1
|
Yan B, Ma A. PriA is involved in Pleurotus ostreatus development and defense against Pseudomonas tolaasii. Antonie Van Leeuwenhoek 2023; 117:1. [PMID: 38095768 DOI: 10.1007/s10482-023-01900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Pleurotus ostreatus is a crucial commercial mushroom widely cultivated for diverse uses. Scientists have worked on breeding disease-resistant and high-yielding varieties to secure food supply. Studies on the molecular genetic mechanism of growth and development can provide valuable information to facilitate crop breeding programs by genetic engineering. Aegerolysins are pore-forming proteins widely distributed in both prokaryotes and eukaryotes, which are reported to have haemolytic activity and be involved in the early stages of fructification. The present study aimed to explore biological function of a differential expressed aegerolysin gene PriA in P. ostreatus. The expression level of PriA gene was higher in primordium and fruiting body than that in mycelium. The PriA expression in overexpression (OE) and RNAi interference (RNAi) strains was detected by qRT-PCR. The RNAi strains grew at slightly slower rates and advanced producing yellow pigments than the wild type, while OE strains showed no prominent phenotypic characteristics. Furthermore, Pseudomonas tolaasii infection assays showed that the PriA OE strains could enhance mycelia and caps resistance to P. tolaasii. These data demonstrate PriA from P. ostreatus play an essential role in mycelial development and increase antagonism against P. tolaasii. Our study provides some reference information on interactions between edible fungi and pathogenic bacteria and offers a new resistance-conferring gene for breeding.
Collapse
Affiliation(s)
- Biyun Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Towards Understanding the Function of Aegerolysins. Toxins (Basel) 2022; 14:toxins14090629. [PMID: 36136567 PMCID: PMC9505663 DOI: 10.3390/toxins14090629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Aegerolysins are remarkable proteins. They are distributed over the tree of life, being relatively widespread in bacteria and fungi, but also present in some insects, plants, protozoa, and viruses. Despite their abundance in cells of certain developmental stages and their presence in secretomes, only a few aegerolysins have been studied in detail. Their function, in particular, is intriguing. Here, we summarize previously published findings on the distribution, molecular interactions, and function of these versatile aegerolysins. They have very diverse protein sequences but a common fold. The machine learning approach of the AlphaFold2 algorithm, which incorporates physical and biological knowledge of protein structures and multisequence alignments, provides us new insights into the aegerolysins and their pore-forming partners, complemented by additional genomic support. We hypothesize that aegerolysins are involved in the mechanisms of competitive exclusion in the niche.
Collapse
|
3
|
Towards a Fungal Science That Is Independent of Researchers’ Gender. J Fungi (Basel) 2022; 8:jof8070675. [PMID: 35887432 PMCID: PMC9321353 DOI: 10.3390/jof8070675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
The main drivers of gender mainstreaming in basic and clinical research appear to be funding agencies and scientific journals. Some funding agencies have already recognized the importance of their actions for the global development of ideas in science, but further targeted efforts are needed. The challenges for women scientists in fungal research appear to be similar to those in other science, technology, engineering, and mathematics disciplines, although the gender gap in mycology publishing appears to be less pronounced; however, women are underrepresented as last (corresponding) authors. Two examples of best practices to bridge the gap have been promoted in the fungal community: “power hour” and a central resource database for women researchers of fungi and oomycetes. A more balanced ratio of women researchers among (plenary) session speakers, (plenary) session chairs, and committee members at the recent fungal genetics conference is an encouraging sign that the gender gap can be closed. The editorial policy of some journals follows the guidance “Sex and Gender Equality in Research,” and other journals should follow, and indicate the gender ratio among authors and reviewers.
Collapse
|
4
|
Abbas A, Mubeen M, Zheng H, Sohail MA, Shakeel Q, Solanki MK, Iftikhar Y, Sharma S, Kashyap BK, Hussain S, del Carmen Zuñiga Romano M, Moya-Elizondo EA, Zhou L. Trichoderma spp. Genes Involved in the Biocontrol Activity Against Rhizoctonia solani. Front Microbiol 2022; 13:884469. [PMID: 35694310 PMCID: PMC9174946 DOI: 10.3389/fmicb.2022.884469] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/27/2022] [Indexed: 11/15/2022] Open
Abstract
Rhizoctonia solani is a pathogen that causes considerable harm to plants worldwide. In the absence of hosts, R. solani survives in the soil by forming sclerotia, and management methods, such as cultivar breeding, crop rotations, and fungicide sprays, are insufficient and/or inefficient in controlling R. solani. One of the most challenging problems facing agriculture in the twenty-first century besides with the impact of global warming. Environmentally friendly techniques of crop production and improved agricultural practices are essential for long-term food security. Trichoderma spp. could serve as an excellent example of a model fungus to enhance crop productivity in a sustainable way. Among biocontrol mechanisms, mycoparasitism, competition, and antibiosis are the fundamental mechanisms by which Trichoderma spp. defend against R. solani, thereby preventing or obstructing its proliferation. Additionally, Trichoderma spp. induce a mixed induced systemic resistance (ISR) or systemic acquired resistance (SAR) in plants against R. solani, known as Trichoderma-ISR. Stimulation of every biocontrol mechanism involves Trichoderma spp. genes responsible for encoding secondary metabolites, siderophores, signaling molecules, enzymes for cell wall degradation, and plant growth regulators. Rhizoctonia solani biological control through genes of Trichoderma spp. is summarized in this paper. It also gives information on the Trichoderma-ISR in plants against R. solani. Nonetheless, fast-paced current research on Trichoderma spp. is required to properly utilize their true potential against diseases caused by R. solani.
Collapse
Affiliation(s)
- Aqleem Abbas
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mustansar Mubeen
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Hongxia Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Muhammad Aamir Sohail
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qaiser Shakeel
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Yasir Iftikhar
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
- *Correspondence: Yasir Iftikhar,
| | - Sagar Sharma
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, India
| | - Sarfaraz Hussain
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Lei Zhou,
| |
Collapse
|
5
|
Kraševec N, Panevska A, Lemež Š, Razinger J, Sepčić K, Anderluh G, Podobnik M. Lipid-Binding Aegerolysin from Biocontrol Fungus Beauveria bassiana. Toxins (Basel) 2021; 13:820. [PMID: 34822604 PMCID: PMC8624791 DOI: 10.3390/toxins13110820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Fungi are the most common pathogens of insects and thus important regulators of their populations. Lipid-binding aegerolysin proteins, which are commonly found in the fungal kingdom, may be involved in several biologically relevant processes including attack and defense against other organisms. Aegerolysins act alone or together with membrane-attack-complex/perforin (MACPF)-like proteins to form transmembrane pores that lead to cell lysis. We performed an in-depth bioinformatics analysis of aegerolysins in entomopathogenic fungi and selected a candidate aegerolysin, beauveriolysin A (BlyA) from Beauveria bassiana. BlyA was expressed as a recombinant protein in Escherichia coli, and purified to further determine its functional and structural properties, including lipid-binding ability. Aegerolysins were found to be encoded in genomes of entomopathogenic fungi, such as Beauveria, Cordyceps, Metarhizium and Ophiocordyceps. Detailed bioinformatics analysis revealed that they are linked to MACPF-like genes in most genomes. We also show that BlyA interacts with an insect-specific membrane lipid. These results were placed in the context of other fungal and bacterial aegerolysins and their partner proteins. We believe that aegerolysins play a role in promoting the entomopathogenic and antagonistic activity of B. bassiana, which is an active ingredient of bioinsecticides.
Collapse
Affiliation(s)
- Nada Kraševec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (Š.L.); (G.A.); (M.P.)
| | - Anastasija Panevska
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.P.); (K.S.)
| | - Špela Lemež
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (Š.L.); (G.A.); (M.P.)
- Biotechnology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Jaka Razinger
- Plant Protection Department, Agricultural Institute of Slovenia, Hacquetova 17, SI-1000 Ljubljana, Slovenia;
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.P.); (K.S.)
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (Š.L.); (G.A.); (M.P.)
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (Š.L.); (G.A.); (M.P.)
| |
Collapse
|
6
|
Kraševec N, Novak M, Barat S, Skočaj M, Sepčić K, Anderluh G. Unconventional Secretion of Nigerolysins A from Aspergillus Species. Microorganisms 2020; 8:E1973. [PMID: 33322461 PMCID: PMC7763983 DOI: 10.3390/microorganisms8121973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 01/05/2023] Open
Abstract
Aegerolysins are small lipid-binding proteins particularly abundant in fungi. Aegerolysins from oyster mushrooms interact with an insect-specific membrane lipid and, together with MACPF proteins produced by the same organism, form pesticidal pore-forming complexes. The specific interaction with the same membrane lipid was recently demonstrated for nigerolysin A2 (NigA2), an aegerolysin from Aspergillus niger. In Aspergillus species, the aegerolysins were frequently found as secreted proteins, indicating their function in fungal defense. Using immunocytochemistry and live-cell imaging we investigated the subcellular localization of the nigerolysins A in A. niger, while their secretion was addressed by secretion prediction and Western blotting. We show that both nigerolysins A are leaderless proteins that reach the cell exterior by an unconventional protein secretion. NigA proteins are evenly distributed in the cytoplasm of fungal hyphae. A detailed bioinformatics analysis of Aspergillus aegerolysins suggests that the same function occurs only in a limited number of aegerolysins. From alignment, analysis of chromosomal loci, orthology, synteny, and phylogeny it follows that the same or a similar function described for pairs of pesticidal proteins of Pleurotus sp. can be expected in species of the subgenus Circumdati, section Nigri, series Nigri, and some other species with adjacent pairs of putative pesticidal proteins.
Collapse
Affiliation(s)
- Nada Kraševec
- National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (S.B.); (G.A.)
| | - Maruša Novak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.N.); (M.S.); (K.S.)
| | - Simona Barat
- National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (S.B.); (G.A.)
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.N.); (M.S.); (K.S.)
| | - Matej Skočaj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.N.); (M.S.); (K.S.)
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.N.); (M.S.); (K.S.)
| | - Gregor Anderluh
- National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (S.B.); (G.A.)
| |
Collapse
|