1
|
Zhernova DA, Pushkova EN, Rozhmina TA, Borkhert EV, Arkhipov AA, Sigova EA, Dvorianinova EM, Dmitriev AA, Melnikova NV. History and prospects of flax genetic markers. FRONTIERS IN PLANT SCIENCE 2025; 15:1495069. [PMID: 39881731 PMCID: PMC11774856 DOI: 10.3389/fpls.2024.1495069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/10/2024] [Indexed: 01/31/2025]
Abstract
Flax (Linum usitatissimum L.) is known as a dual-purpose crop, producing both fiber and oil, which have a wide range of uses. Successful flax breeding requires knowledge on the genetic determinants of flax traits. The former identification of molecular markers for valuable traits used labor-intensive and sometimes poorly reproducible approaches. However, they allowed an assessment of the genetic diversity of flax and its relatives, the construction of linkage maps, and the identification of some markers for important characteristics. The sequencing of flax whole genome triggered the development of genome-wide association studies (GWAS) and quantitative trait locus (QTL) mapping. QTLs and quantitative trait nucleotides (QTNs) were identified for valuable seed- and fiber-related features and for resistance to biotic and abiotic stressors. Cost-effective and accurate analysis of large number of genotypes for multiple markers simultaneously using microarrays or targeted deep sequencing became available, as well as HRM, TaqMan, KASP, and other fluorescence-based high-throughput methods for detecting DNA polymorphisms. However, most DNA markers identified in flax are ambiguously linked to trait expression and are not universally applicable. A major challenge remains the lack of knowledge on functional polymorphisms. To date, only a few are known, mainly mutations in the FAD3 genes responsible for reduced linolenic acid content in linseed oil. For the further development of marker-assisted and genomic selection of flax, it is necessary to analyze exhaustively phenotyped sample sets, to identify DNA polymorphisms that determine valuable traits, and to develop efficient DNA test systems.
Collapse
Affiliation(s)
- Daiana A. Zhernova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Elena V. Borkhert
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A. Arkhipov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Elizaveta A. Sigova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Ekaterina M. Dvorianinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Dariva FD, Arman A, Morales M, Navasca H, Shah R, Atanda SA, Piche L, Worral H, Raymon G, McPhee K, Coyne C, Flores P, Ebert MK, Bandillo N. Identification of novel candidate genes for Ascochyta blight resistance in chickpea. Sci Rep 2024; 14:31415. [PMID: 39733039 PMCID: PMC11682179 DOI: 10.1038/s41598-024-83007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Ascochyta blight, caused by the necrotrophic fungus Ascochyta rabiei, is a major threat to chickpea production worldwide. Resistance genes with broad-spectrum protection against virulent A. rabiei strains are required to secure chickpea yield in the US Northern Great Plains. Here, we performed a genome-wide association (GWA) study to discover novel sources of genetic variation for Ascochyta blight resistance using a worldwide germplasm collection of 219 chickpea lines. Ascochyta blight resistance was evaluated at 3, 9, 11, 13, and 14 days post-inoculation. Multiple GWA models revealed eight quantitative trait nucleotides (QTNs) across timepoints mapped to chromosomes 1, 3, 4, 6, and 7. Of these eight QTNs, only CM001767.1_28299946 on Chr 4 had previously been reported. QTN CM001766.1_36967269 on Chr 3 explained up to 33% of the variation in disease severity and was mapped to an exonic region of the pentatricopeptide repeat-containing protein At4g02750-like gene (LOC101506608). This QTN was confirmed across all models and timepoints. A total of 153 candidate genes, including genes with roles in pathogen recognition and signaling, cell wall biosynthesis, oxidative burst, and regulation of DNA transcription, were observed surrounding QTN-targeted regions. Further gene expression analysis on the QTNs identified in this study will provide insights into defense-related genes that can be further incorporated into breeding of new chickpea cultivars to minimize fungicide applications required for successful chickpea production in the US Northern Great Plains.
Collapse
Affiliation(s)
| | - Amlan Arman
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Mario Morales
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Harry Navasca
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Ramita Shah
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND, 58102, USA
| | | | - Lisa Piche
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Hannah Worral
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Garrett Raymon
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Kevin McPhee
- Department of Plant Science and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Clarice Coyne
- Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| | - Paulo Flores
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND, 58102, USA
| | - Malaika K Ebert
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA.
| | - Nonoy Bandillo
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
3
|
Soto-Cerda BJ, Larama G, Cloutier S, Fofana B, Inostroza-Blancheteau C, Aravena G. The Genetic Dissection of Nitrogen Use-Related Traits in Flax ( Linum usitatissimum L.) at the Seedling Stage through the Integration of Multi-Locus GWAS, RNA-seq and Genomic Selection. Int J Mol Sci 2023; 24:17624. [PMID: 38139451 PMCID: PMC10743809 DOI: 10.3390/ijms242417624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Nitrogen (N), the most important macro-nutrient for plant growth and development, is a key factor that determines crop yield. Yet its excessive applications pollute the environment and are expensive. Hence, studying nitrogen use efficiency (NUE) in crops is fundamental for sustainable agriculture. Here, an association panel consisting of 123 flax accessions was evaluated for 21 NUE-related traits at the seedling stage under optimum N (N+) and N deficiency (N-) treatments to dissect the genetic architecture of NUE-related traits using a multi-omics approach integrating genome-wide association studies (GWAS), transcriptome analysis and genomic selection (GS). Root traits exhibited significant and positive correlations with NUE under N- conditions (r = 0.33 to 0.43, p < 0.05). A total of 359 QTLs were identified, accounting for 0.11% to 23.1% of the phenotypic variation in NUE-related traits. Transcriptomic analysis identified 1034 differentially expressed genes (DEGs) under contrasting N conditions. DEGs involved in N metabolism, root development, amino acid transport and catabolism and others, were found near the QTLs. GS models to predict NUE stress tolerance index (NUE_STI) trait were tested using a random genome-wide SNP dataset and a GWAS-derived QTLs dataset. The latter produced superior prediction accuracy (r = 0.62 to 0.79) compared to the genome-wide SNP marker dataset (r = 0.11) for NUE_STI. Our results provide insights into the QTL architecture of NUE-related traits, identify candidate genes for further studies, and propose genomic breeding tools to achieve superior NUE in flax under low N input.
Collapse
Affiliation(s)
- Braulio J. Soto-Cerda
- Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4781312, Chile; (C.I.-B.); (G.A.)
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4781312, Chile
| | - Giovanni Larama
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile;
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco 4811230, Chile
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada;
| | - Bourlaye Fofana
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE C1A 4N6, Canada
| | - Claudio Inostroza-Blancheteau
- Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4781312, Chile; (C.I.-B.); (G.A.)
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4781312, Chile
| | - Gabriela Aravena
- Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4781312, Chile; (C.I.-B.); (G.A.)
| |
Collapse
|
4
|
Su J, Lu Z, Zeng J, Zhang X, Yang X, Wang S, Zhang F, Jiang J, Chen F. Multi-locus genome-wide association study and genomic prediction for flowering time in chrysanthemum. PLANTA 2023; 259:13. [PMID: 38063918 DOI: 10.1007/s00425-023-04297-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION Multi-locus GWAS detected several known and candidate genes responsible for flowering time in chrysanthemum. The associations could greatly increase the predictive ability of genome selection that accelerates the possible application of GS in chrysanthemum breeding. Timely flowering is critical for successful reproduction and determines the economic value for ornamental plants. To investigate the genetic architecture of flowering time in chrysanthemum, a multi-locus genome-wide association study (GWAS) was performed using a collection of 200 accessions and 330,710 single-nucleotide polymorphisms (SNPs) via 3VmrMLM method. Five flowering time traits including budding (FBD), visible colouring (VC), early opening (EO), full-bloom (OF) and senescing (SF) stages, plus five derived conditional traits were recorded in two environments. Extensive phenotypic variations were observed for these flowering time traits with coefficients of variation ranging from 6.42 to 38.27%, and their broad-sense heritability ranged from 71.47 to 96.78%. GWAS revealed 88 stable quantitative trait nucleotides (QTNs) and 93 QTN-by-environment interactions (QEIs) associated with flowering time traits, accounting for 0.50-8.01% and 0.30-10.42% of the phenotypic variation, respectively. Amongst the genes around these stable QTNs and QEIs, 21 and 10 were homologous to known flowering genes in Arabidopsis; 20 and 11 candidate genes were mined by combining the functional annotation and transcriptomics data, respectively, such as MYB55, FRIGIDA-like, WRKY75 and ANT. Furthermore, genomic selection (GS) was assessed using three models and seven unique marker datasets. We found the prediction accuracy (PA) using significant SNPs identified by GWAS under SVM model exhibited the best performance with PA ranging from 0.90 to 0.95. Our findings provide new insights into the dynamic genetic architecture of flowering time and the identified significant SNPs and candidate genes will accelerate the future molecular improvement of chrysanthemum.
Collapse
Affiliation(s)
- Jiangshuo Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Zhaowen Lu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Junwei Zeng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xuefeng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xiuwei Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Siyue Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Fei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China.
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014, China.
| |
Collapse
|
5
|
Yao J, Jiang S, Li H, Li Q, Qiu Z, Tao A, Fang P, Xu J, Lin L, Qi J, Zhang L. Genome-wide association study reveals loci and candidate genes of flowering time in jute ( Corchorus L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:85. [PMID: 38009098 PMCID: PMC10667207 DOI: 10.1007/s11032-023-01435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Suitable flowering time can improve fiber yield and quality, which is of great significance for jute biological breeding. In this study, 242 jute accessions were planted in Fujian for 2 consecutive years, and 244,593 SNPs distributed in jute genome were used for genome-wide association analysis of flowering time. A total of 19 candidate intervals (P < 0.0001) were identified by using GLM and FaST-LMM and were significantly associated with flowering time, with phenotypic variation explained (PVE) ranging from 5.8 to 18.61%. Six stable intervals that were repeatedly detected in different environments were further identified by the linkage disequilibrium heatmap. The most likely 7 candidate genes involved to flowering time were further predicted according to the gene functional annotations. Notably, functional analysis of the candidate gene CcPRR7 of the major loci qFT-3-1, a key factor in circadian rhythm in the photoperiodic pathway, was evaluated by linkage, haplotype, and transgenic analysis. β-glucuronidase (GUS) and luciferase (LUC) activity assay of the promoters with two specific haplotypes confirmed that the flowering time can be controlled by regulating the expression of CcPRR7. The model of CcPRR7 involved in the photoperiod regulation pathway under different photoperiods was proposed. These findings provide insights into genetic loci and genes for molecular marker-assisted selection in jute and valuable information for genetically engineering PRR7 homologs in plants. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01435-8.
Collapse
Affiliation(s)
- Jiayu Yao
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops / Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Shaolian Jiang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops / Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Hu Li
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops / Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Qin Li
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops / Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhaowei Qiu
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops / Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Aifen Tao
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops / Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Pingping Fang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops / Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jiantang Xu
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops / Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lihui Lin
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops / Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jianmin Qi
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops / Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Liwu Zhang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops / Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
6
|
He L, Sui Y, Che Y, Wang H, Rashid KY, Cloutier S, You FM. Genome-wide association studies using multi-models and multi-SNP datasets provide new insights into pasmo resistance in flax. FRONTIERS IN PLANT SCIENCE 2023; 14:1229457. [PMID: 37954993 PMCID: PMC10634603 DOI: 10.3389/fpls.2023.1229457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/24/2023] [Indexed: 11/14/2023]
Abstract
Introduction Flax (Linum usitatissimum L.) is an economically important crop due to its oil and fiber. However, it is prone to various diseases, including pasmo caused by the fungus Septoria linicola. Methods In this study, we conducted field evaluations of 445 flax accessions over a five-year period (2012-2016) to assess their resistance to pasmo A total of 246,035 single nucleotide polymorphisms (SNPs) were used for genetic analysis. Four statistical models, including the single-locus model GEMMA and the multi-locus models FarmCPU, mrMLM, and 3VmrMLM, were assessed to identify quantitative trait nucleotides (QTNs) associated with pasmo resistance. Results We identified 372 significant QTNs or 132 tag QTNs associated with pasmo resistance from five pasmo resistance datasets (PAS2012-PAS2016 and the 5-year average, namely PASmean) and three genotypic datasets (the all SNPs/ALL, the gene-based SNPs/GB and the RGA-based SNPs/RGAB). The tag QTNs had R2 values of 0.66-16.98% from the ALL SNP dataset, 0.68-20.54%from the GB SNP dataset, and 0.52-22.42% from the RGAB SNP dataset. Of these tag QTNs, 93 were novel. Additionally, 37 resistance gene analogs (RGAs)co-localizing with 39 tag QTNs were considered as potential candidates for controlling pasmo resistance in flax and 50 QTN-by-environment interactions(QEIs) were identified to account for genes by environmental interactions. Nine RGAs were predicted as candidate genes for ten QEIs. Discussion Our results suggest that pasmo resistance in flax is polygenic and potentially influenced by environmental factors. The identified QTNs provide potential targets for improving pasmo resistance in flax breeding programs. This study sheds light on the genetic basis of pasmo resistance and highlights the importance of considering both genetic and environmental factors in breeding programs for flax.
Collapse
Affiliation(s)
- Liqiang He
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- School of Tropical Agriculture and Forestry, School of Tropical Crops, Hainan University, Haikou, China
| | - Yao Sui
- School of Tropical Agriculture and Forestry, School of Tropical Crops, Hainan University, Haikou, China
| | - Yanru Che
- School of Tropical Agriculture and Forestry, School of Tropical Crops, Hainan University, Haikou, China
| | - Huixian Wang
- School of Tropical Agriculture and Forestry, School of Tropical Crops, Hainan University, Haikou, China
| | - Khalid Y. Rashid
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Frank M. You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| |
Collapse
|
7
|
Saroha A, Gomashe SS, Kaur V, Pal D, Ujjainwal S, Aravind J, Singh M, Rajkumar S, Singh K, Kumar A, Wankhede DP. Genetic dissection of thousand-seed weight in linseed ( Linum usitatissimum L.) using multi-locus genome-wide association study. FRONTIERS IN PLANT SCIENCE 2023; 14:1166728. [PMID: 37332700 PMCID: PMC10272591 DOI: 10.3389/fpls.2023.1166728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/08/2023] [Indexed: 06/20/2023]
Abstract
Flaxseed/linseed is an important oilseed crop having applications in the food, nutraceutical, and paint industry. Seed weight is one of the most crucial determinants of seed yield in linseed. Here, quantitative trait nucleotides (QTNs) associated with thousand-seed weight (TSW) have been identified using multi-locus genome-wide association study (ML-GWAS). Field evaluation was carried out in five environments in multi-year-location trials. SNP genotyping information of the AM panel of 131 accessions comprising 68,925 SNPs was employed for ML-GWAS. From the six ML-GWAS methods employed, five methods helped identify a total of 84 unique significant QTNs for TSW. QTNs identified in ≥ 2 methods/environments were designated as stable QTNs. Accordingly, 30 stable QTNs have been identified for TSW accounting up to 38.65% trait variation. Alleles with positive effect on trait were analyzed for 12 strong QTNs with r 2 ≥ 10.00%, which showed significant association of specific alleles with higher trait value in three or more environments. A total of 23 candidate genes have been identified for TSW, which included B3 domain-containing transcription factor, SUMO-activating enzyme, protein SCARECROW, shaggy-related protein kinase/BIN2, ANTIAUXIN-RESISTANT 3, RING-type E3 ubiquitin transferase E4, auxin response factors, WRKY transcription factor, and CBS domain-containing protein. In silico expression analysis of candidate genes was performed to validate their possible role in different stages of seed development process. The results from this study provide significant insight and elevate our understanding on genetic architecture of TSW trait in linseed.
Collapse
Affiliation(s)
- Ankit Saroha
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sunil S. Gomashe
- ICAR-National Bureau of Plant Genetic Resources, Regional Station Akola, Maharashtra, India
| | - Vikender Kaur
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Deepa Pal
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Shraddha Ujjainwal
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - J. Aravind
- Division of Germplasm Conservation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Mamta Singh
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - S. Rajkumar
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ashok Kumar
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Dhammaprakash Pandhari Wankhede
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
8
|
Kaur V, Singh M, Wankhede DP, Gupta K, Langyan S, Aravind J, Thangavel B, Yadav SK, Kalia S, Singh K, Kumar A. Diversity of Linum genetic resources in global genebanks: from agro-morphological characterisation to novel genomic technologies - a review. Front Nutr 2023; 10:1165580. [PMID: 37324736 PMCID: PMC10267467 DOI: 10.3389/fnut.2023.1165580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/27/2023] [Indexed: 06/17/2023] Open
Abstract
Linseed or flaxseed is a well-recognized nutritional food with nutraceutical properties owing to high omega-3 fatty acid (α-Linolenic acid), dietary fiber, quality protein, and lignan content. Currently, linseed enjoys the status of a 'superfood' and its integration in the food chain as a functional food is evolving continuously as seed constituents are associated with lowering the risk of chronic ailments, such as heart diseases, cancer, diabetes, and rheumatoid arthritis. This crop also receives much attention in the handloom and textile sectors as the world's coolest fabric linen is made up of its stem fibers which are endowed with unique qualities such as luster, tensile strength, density, bio-degradability, and non-hazardous nature. Worldwide, major linseed growing areas are facing erratic rainfall and temperature patterns affecting flax yield, quality, and response to biotic stresses. Amid such changing climatic regimes and associated future threats, diverse linseed genetic resources would be crucial for developing cultivars with a broad genetic base for sustainable production. Furthermore, linseed is grown across the world in varied agro-climatic conditions; therefore it is vital to develop niche-specific cultivars to cater to diverse needs and keep pace with rising demands globally. Linseed genetic diversity conserved in global genebanks in the form of germplasm collection from natural diversity rich areas is expected to harbor genetic variants and thus form crucial resources for breeding tailored crops to specific culinary and industrial uses. Global genebank collections thus potentially play an important role in supporting sustainable agriculture and food security. Currently, approximately 61,000 germplasm accessions of linseed including 1,127 wild accessions are conserved in genebanks/institutes worldwide. This review analyzes the current status of Linum genetic resources in global genebanks, evaluation for agro-morphological traits, stress tolerance, and nutritional profiling to promote their effective use for sustainable production and nutrition enhancement in our modern diets.
Collapse
Affiliation(s)
- Vikender Kaur
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Mamta Singh
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Dhammaprakash Pandhari Wankhede
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kavita Gupta
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sapna Langyan
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Jayaraman Aravind
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Boopathi Thangavel
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Shashank Kumar Yadav
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sanjay Kalia
- Department of Biotechnology, Ministry of Science and Technology, Government of India, New Delhi, India
| | - Kuldeep Singh
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ashok Kumar
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
9
|
Povkhova LV, Pushkova EN, Rozhmina TA, Zhuchenko AA, Frykin RI, Novakovskiy RO, Dvorianinova EM, Gryzunov AA, Borkhert EV, Sigova EA, Vladimirov GN, Snezhkina AV, Kudryavtseva AV, Krasnov GS, Dmitriev AA, Melnikova NV. Development and Complex Application of Methods for the Identification of Mutations in the FAD3A and FAD3B Genes Resulting in the Reduced Content of Linolenic Acid in Flax Oil. PLANTS (BASEL, SWITZERLAND) 2022; 12:95. [PMID: 36616223 PMCID: PMC9824437 DOI: 10.3390/plants12010095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Flax is grown worldwide for seed and fiber production. Linseed varieties differ in their oil composition and are used in pharmaceutical, food, feed, and industrial production. The field of application primarily depends on the content of linolenic (LIN) and linoleic (LIO) fatty acids. Inactivating mutations in the FAD3A and FAD3B genes lead to a decrease in the LIN content and an increase in the LIO content. For the identification of the three most common low-LIN mutations in flax varieties (G-to-A in exon 1 of FAD3A substituting tryptophan with a stop codon, C-to-T in exon 5 of FAD3A leading to arginine to a stop codon substitution, and C-to-T in exon 2 of FAD3B resulting in histidine to tyrosine substitution), three approaches were proposed: (1) targeted deep sequencing, (2) high resolution melting (HRM) analysis, (3) cleaved amplified polymorphic sequences (CAPS) markers. They were tested on more than a thousand flax samples of various types and showed promising results. The proposed approaches can be used in marker-assisted selection to choose parent pairs for crosses, separate heterogeneous varieties into biotypes, and select genotypes with desired homozygous alleles of the FAD3A and FAD3B genes at the early stages of breeding for the effective development of varieties with a particular LIN and LIO content, as well as in basic studies of the molecular mechanisms of fatty acid synthesis in flax seeds to select genotypes adequate to the tasks.
Collapse
Affiliation(s)
- Liubov V. Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana A. Rozhmina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia
| | - Alexander A. Zhuchenko
- Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia
- All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery, 115598 Moscow, Russia
| | - Roman I. Frykin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ekaterina M. Dvorianinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
| | - Aleksey A. Gryzunov
- All-Russian Scientific Research Institute of Refrigeration Industry—Branch of V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 127422 Moscow, Russia
| | - Elena V. Borkhert
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elizaveta A. Sigova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
| | | | - Anastasiya V. Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
10
|
Kanapin A, Rozhmina T, Bankin M, Surkova S, Duk M, Osyagina E, Samsonova M. Genetic Determinants of Fiber-Associated Traits in Flax Identified by Omics Data Integration. Int J Mol Sci 2022; 23:14536. [PMID: 36498863 PMCID: PMC9738745 DOI: 10.3390/ijms232314536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
In this paper, we explore potential genetic factors in control of flax phenotypes associated with fiber by mining a collection of 306 flax accessions from the Federal Research Centre of the Bast Fiber Crops, Torzhok, Russia. In total, 11 traits were assessed in the course of 3 successive years. A genome-wide association study was performed for each phenotype independently using six different single-locus models implemented in the GAPIT3 R package. Moreover, we applied a multivariate linear mixed model implemented in the GEMMA package to account for trait correlations and potential pleiotropic effects of polymorphisms. The analyses revealed a number of genomic variants associated with different fiber traits, implying the complex and polygenic control. All stable variants demonstrate a statistically significant allelic effect across all 3 years of the experiment. We tested the validity of the predicted variants using gene expression data available for the flax fiber studies. The results shed new light on the processes and pathways associated with the complex fiber traits, while the pinpointed candidate genes may be further used for marker-assisted selection.
Collapse
Affiliation(s)
- Alexander Kanapin
- Centre for Computational Biology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Tatyana Rozhmina
- Laboratory of Breeding Technologies, Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia
| | - Mikhail Bankin
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Svetlana Surkova
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Maria Duk
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia
| | - Ekaterina Osyagina
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Maria Samsonova
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
11
|
Saroha A, Pal D, Gomashe SS, Akash, Kaur V, Ujjainwal S, Rajkumar S, Aravind J, Radhamani J, Kumar R, Chand D, Sengupta A, Wankhede DP. Identification of QTNs Associated With Flowering Time, Maturity, and Plant Height Traits in Linum usitatissimum L. Using Genome-Wide Association Study. Front Genet 2022; 13:811924. [PMID: 35774513 PMCID: PMC9237403 DOI: 10.3389/fgene.2022.811924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/02/2022] [Indexed: 12/21/2022] Open
Abstract
Early flowering, maturity, and plant height are important traits for linseed to fit in rice fallows, for rainfed agriculture, and for economically viable cultivation. Here, Multi-Locus Genome-Wide Association Study (ML-GWAS) was undertaken in an association mapping panel of 131 accessions, genotyped using 68,925 SNPs identified by genotyping by sequencing approach. Phenotypic evaluation data of five environments comprising 3 years and two locations were used. GWAS was performed for three flowering time traits including days to 5%, 50%, and 95% flowering, days to maturity, and plant height by employing five ML-GWAS methods: FASTmrEMMA, FASTmrMLM, ISIS EM-BLASSO, mrMLM, and pLARmEB. A total of 335 unique QTNs have been identified for five traits across five environments. 109 QTNs were stable as observed in ≥2 methods and/or environments, explaining up to 36.6% phenotypic variance. For three flowering time traits, days to maturity, and plant height, 53, 30, and 27 stable QTNs, respectively, were identified. Candidate genes having roles in flower, pollen, embryo, seed and fruit development, and xylem/phloem histogenesis have been identified. Gene expression of candidate genes for flowering and plant height were studied using transcriptome of an early maturing variety Sharda (IC0523807). The present study unravels QTNs/candidate genes underlying complex flowering, days to maturity, and plant height traits in linseed.
Collapse
|
12
|
Povkhova LV, Melnikova NV, Rozhmina TA, Novakovskiy RO, Pushkova EN, Dvorianinova EM, Zhuchenko AA, Kamionskaya AM, Krasnov GS, Dmitriev AA. Genes Associated with the Flax Plant Type (Oil or Fiber) Identified Based on Genome and Transcriptome Sequencing Data. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122616. [PMID: 34961087 PMCID: PMC8707629 DOI: 10.3390/plants10122616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
As a result of the breeding process, there are two main types of flax (Linum usitatissimum L.) plants. Linseed is used for obtaining seeds, while fiber flax is used for fiber production. We aimed to identify the genes associated with the flax plant type, which could be important for the formation of agronomically valuable traits. A search for polymorphisms was performed in genes involved in the biosynthesis of cell wall components, lignans, fatty acids, and ion transport based on genome sequencing data for 191 flax varieties. For 143 of the 424 studied genes (4CL, C3'H, C4H, CAD, CCR, CCoAOMT, COMT, F5H, HCT, PAL, CTL, BGAL, ABC, HMA, DIR, PLR, UGT, TUB, CESA, RGL, FAD, SAD, and ACT families), one or more polymorphisms had a strong correlation with the flax type. Based on the transcriptome sequencing data, we evaluated the expression levels for each flax type-associated gene in a wide range of tissues and suggested genes that are important for the formation of linseed or fiber flax traits. Such genes were probably subjected to the selection press and can determine not only the traits of seeds and stems but also the characteristics of the root system or resistance to stresses at a particular stage of development, which indirectly affects the ability of flax plants to produce seeds or fiber.
Collapse
Affiliation(s)
- Liubov V. Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| | - Tatiana A. Rozhmina
- Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia; (T.A.R.); (A.A.Z.)
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| | - Ekaterina M. Dvorianinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
| | - Alexander A. Zhuchenko
- Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia; (T.A.R.); (A.A.Z.)
- All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery, 115598 Moscow, Russia
| | - Anastasia M. Kamionskaya
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| |
Collapse
|
13
|
Kanapin A, Bankin M, Rozhmina T, Samsonova A, Samsonova M. Genomic Regions Associated with Fusarium Wilt Resistance in Flax. Int J Mol Sci 2021; 22:12383. [PMID: 34830265 PMCID: PMC8623186 DOI: 10.3390/ijms222212383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 01/22/2023] Open
Abstract
Modern flax cultivars are susceptible to many diseases; arguably, the most economically damaging of these is the Fusarium wilt fungal disease. Over the past decades international flax breeding initiatives resulted in the development of resistant cultivars. However, much remains to be learned about the mechanisms of resistance to Fusarium infection in flax. As a first step to uncover the genetic factors associated with resistance to Fusarium wilt disease, we performed a genome-wide association study (GWAS) using 297 accessions from the collection of the Federal Research Centre of the Bast Fiber Crops, Torzhok, Russia. These genotypes were infected with a highly pathogenic Fusarium oxysporum f.sp. lini MI39 strain; the wilt symptoms were documented in the course of three successive years. Six different single-locus models implemented in GAPIT3 R package were applied to a selected subset of 72,526 SNPs. A total of 15 QTNs (Quantitative Trait Nucleotides) were detected during at least two years of observation, while eight QTNs were found during all three years of the experiment. Of these, ten QTNs occupied a region of 640 Kb at the start of chromosome 1, while the remaining QTNs mapped to chromosomes 8, 11 and 13. All stable QTNs demonstrate a statistically significant allelic effect across 3 years of the experiment. Importantly, several QTNs spanned regions that harbored genes involved in the pathogen recognition and plant immunity response, including the KIP1-like protein (Lus10025717) and NBS-LRR protein (Lus10025852). Our results provide novel insights into the genetic architecture of flax resistance to Fusarium wilt and pinpoint potential candidate genes for further in-depth studies.
Collapse
Affiliation(s)
- Alexander Kanapin
- Centre for Computational Biology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (A.K.); (A.S.)
| | - Mikhail Bankin
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
| | - Tatyana Rozhmina
- Laboratory of Breeding Technologies, Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia;
| | - Anastasia Samsonova
- Centre for Computational Biology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (A.K.); (A.S.)
| | - Maria Samsonova
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
| |
Collapse
|