identification of QTLs and QTNs, then combined QTL and QTN clusters to detect consensus hotspot regions. In total, 31 hotspots were identified for kernel size-related traits. Their candidate genes were predicted to be related to well-known pathways regulating the kernel developmental process. The identified hotspots can be further explored for fine mapping and candidate gene validation. Finally, we provided a strategy for high yield and quality maize. This study will not only facilitate causal genes cloning, but also guide the breeding practice for maize.
Collapse
Affiliation(s)
- Cheng Wang
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Huangai Li
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Yan Long
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Zhenying Dong
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Jianhui Wang
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Chang Liu
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xun Wei
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xiangyuan Wan
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| |
Collapse
|
9
|
Fan X, Li H, Guo Y, Sun H, Wang S, Qi Q, Jiang X, Wang Y, Xu X, Qiu C, Li W, Han Z. Integrated multi-omics analysis uncovers roles of mdm-miR164b-MdORE1 in strigolactone-mediated inhibition of adventitious root formation in apple. PLANT, CELL & ENVIRONMENT 2022; 45:3582-3603. [PMID: 36000454 DOI: 10.1111/pce.14422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/01/2022] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
Apple is one of the most important fruit crops in temperate regions and largely relies on cutting propagation. Adventitious root formation is crucial for the success of cutting propagation. Strigolactones have been reported to function in rooting of woody plants. In this study, we determined that strigolactones have inhibitory effects on adventitious root formation in apple. Transcriptome analysis identified 12 051 differentially expressed genes over the course of adventitious root initiation, with functions related to organogenesis, cell wall biogenesis or plant development. Further analysis indicated that strigolactones might inhibit adventitious root formation through repressing two core hub genes, MdLAC3 and MdORE1. Combining small RNA and degradome sequencing, as well as dual-luciferase sensor assays, we identified and validated three negatively correlated miRNA-mRNA pairs, including mdm-miR397-MdLAC3 and mdm-miR164a/b-MdORE1. Overexpression of mdm-miR164b and silencing MdORE1 exhibited enhanced adventitious root formation in tobacco and apple, respectively. Finally, we verified the role of mdm-miR164b-MdORE1 in strigolactone-mediated repression of rooting ability. Overall, the identified comprehensive regulatory network in apple not only provides insight into strigolactone-mediated adventitious root formation in other woody plants, but also points to a potential strategy for genetic improvement of rooting capacity in woody plants.
Collapse
Affiliation(s)
- Xingqiang Fan
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Hui Li
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Yushuang Guo
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Haochen Sun
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Shiyao Wang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Qi Qi
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiangning Jiang
- National Engineering Laboratory for Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yi Wang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Xuefeng Xu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Changpeng Qiu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Wei Li
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Zhenhai Han
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Mining the Roles of Cucumber DUF966 Genes in Fruit Development and Stress Response. PLANTS 2022; 11:plants11192497. [PMID: 36235363 PMCID: PMC9572245 DOI: 10.3390/plants11192497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
DUF966 genes are widely found in monocotyledons, dicotyledons, mosses, and other species. Current evidence strongly suggests that they are involved in growth regulation and stress tolerance in crops. However, their functions in cucumbers remain unexplored. Here, cucumber CsDUF966 was systemically identified and characterized using bioinformatics. Eight CsDUF966 genes were identified in the cucumber genome. These were phylogenetically separated into three groups. All CsDUF966 proteins were hydrophilic and localized to the nucleus. Moreover, three acidic and five basic proteins were identified. Evolutionary analysis of DUF966 between cucumber and 33 other Cucurbitaceae species/cultivars revealed that most CsDUF966 genes were conserved, whereas CsDUF966_4.c and CsDUF966_7.c were positively selected among the five cucumber cultivars. Expression profiling analysis showed that CsDUF966 had variable expression patterns, and that miRNA164, miRNA166, and Csa-novel-35 were involved in the post-transcriptional regulation of CsDUF966_4.c and CsDUF966_7.c. The expression of CsDUF966_4.c and CsDUF966_7.c, which were under strong neofunctionalization selection, was strictly regulated in fruit and tissues, including seeds, pericarps, peels, and spines, suggesting that these genes are fruit growth regulators and were strongly selected during the cucumber breeding program. In conclusion, the results reveal the roles of CsDUF966s in regulating cucumber fruit development and lay the foundation for further functional studies.
Collapse
|
11
|
Ma X, Zhao F, Zhou B. The Characters of Non-Coding RNAs and Their Biological Roles in Plant Development and Abiotic Stress Response. Int J Mol Sci 2022; 23:ijms23084124. [PMID: 35456943 PMCID: PMC9032736 DOI: 10.3390/ijms23084124] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023] Open
Abstract
Plant growth and development are greatly affected by the environment. Many genes have been identified to be involved in regulating plant development and adaption of abiotic stress. Apart from protein-coding genes, more and more evidence indicates that non-coding RNAs (ncRNAs), including small RNAs and long ncRNAs (lncRNAs), can target plant developmental and stress-responsive mRNAs, regulatory genes, DNA regulatory regions, and proteins to regulate the transcription of various genes at the transcriptional, posttranscriptional, and epigenetic level. Currently, the molecular regulatory mechanisms of sRNAs and lncRNAs controlling plant development and abiotic response are being deeply explored. In this review, we summarize the recent research progress of small RNAs and lncRNAs in plants, focusing on the signal factors, expression characters, targets functions, and interplay network of ncRNAs and their targets in plant development and abiotic stress responses. The complex molecular regulatory pathways among small RNAs, lncRNAs, and targets in plants are also discussed. Understanding molecular mechanisms and functional implications of ncRNAs in various abiotic stress responses and development will benefit us in regard to the use of ncRNAs as potential character-determining factors in molecular plant breeding.
Collapse
Affiliation(s)
- Xu Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Fei Zhao
- Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
- Correspondence: (F.Z.); (B.Z.); Tel.: +86-0538-8243-965 (F.Z.); +86-0451-8219-1738 (B.Z.)
| | - Bo Zhou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Correspondence: (F.Z.); (B.Z.); Tel.: +86-0538-8243-965 (F.Z.); +86-0451-8219-1738 (B.Z.)
| |
Collapse
|
12
|
Dong Q, Hu B, Zhang C. microRNAs and Their Roles in Plant Development. FRONTIERS IN PLANT SCIENCE 2022; 13:824240. [PMID: 35251094 PMCID: PMC8895298 DOI: 10.3389/fpls.2022.824240] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/27/2022] [Indexed: 05/26/2023]
Abstract
Small RNAs are short non-coding RNAs with a length ranging between 20 and 24 nucleotides. Of these, microRNAs (miRNAs) play a distinct role in plant development. miRNAs control target gene expression at the post-transcriptional level, either through direct cleavage or inhibition of translation. miRNAs participate in nearly all the developmental processes in plants, such as juvenile-to-adult transition, shoot apical meristem development, leaf morphogenesis, floral organ formation, and flowering time determination. This review summarizes the research progress in miRNA-mediated gene regulation and its role in plant development, to provide the basis for further in-depth exploration regarding the function of miRNAs and the elucidation of the molecular mechanism underlying the interaction of miRNAs and other pathways.
Collapse
Affiliation(s)
- Qingkun Dong
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Binbin Hu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cui Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Gupta C, Salgotra RK. Epigenetics and its role in effecting agronomical traits. FRONTIERS IN PLANT SCIENCE 2022; 13:925688. [PMID: 36046583 PMCID: PMC9421166 DOI: 10.3389/fpls.2022.925688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/11/2022] [Indexed: 05/16/2023]
Abstract
Climate-resilient crops with improved adaptation to the changing climate are urgently needed to feed the growing population. Hence, developing high-yielding crop varieties with better agronomic traits is one of the most critical issues in agricultural research. These are vital to enhancing yield as well as resistance to harsh conditions, both of which help farmers over time. The majority of agronomic traits are quantitative and are subject to intricate genetic control, thereby obstructing crop improvement. Plant epibreeding is the utilisation of epigenetic variation for crop development, and has a wide range of applications in the field of crop improvement. Epigenetics refers to changes in gene expression that are heritable and induced by methylation of DNA, post-translational modifications of histones or RNA interference rather than an alteration in the underlying sequence of DNA. The epigenetic modifications influence gene expression by changing the state of chromatin, which underpins plant growth and dictates phenotypic responsiveness for extrinsic and intrinsic inputs. Epigenetic modifications, in addition to DNA sequence variation, improve breeding by giving useful markers. Also, it takes epigenome diversity into account to predict plant performance and increase crop production. In this review, emphasis has been given for summarising the role of epigenetic changes in epibreeding for crop improvement.
Collapse
|
14
|
Hajieghrari B, Farrokhi N. Plant RNA-mediated gene regulatory network. Genomics 2021; 114:409-442. [PMID: 34954000 DOI: 10.1016/j.ygeno.2021.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/21/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
Not all transcribed RNAs are protein-coding RNAs. Many of them are non-protein-coding RNAs in diverse eukaryotes. However, some of them seem to be non-functional and are resulted from spurious transcription. A lot of non-protein-coding transcripts have a significant function in the translation process. Gene expressions depend on complex networks of diverse gene regulatory pathways. Several non-protein-coding RNAs regulate gene expression in a sequence-specific system either at the transcriptional level or post-transcriptional level. They include a significant part of the gene expression regulatory network. RNA-mediated gene regulation machinery is evolutionarily ancient. They well-evolved during the evolutionary time and are becoming much more complex than had been expected. In this review, we are trying to summarizing the current knowledge in the field of RNA-mediated gene silencing.
Collapse
Affiliation(s)
- Behzad Hajieghrari
- Department of Agricultural Biotechnology, College of Agriculture, Jahrom University, Jahrom, Iran.
| | - Naser Farrokhi
- Department of Cell, Molecular Biology Faculty of Life Sciences, Biotechnology, Shahid Beheshti University, G. C Evin, Tehran, Iran.
| |
Collapse
|
15
|
Jafari M, Shiran B, Rabiei G, Ravash R, Sayed Tabatabaei BE, Martínez-Gómez P. Identification and verification of seed development related miRNAs in kernel almond by small RNA sequencing and qPCR. PLoS One 2021; 16:e0260492. [PMID: 34851991 PMCID: PMC8635354 DOI: 10.1371/journal.pone.0260492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022] Open
Abstract
Many studies have investigated the role of miRNAs on the yield of various plants, but so far, no report is available on the identification and role of miRNAs in fruit and seed development of almonds. In this study, preliminary analysis by high-throughput sequencing of short RNAs of kernels from the crosses between almond cultivars 'Sefid' × 'Mamaee' (with small and large kernels, respectively) and 'Sefid' × 'P. orientalis' (with small kernels) showed that the expressions of several miRNAs such as Pdu-miR395a-3p, Pdu-miR8123-5p, Pdu-miR482f, Pdu-miR6285, and Pdu-miR396a were significantly different. These miRNAs targeted genes encoding different proteins such as NYFB-3, SPX1, PGSIP3 (GUX2), GH3.9, and BEN1. The result of RT-qPCR revealed that the expression of these genes showed significant differences between the crosses and developmental stages of the seeds, suggesting that these genes might be involved in controlling kernel size because the presence of these miRNAs had a negative effect on their target genes. Pollen source can influence kernel size by affecting hormonal signaling and metabolic pathways through related miRNAs, a phenomenon known as xenia.
Collapse
Affiliation(s)
- Marjan Jafari
- Department of Horticulture, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Behrouz Shiran
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
- Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Gholamreza Rabiei
- Department of Horticulture, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Roudabeh Ravash
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | | | | |
Collapse
|
16
|
Xu P, Zhu Y, Zhang Y, Jiang J, Yang L, Mu J, Yu X, He Y. Global Analysis of the Genetic Variations in miRNA-Targeted Sites and Their Correlations With Agronomic Traits in Rapeseed. Front Genet 2021; 12:741858. [PMID: 34594365 PMCID: PMC8476912 DOI: 10.3389/fgene.2021.741858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) and their target genes play vital roles in crops. However, the genetic variations in miRNA-targeted sites that affect miRNA cleavage efficiency and their correlations with agronomic traits in crops remain unexplored. On the basis of a genome-wide DNA re-sequencing of 210 elite rapeseed (Brassica napus) accessions, we identified the single nucleotide polymorphisms (SNPs) and insertions/deletions (INDELs) in miRNA-targeted sites complementary to miRNAs. Variant calling revealed 7.14 million SNPs and 2.89 million INDELs throughout the genomes of 210 rapeseed accessions. Furthermore, we detected 330 SNPs and 79 INDELs in 357 miRNA target sites, of which 33.50% were rare variants. We also analyzed the correlation between the genetic variations in miRNA target sites and 12 rapeseed agronomic traits. Eleven SNPs in miRNA target sites were significantly correlated with phenotypes in three consecutive years. More specifically, three correlated SNPs within the miRNA-binding regions of BnSPL9-3, BnSPL13-2, and BnCUC1-2 were in the loci associated with the branch angle, seed weight, and silique number, respectively; expression profiling suggested that the variation at these 3 miRNA target sites significantly affected the expression level of the corresponding target genes. Taken together, the results of this study provide researchers and breeders with a global view of the genetic variations in miRNA-targeted sites in rapeseed and reveal the potential effects of these genetic variations on elite agronomic traits.
Collapse
Affiliation(s)
- Pengfei Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Yantao Zhu
- Hybrid Rape Research Center of Shaanxi Province, Yangling, China
| | - Yanfeng Zhang
- Hybrid Rape Research Center of Shaanxi Province, Yangling, China
| | - Jianxia Jiang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Liyong Yang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jianxin Mu
- Hybrid Rape Research Center of Shaanxi Province, Yangling, China
| | - Xiang Yu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Dhaka N, Sharma R. MicroRNA-mediated regulation of agronomically important seed traits: a treasure trove with shades of grey! Crit Rev Biotechnol 2021; 41:594-608. [PMID: 33682533 DOI: 10.1080/07388551.2021.1873238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Seed development is an intricate process with multiple levels of regulation. MicroRNAs (miRNAs) have emerged as one of the crucial components of molecular networks underlying agronomically important seed traits in diverse plant species. In fact, loss of function of the genes regulating miRNA biogenesis also exhibits defects in seed development. A total of 21 different miRNAs have experimentally been shown to regulate seed size, nutritional content, vigor, and shattering, and have been reviewed here. The mechanism details of the associated regulatory cascades mediated through transcriptional regulators, phytohormones, basic metabolic machinery, and secondary siRNAs are elaborated. Co-localization of miRNAs and their target regions with seed-related QTLs provides new avenues for engineering these traits using conventional breeding programs or biotechnological interventions. While global analysis of miRNAs using small RNA sequencing studies are expanding the repertoire of candidate miRNAs, recent revelations on their inheritance, transport, and mechanism of action would be instrumental in designing better strategies for optimizing agronomically relevant seed traits.
Collapse
Affiliation(s)
- Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Haryana, India.,Crop Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rita Sharma
- Crop Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
18
|
Yu J, Xu F, Wei Z, Zhang X, Chen T, Pu L. Epigenomic landscape and epigenetic regulation in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1467-1489. [PMID: 31965233 DOI: 10.1007/s00122-020-03549-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/14/2020] [Indexed: 05/12/2023]
Abstract
Epigenetic regulation has been implicated in the control of multiple agronomic traits in maize. Here, we review current advances in our understanding of epigenetic regulation, which has great potential for improving agronomic traits and the environmental adaptability of crops. Epigenetic regulation plays vital role in the control of complex agronomic traits. Epigenetic variation could contribute to phenotypic diversity and can be used to improve the quality and productivity of crops. Maize (Zea mays L.), one of the most widely cultivated crops for human food, animal feed, and ethanol biofuel, is a model plant for genetic studies. Recent advances in high-throughput sequencing technology have made possible the study of epigenetic regulation in maize on a genome-wide scale. In this review, we discuss recent epigenetic studies in maize many achieved by Chinese research groups. These studies have explored the roles of DNA methylation, posttranslational modifications of histones, chromatin remodeling, and noncoding RNAs in the regulation of gene expression in plant development and environment response. We also provide our future prospects for manipulating epigenetic regulation to improve crops.
Collapse
Affiliation(s)
- Jia Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ziwei Wei
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xiangxiang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
19
|
Bai JF, Wang YK, Guo LP, Guo XM, Guo HY, Yuan SH, Duan WJ, Liu Z, Zhao CP, Zhang FT, Zhang LP. Genomic identification and characterization of MYC family genes in wheat (Triticum aestivum L.). BMC Genomics 2019; 20:1032. [PMID: 31888472 PMCID: PMC6937671 DOI: 10.1186/s12864-019-6373-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
Background MYC transcriptional factors are members of the bHLH (basic helix-loop-helix) superfamily, and play important roles in plant growth and development. Recent studies have revealed that some MYCs are involved in the crosstalk between Jasmonic acid regulatory pathway and light signaling in Arabidopsis, but such kinds of studies are rare in wheat, especially in photo-thermo-sensitive genic male sterile (PTGMS) wheat line. Results 27 non-redundant MYC gene copies, which belonged to 11 TaMYC genes, were identified in the whole genome of wheat (Chinese Spring). These gene copies were distributed on 13 different chromosomes, respectively. Based on the results of phylogenetic analysis, 27 TaMYC gene copies were clustered into group I, group III, and group IV. The identified TaMYC genes copies contained different numbers of light, stress, and hormone-responsive regulatory elements in their 1500 base pair promoter regions. Besides, we found that TaMYC3 was expressed highly in stem, TaMYC5 and TaMYC9 were expressed specially in glume, and the rest of TaMYC genes were expressed in all tissues (root, stem, leaf, pistil, stamen, and glume) of the PTGMS line BS366. Moreover, we found that TaMYC3, TaMYC7, TaMYC9, and TaMYC10 were highly sensitive to methyl jasmonate (MeJA), and other TaMYC genes responded at different levels. Furthermore, we confirmed the expression profiles of TaMYC family members under different light quality and plant hormone stimuli, and abiotic stresses. Finally, we predicted the wheat microRNAs that could interact with TaMYC family members, and built up a network to show their integrative relationships. Conclusions This study analyzed the size and composition of the MYC gene family in wheat, and investigated stress-responsive and light quality induced expression profiles of each TaMYC gene in the PTGMS wheat line BS366. In conclusion, we obtained lots of important information of TaMYC family, and the results of this study was supposed to contribute novel insights and gene and microRNA resources for wheat breeding, especially for the improvement of PTGMS wheat lines.
Collapse
Affiliation(s)
- Jian-Fang Bai
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Yu-Kun Wang
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Li-Ping Guo
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China.,School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Xiao-Ming Guo
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Hao-Yu Guo
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Shao-Hua Yuan
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Wen-Jing Duan
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Zihan Liu
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Chang-Ping Zhao
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. .,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China.
| | - Feng-Ting Zhang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Li-Ping Zhang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. .,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China.
| |
Collapse
|