1
|
Curnow E, Wang Y. New Animal Models for Understanding FMRP Functions and FXS Pathology. Cells 2022; 11:1628. [PMID: 35626665 PMCID: PMC9140010 DOI: 10.3390/cells11101628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Fragile X encompasses a range of genetic conditions, all of which result as a function of changes within the FMR1 gene and abnormal production and/or expression of the FMR1 gene products. Individuals with Fragile X syndrome (FXS), the most common heritable form of intellectual disability, have a full-mutation sequence (>200 CGG repeats) which brings about transcriptional silencing of FMR1 and loss of FMR protein (FMRP). Despite considerable progress in our understanding of FXS, safe, effective, and reliable treatments that either prevent or reduce the severity of the FXS phenotype have not been approved. While current FXS animal models contribute their own unique understanding to the molecular, cellular, physiological, and behavioral deficits associated with FXS, no single animal model is able to fully recreate the FXS phenotype. This review will describe the status and rationale in the development, validation, and utility of three emerging animal model systems for FXS, namely the nonhuman primate (NHP), Mongolian gerbil, and chicken. These developing animal models will provide a sophisticated resource in which the deficits in complex functions of perception, action, and cognition in the human disorder are accurately reflected and aid in the successful translation of novel therapeutics and interventions to the clinic setting.
Collapse
Affiliation(s)
- Eliza Curnow
- REI Division, Department of ObGyn, University of Washington, Seattle, WA 98195, USA
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Yuan Wang
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
2
|
Sherman SL, Curnow EC, Easley CA, Jin P, Hukema RK, Tejada MI, Willemsen R, Usdin K. Use of model systems to understand the etiology of fragile X-associated primary ovarian insufficiency (FXPOI). J Neurodev Disord 2014; 6:26. [PMID: 25147583 PMCID: PMC4139715 DOI: 10.1186/1866-1955-6-26] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 08/13/2014] [Indexed: 01/04/2023] Open
Abstract
Fragile X-associated primary ovarian insufficiency (FXPOI) is among the family of disorders caused by the expansion of a CGG repeat sequence in the 5' untranslated region of the X-linked gene FMR1. About 20% of women who carry the premutation allele (55 to 200 unmethylated CGG repeats) develop hypergonadotropic hypogonadism and cease menstruating before age 40. Some proportion of those who are still cycling show hormonal profiles indicative of ovarian dysfunction. FXPOI leads to subfertility and an increased risk of medical conditions associated with early estrogen deficiency. Little progress has been made in understanding the etiology of this clinically significant disorder. Understanding the molecular mechanisms of FXPOI requires a detailed knowledge of ovarian FMR1 mRNA and FMRP’s function. In humans, non-invasive methods to discriminate the mechanisms of the premutation on ovarian function are not available, thus necessitating the development of model systems. Vertebrate (mouse and rat) and invertebrate (Drosophila melanogaster) animal studies for the FMR1 premutation and ovarian function exist and have been instrumental in advancing our understanding of the disease phenotype. For example, rodent models have shown that FMRP is highly expressed in oocytes where it is important for folliculogenesis. The two premutation mouse models studied to date show evidence of ovarian dysfunction and, together, suggest that the long repeat in the transcript itself may have some pathological effect quite apart from any effect of the toxic protein. Further, ovarian morphology in young animals appears normal and the primordial follicle pool size does not differ from that of wild-type animals. However, there is a progressive premature decline in the levels of most follicle classes. Observations also include granulosa cell abnormalities and altered gene expression patterns. Further comparisons of these models are now needed to gain insight into the etiology of the ovarian dysfunction. Premutation model systems in non-human primates and those based on induced pluripotent stem cells show particular promise and will complement current models. Here, we review the characterization of the current models and describe the development and potential of the new models. Finally, we will discuss some of the molecular mechanisms that might be responsible for FXPOI.
Collapse
Affiliation(s)
- Stephanie L Sherman
- Department of Human Genetics, Emory University, 615 Michael St, Emory University, Atlanta, GA 30322, USA
| | - Eliza C Curnow
- Washington National Primate Center, University of Washington, Seattle, WA, USA
| | - Charles A Easley
- Laboratory of Translational Cell Biology, Department of Cell Biology, Emory University, Atlanta, GA, USA
| | - Peng Jin
- Department of Human Genetics, Emory University, 615 Michael St, Emory University, Atlanta, GA 30322, USA
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Maria Isabel Tejada
- Molecular Genetics Laboratory, Genetics Service, BioCruces Health Research Institute, Hospital Universitario Cruces, Barakaldo, Biscay, Spain
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Karen Usdin
- Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Burbacher TM, Grant KS, Worlein J, Ha J, Curnow E, Juul S, Sackett GP. Four decades of leading-edge research in the reproductive and developmental sciences: the Infant Primate Research Laboratory at the University of Washington National Primate Research Center. Am J Primatol 2013; 75:1063-83. [PMID: 23873400 PMCID: PMC5452618 DOI: 10.1002/ajp.22175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 05/31/2013] [Accepted: 05/31/2013] [Indexed: 12/20/2022]
Abstract
The Infant Primate Research Laboratory (IPRL) was established in 1970 at the University of Washington as a visionary project of Dr. Gene (Jim) P. Sackett. Supported by a collaboration between the Washington National Primate Research Center and the Center on Human Development and Disability, the IPRL operates under the principle that learning more about the causes of abnormal development in macaque monkeys will provide important insights into the origins and treatment of childhood neurodevelopmental disabilities. Over the past 40 years, a broad range of research projects have been conducted at the IPRL. Some have described the expression of normative behaviors in nursery-reared macaques while others have focused on important biomedical themes in child health and development. This article details the unique scientific history of the IPRL and the contributions produced by research conducted in the laboratory. Past and present investigations have explored the topics of early rearing effects, low-birth-weight, prematurity, birth injury, epilepsy, prenatal neurotoxicant exposure, viral infection (pediatric HIV), diarrheal disease, vaccine safety, and assisted reproductive technologies. Data from these studies have helped advance our understanding of both risk and resiliency in primate development. New directions of research at the IPRL include the production of transgenic primate models using our embryonic stem cell-based technology to better understand and treat heritable forms of human intellectual disabilities such as fragile X.
Collapse
Affiliation(s)
- Thomas M. Burbacher
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, 98195 USA
- Center on Human Development and Disability, University of Washington, Seattle, WA, 98195 USA
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195 USA
| | - Kimberly S. Grant
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, 98195 USA
- Center on Human Development and Disability, University of Washington, Seattle, WA, 98195 USA
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195 USA
| | - Julie Worlein
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195 USA
| | - James Ha
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195 USA
- Department of Psychology, School of Arts and Sciences, University of Washington, Seattle, WA, 98195 USA
| | - Eliza Curnow
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195 USA
| | - Sandra Juul
- Center on Human Development and Disability, University of Washington, Seattle, WA, 98195 USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, 98195 USA
| | - Gene P. Sackett
- Center on Human Development and Disability, University of Washington, Seattle, WA, 98195 USA
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195 USA
- Department of Psychology, School of Arts and Sciences, University of Washington, Seattle, WA, 98195 USA
| |
Collapse
|
4
|
Seixas AI, Vale J, Jorge P, Marques I, Santos R, Alonso I, Fortuna AM, Pinto-Basto J, Coutinho P, Margolis RL, Sequeiros J, Silveira I. FXTAS is rare among Portuguese patients with movement disorders: FMR1 premutations may be associated with a wider spectrum of phenotypes. Behav Brain Funct 2011; 7:19. [PMID: 21639881 PMCID: PMC3120661 DOI: 10.1186/1744-9081-7-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 06/03/2011] [Indexed: 12/01/2022] Open
Abstract
The fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder caused by expansions of 55-200 CGG repeats in the 5'UTR of the FMR1 gene. These FMR1 premutation expansions have relatively high frequency in the general population. To estimate the frequency of FMR1 premutations among Portuguese males with non-familial, late-onset movement disorders of unknown etiology, we assessed CGG repeat size in males with disease onset after the age of 50 and negative or unknown family history for late-onset movement disorders, who were sent for SCA, HD, or PD genetic testing at a reference laboratory. The selected patients had a primary clinical diagnosis based on one of the following cardinal features of FXTAS: ataxia, tremor, or cognitive decline. A total of 86 subjects were genotyped for the CGG repeat in the FMR1 gene. We detected one patient with an expansion in the premutation range. The frequency of FMR1 premutations was 1.9% (1/54) in our group of patients with ataxia as the primary clinical feature, and 1.2% (1/86) in the larger movement disorders group. In the family of the FXTAS case, premutation-transmitting females presented a history of psychiatric symptoms, suggesting that, given the wide phenotypical expression of the premutation in females, neuropsychiatric surveillance is necessary. In conclusion, genetic testing for FXTAS should be made available to patients with adult-onset movement disorders to enable adequate genetic counseling to family members.
Collapse
Affiliation(s)
- Ana I Seixas
- UnIGENe, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Bearden CE, Jasinska AJ, Freimer NB. Methodological issues in molecular genetic studies of mental disorders. Annu Rev Clin Psychol 2009; 5:49-69. [PMID: 19327025 DOI: 10.1146/annurev.clinpsy.032408.153545] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The development of methodologies for assaying genetic variation at high resolution throughout the genome has revolutionized the search for susceptibility genes for common diseases. This search, however, has been less successful in psychiatry than in other areas of medicine. It is hypothesized that the imprecision and uncertain validity of psychiatric diagnoses are major factors in this disappointing progress. Here we discuss the methodologies employed for genetic investigation of mental disorders, including phenotyping strategies, approaches to genetic mapping, and use of animal models of psychopathology.
Collapse
Affiliation(s)
- Carrie E Bearden
- Department of Psychiatry & Biobehavioral Sciences, University of California-Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
6
|
Howell KH, Hubbard GB, Moore CM, Dunn BG, von Kap-Herr C, Raveendran M, Rogers JA, Leland MM, Brasky KM, Nathanielsz PW, Schlabritz-Loutsevitch NE. Trisomy of chromosome 18 in the baboon (Papio hamadryas anubis). Cytogenet Genome Res 2006; 112:76-81. [PMID: 16276093 DOI: 10.1159/000087516] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 03/01/2005] [Indexed: 11/19/2022] Open
Abstract
Trisomy 18 is usually a lethal chromosomal abnormality and is the second most common autosomal trisomy in humans, with an incidence of 1:8000 live births. It is commonly associated with abnormalities of the lower and upper extremities, having the frequency of 95% and 65%, respectively. A newborn female olive baboon (Papio hamadryas anubis) was diagnosed with intrauterine growth retardation and severe arthrogryposis-like congenital joint deformities. Cytogenetic analysis including G-banding and fluorescence in situ hybridization (FISH) revealed that the congenital abnormalities were associated with chromosomal mosaicism for trisomy 18. Genetic analysis with microsatellites from chromosome 18 confirmed the maternal origin of the extra chromosome 18. This is the first report of trisomy 18 in the baboon, which may be a promising animal model of human disease.
Collapse
|
7
|
Arocena DG, Iwahashi CK, Won N, Beilina A, Ludwig AL, Tassone F, Schwartz PH, Hagerman PJ. Induction of inclusion formation and disruption of lamin A/C structure by premutation CGG-repeat RNA in human cultured neural cells. Hum Mol Genet 2005; 14:3661-71. [PMID: 16239243 DOI: 10.1093/hmg/ddi394] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder that affects some adult carriers of pre-mutation alleles (55-200 CGG repeats) of the fragile X mental retardation 1 (FMR1) gene. FXTAS is thought to be caused by a toxic 'gain-of-function' of the expanded CGG-repeat FMR1 mRNA, which is found in the neuronal and astrocytic intranuclear inclusions associated with the disorder. Using a reporter construct with a FMR1 5' untranslated region harboring an expanded (premutation) CGG repeat, we have demonstrated that intranuclear inclusions can be formed in both primary neural progenitor cells and established neural cell lines. As with the inclusions found in post-mortem tissue, the inclusions induced by the expanded CGG repeat are alphaB-crystallin-positive; however, inclusions in culture are not associated with ubiquitin, indicating that incorporation of ubiquitinated proteins is a later event in the disease process. The absence of ubiquitinated proteins also argues against a model in which inclusion formation is due to a failure of the proteasomal degradative machinery. The presence of the expanded CGG repeat, as RNA, results in reduced cell viability as well as the disruption of the normal architecture of lamin A/C within the nucleus. This last observation, and the findings that lamin A/C is present in both the inclusions of FXTAS patients and the inclusions in cell culture, suggests that lamin A/C dysregulation may be a component of the pathogenesis of FXTAS; in particular, the Charcot-Marie-Tooth-type neuropathy associated with FXTAS may represent a functional laminopathy.
Collapse
Affiliation(s)
- Dolores Garcia Arocena
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Seixas AI, Maurer MH, Lin M, Callahan C, Ahuja A, Matsuura T, Ross CA, Hisama FM, Silveira I, Margolis RL. FXTAS, SCA10, and SCA17 in American patients with movement disorders. Am J Med Genet A 2005; 136:87-9. [PMID: 15889413 DOI: 10.1002/ajmg.a.30761] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Hagerman PJ, Hagerman RJ. The fragile-X premutation: a maturing perspective. Am J Hum Genet 2004; 74:805-16. [PMID: 15052536 PMCID: PMC1181976 DOI: 10.1086/386296] [Citation(s) in RCA: 344] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 02/11/2004] [Indexed: 11/03/2022] Open
Abstract
Carriers of premutation alleles (55-200 CGG repeats) of the fragile-X mental retardation 1 (FMR1) gene are often regarded as being clinically uninvolved. However, it is now apparent that such individuals can present with one (or more) of three distinct clinical disorders: mild cognitive and/or behavioral deficits on the fragile-X spectrum; premature ovarian failure; and a newly described, neurodegenerative disorder of older adult carriers, fragile-X-associated tremor/ataxia syndrome (FXTAS). Awareness of these clinical presentations is important for proper diagnosis and therapeutic intervention, not only among families with known cases of fragile-X syndrome but also more broadly for adults with tremor, gait ataxia, and parkinsonism who are seen in movement-disorders clinics.
Collapse
Affiliation(s)
- Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
10
|
Garcia Arocena D, Louis ED, Tassone F, Gilliam TC, Ottman R, Jacquemont S, Hagerman PJ. Screen for expandedFMR1 alleles in patients with essential tremor. Mov Disord 2004; 19:930-3. [PMID: 15300658 DOI: 10.1002/mds.20043] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS), a neurodegenerative disorder, was described recently among male carriers of expanded alleles (55-200 CGG repeats; premutation range) of the fragile X mental retardation 1 (FMR1) gene. Major features of the syndrome include intention tremor, gait ataxia, and parkinsonism in men over 50 years of age. This disorder is believed to be relatively common, possibly affecting 1 in 3,000 men over the age of 50 years in the general population. This raises the possibility that some patients presenting with essential tremor (ET) may harbor expanded FMR1 alleles. We screened 81 ET patients (40 males, 41 females) for expanded FMR1 alleles to determine whether ET is associated with such alleles. None of the ET cases had the premutation genotype. CGG repeat sizes ranged from 5 to 47 repeats within this study population, suggesting that expanded FMR1 alleles are uncommon among patients with ET. Screening of movement disorder patients with other clinical features of FXTAS (e.g., ataxia and parkinsonism) may be more likely to yield expanded FMR1 alleles.
Collapse
Affiliation(s)
- Dolores Garcia Arocena
- Department of Biological Chemistry, University of California, Davis, School of Medicine, Davis, California 95616, USA.
| | | | | | | | | | | | | |
Collapse
|