1
|
Cooper F, Tsakiridis A. Towards clinical applications of in vitro-derived axial progenitors. Dev Biol 2022; 489:110-117. [PMID: 35718236 DOI: 10.1016/j.ydbio.2022.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/28/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022]
Abstract
The production of the tissues that make up the mammalian embryonic trunk takes place in a head-tail direction, via the differentiation of posteriorly-located axial progenitor populations. These include bipotent neuromesodermal progenitors (NMPs), which generate both spinal cord neurectoderm and presomitic mesoderm, the precursor of the musculoskeleton. Over the past few years, a number of studies have described the derivation of NMP-like cells from mouse and human pluripotent stem cells (PSCs). In turn, these have greatly facilitated the establishment of PSC differentiation protocols aiming to give rise efficiently to posterior mesodermal and neural cell types, which have been particularly challenging to produce using previous approaches. Moreover, the advent of 3-dimensional-based culture systems incorporating distinct axial progenitor-derived cell lineages has opened new avenues toward the functional dissection of early patterning events and cell vs non-cell autonomous effects. Here, we provide a brief overview of the applications of these cell types in disease modelling and cell therapy and speculate on their potential uses in the future.
Collapse
Affiliation(s)
- Fay Cooper
- Centre for Stem Cell Biology, School of Bioscience, The University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom; Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, School of Bioscience, The University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom; Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom.
| |
Collapse
|
2
|
Spina Bifida: A Review of the Genetics, Pathophysiology and Emerging Cellular Therapies. J Dev Biol 2022; 10:jdb10020022. [PMID: 35735913 PMCID: PMC9224552 DOI: 10.3390/jdb10020022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 12/11/2022] Open
Abstract
Spina bifida is the most common congenital defect of the central nervous system which can portend lifelong disability to those afflicted. While the complete underpinnings of this disease are yet to be fully understood, there have been great advances in the genetic and molecular underpinnings of this disease. Moreover, the treatment for spina bifida has made great advancements, from surgical closure of the defect after birth to the now state-of-the-art intrauterine repair. This review will touch upon the genetics, embryology, and pathophysiology and conclude with a discussion on current therapy, as well as the first FDA-approved clinical trial utilizing stem cells as treatment for spina bifida.
Collapse
|
3
|
Binagui-Casas A, Dias A, Guillot C, Metzis V, Saunders D. Building consensus in neuromesodermal research: Current advances and future biomedical perspectives. Curr Opin Cell Biol 2021; 73:133-140. [PMID: 34717142 DOI: 10.1016/j.ceb.2021.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/12/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
The development of the vertebrate body axis relies on the activity of different populations of axial progenitors, including neuromesodermal progenitors. Currently, the term 'Neuromesodermal progenitors' is associated with various definitions. Here, we use distinct terminologies to highlight advances in our understanding of this cell type at both the single-cell and population levels. We discuss how these recent insights prompt new opportunities to address a range of biomedical questions spanning cancer metastasis, congenital disorders, cellular metabolism, regenerative medicine, and evolution. Finally, we outline some of the major unanswered questions and propose future directions at the forefront of neuromesodermal research.
Collapse
Affiliation(s)
- Anahí Binagui-Casas
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - André Dias
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.
| | - Charlène Guillot
- Department of Pathology, Brigham and Women's Hospital & Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA, USA; Institute of Genetics, Reproduction and Development, Medical school, University of Clermont Auvergne, 28, Place Henri Dunant, 63001 Clermont-Ferrand, France
| | - Vicki Metzis
- Institute of Clinical Sciences, Imperial College London, London, W12 0NN, UK
| | - Dillan Saunders
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| |
Collapse
|
4
|
Wymeersch FJ, Wilson V, Tsakiridis A. Understanding axial progenitor biology in vivo and in vitro. Development 2021; 148:148/4/dev180612. [PMID: 33593754 DOI: 10.1242/dev.180612] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of the components that make up the embryonic body axis, such as the spinal cord and vertebral column, takes place in an anterior-to-posterior (head-to-tail) direction. This process is driven by the coordinated production of various cell types from a pool of posteriorly-located axial progenitors. Here, we review the key features of this process and the biology of axial progenitors, including neuromesodermal progenitors, the common precursors of the spinal cord and trunk musculature. We discuss recent developments in the in vitro production of axial progenitors and their potential implications in disease modelling and regenerative medicine.
Collapse
Affiliation(s)
- Filip J Wymeersch
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Valerie Wilson
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield S10 2TN UK .,Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| |
Collapse
|
5
|
An Adolescent with a Rare De Novo Distal Trisomy 6p and Distal Monosomy 6q Chromosomal Combination. Case Rep Genet 2020; 2020:8857628. [PMID: 32934853 PMCID: PMC7479479 DOI: 10.1155/2020/8857628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/11/2020] [Accepted: 08/23/2020] [Indexed: 11/17/2022] Open
Abstract
We report on a 12-year-old female with both a partial duplication and deletion involving chromosome 6. The duplication involves 6p25.3p24.3 (7.585 Mb) while the deletion includes 6q27q27 (6.244 Mb). This chromosomal abnormality is also described as distal trisomy 6p and distal monosomy 6q. The patient has a Chiari II malformation, hydrocephalus, agenesis of the corpus callosum, microcephaly, bilateral renal duplicated collecting system, scoliosis, and myelomeningocele associated with a neurogenic bladder and bladder reflux. Additional features have included seizures, feeding dysfunction, failure to thrive, sleep apnea, global developmental delay, intellectual disability, and absent speech. To our knowledge, our report is just the sixth case in the literature with concomitant distal 6p duplication and distal 6q deletion. Although a majority of chromosomal duplication-deletion cases have resulted from a parental pericentric inversion, the parents of our case have normal chromosomes. This is the first reported de novo case of distal 6p duplication and distal 6q deletion. Alternate explanations for the origin of the patient's chromosome abnormalities include parental gonadal mosaicism, nonallelic homologous recombination, or potentially intrachromosomal transposition of the telomeres of chromosome 6. Nonpaternity was considered but ruled out by whole exome sequencing analysis.
Collapse
|
6
|
Mohd-Zin SW, Marwan AI, Abou Chaar MK, Ahmad-Annuar A, Abdul-Aziz NM. Spina Bifida: Pathogenesis, Mechanisms, and Genes in Mice and Humans. SCIENTIFICA 2017; 2017:5364827. [PMID: 28286691 PMCID: PMC5327787 DOI: 10.1155/2017/5364827] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/14/2016] [Accepted: 12/01/2016] [Indexed: 05/26/2023]
Abstract
Spina bifida is among the phenotypes of the larger condition known as neural tube defects (NTDs). It is the most common central nervous system malformation compatible with life and the second leading cause of birth defects after congenital heart defects. In this review paper, we define spina bifida and discuss the phenotypes seen in humans as described by both surgeons and embryologists in order to compare and ultimately contrast it to the leading animal model, the mouse. Our understanding of spina bifida is currently limited to the observations we make in mouse models, which reflect complete or targeted knockouts of genes, which perturb the whole gene(s) without taking into account the issue of haploinsufficiency, which is most prominent in the human spina bifida condition. We thus conclude that the need to study spina bifida in all its forms, both aperta and occulta, is more indicative of the spina bifida in surviving humans and that the measure of deterioration arising from caudal neural tube defects, more commonly known as spina bifida, must be determined by the level of the lesion both in mouse and in man.
Collapse
Affiliation(s)
- Siti W. Mohd-Zin
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ahmed I. Marwan
- Laboratory for Fetal and Regenerative Biology, Colorado Fetal Care Center, Division of Pediatric Surgery, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, 12700 E 17th Ave, Aurora, CO 80045, USA
| | | | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Noraishah M. Abdul-Aziz
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Abstract
T-box genes are important development regulators in vertebrates with specific patterns of expression and precise roles during embryogenesis. They encode transcription factors that regulate gene transcription, often in the early stages of development. The hallmark of this family of proteins is the presence of a conserved DNA binding motif, the "T-domain." Mutations in T-box genes can cause developmental disorders in humans, mostly due to functional deficiency of the relevant proteins. Recent studies have also highlighted the role of some T-box genes in cancer and in cardiomyopathy, extending their role in human disease. In this review, we focus on ten T-box genes with a special emphasis on their roles in human disease.
Collapse
Affiliation(s)
- T K Ghosh
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - J D Brook
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom.
| | - A Wilsdon
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
8
|
Gurung N, Grosse G, Draaken M, Hilger AC, Nauman N, Müller A, Gembruch U, Merz WM, Reutter H, Ludwig M. Mutations in PTF1A are not a common cause for human VATER/VACTERL association or neural tube defects mirroring Danforth's short tail mouse. Mol Med Rep 2015; 12:1579-83. [PMID: 25775927 DOI: 10.3892/mmr.2015.3486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 02/27/2015] [Indexed: 11/05/2022] Open
Abstract
Danforth's short tail (Sd) mutant mice exhibit defects of the neural tube and other abnormalities, which are similar to the human vertebral anomalies, anal atresia, cardiac defects, tracheosophageal fistula and/or esophageal atresia, renal and radial abnormalities, and limb defects (VATER/VACTERL) association, including defects of the hindgut. Sd has been shown to underlie ectopic gene expression of murine Ptf1a, which encodes pancreas-specific transcription factor 1A, due to the insertion of a retrotansposon in its 5' regulatory domain. In order to investigate the possible involvement of this gene in human VATER/VACTERL association and human neural tube defects (NTDs), a sequence analysis was performed. DNA samples from 103 patients with VATER/VACTERL and VATER/VACTERL‑like association, all presenting with anorectal malformations, and 72 fetuses with NTDs, where termination of pregnancy had been performed, were included in the current study. The complete PTF1A coding region, splice sites and 1.5 kb of the 5' flanking promotor region was sequenced. However, no pathogenic alterations were detected. The results of the present study do not support the hypothesis that high penetrant mutations in these regions of PTF1A are involved in the development of human VATER/VACTERL association or NTDs, although rare mutations may be detectable in larger patient samples.
Collapse
Affiliation(s)
- Nirmala Gurung
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn D‑53127, Germany
| | - Greta Grosse
- Institute of Human Genetics, University of Bonn, Bonn D‑53127, Germany
| | - Markus Draaken
- Institute of Human Genetics, University of Bonn, Bonn D‑53127, Germany
| | - Alina C Hilger
- Institute of Human Genetics, University of Bonn, Bonn D‑53127, Germany
| | - Nuzhat Nauman
- Department of Pathology, Holy Family Hospital, Rawalpindi 46000, Pakistan
| | - Andreas Müller
- Department of Neonatology, Children's Hospital, University of Bonn, Bonn D‑53127, Germany
| | - Ulrich Gembruch
- Department of Obstetrics and Prenatal Medicine, University of Bonn, Bonn D‑53127, Germany
| | - Waltraut M Merz
- Department of Obstetrics and Prenatal Medicine, University of Bonn, Bonn D‑53127, Germany
| | - Heiko Reutter
- Institute of Human Genetics, University of Bonn, Bonn D‑53127, Germany
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn D‑53127, Germany
| |
Collapse
|
9
|
Herion NJ, Salbaum JM, Kappen C. Traffic jam in the primitive streak: the role of defective mesoderm migration in birth defects. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2014; 100:608-22. [PMID: 25115487 PMCID: PMC9828327 DOI: 10.1002/bdra.23283] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 01/12/2023]
Abstract
Gastrulation is the process in which the three germ layers are formed that contribute to the formation of all major tissues in the developing embryo. We here review mouse genetic models in which defective gastrulation leads to mesoderm insufficiencies in the embryo. Depending on severity of the abnormalities, the outcomes range from incompatible with embryonic survival to structural birth defects, such as heart defects, spina bifida, or caudal dysgenesis. The combined evidence from the mutant models supports the notion that these congenital anomalies can originate from perturbations of mesoderm specification, epithelial-mesenchymal transition, and mesodermal cell migration. Knowledge about the molecular pathways involved may help to improve strategies for the prevention of major structural birth defects.
Collapse
Affiliation(s)
- Nils J. Herion
- Pennington Biomedical Research Center, Department of Developmental Biology, Baton Rouge, Louisiana
| | - J. Michael Salbaum
- Pennington Biomedical Research Center, Laboratory for Regulation of Gene Expression, Baton Rouge, Louisiana
| | - Claudia Kappen
- Pennington Biomedical Research Center, Department of Developmental Biology, Baton Rouge, Louisiana,Correspondence to: Claudia Kappen, Pennington Biomedical Research Center, Department of Developmental Biology, 6400 Perkins Road, Baton Rouge, LA 70808.
| |
Collapse
|
10
|
Agopian AJ, Bhalla AD, Boerwinkle E, Finnell RH, Grove ML, Hixson JE, Shimmin LC, Sewda A, Stuart C, Zhong Y, Zhu H, Mitchell LE. Exon sequencing of PAX3 and T (brachyury) in cases with spina bifida. ACTA ACUST UNITED AC 2013; 97:597-601. [PMID: 23913553 DOI: 10.1002/bdra.23163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND Based on studies in animals and humans, PAX3 and T (brachyury) are candidate genes for spina bifida. However, neither gene has been definitively identified as a risk factor for this condition. METHODS Sanger sequencing was used to identify variants in all PAX3 and T exons and promoter regions in 114 spina bifida cases. For known variants, allele frequencies in cases were compared with those from public databases using unadjusted odds ratios. Novel variants were genotyped in parents and assessed for predicted functional impact. RESULTS We identified common variants in PAX3 (n = 2) and T (n = 3) for which the allele frequencies in cases were significantly different from those reported in at least one public database. We also identified novel variants in both PAX3 (n = 11) and T (n = 1) in spina bifida cases. Several of the novel PAX3 variants are predicted to be highly conserved and/or impact gene function or expression. CONCLUSION These studies provide some evidence that common variants of PAX3 and T are associated with spina bifida. Rare and novel variants in these genes were also identified in affected individuals. However, additional studies will be required to determine whether these variants influence the risk of spina bifida.
Collapse
Affiliation(s)
- A J Agopian
- Human Genetics Center, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, Texas
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Pangilinan F, Molloy AM, Mills JL, Troendle JF, Parle-McDermott A, Signore C, O'Leary VB, Chines P, Seay JM, Geiler-Samerotte K, Mitchell A, VanderMeer JE, Krebs KM, Sanchez A, Cornman-Homonoff J, Stone N, Conley M, Kirke PN, Shane B, Scott JM, Brody LC. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects. BMC MEDICAL GENETICS 2012; 13:62. [PMID: 22856873 PMCID: PMC3458983 DOI: 10.1186/1471-2350-13-62] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 07/13/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND Neural tube defects (NTDs) are common birth defects (~1 in 1000 pregnancies in the US and Europe) that have complex origins, including environmental and genetic factors. A low level of maternal folate is one well-established risk factor, with maternal periconceptional folic acid supplementation reducing the occurrence of NTD pregnancies by 50-70%. Gene variants in the folate metabolic pathway (e.g., MTHFR rs1801133 (677 C > T) and MTHFD1 rs2236225 (R653Q)) have been found to increase NTD risk. We hypothesized that variants in additional folate/B12 pathway genes contribute to NTD risk. METHODS A tagSNP approach was used to screen common variation in 82 candidate genes selected from the folate/B12 pathway and NTD mouse models. We initially genotyped polymorphisms in 320 Irish triads (NTD cases and their parents), including 301 cases and 341 Irish controls to perform case-control and family based association tests. Significantly associated polymorphisms were genotyped in a secondary set of 250 families that included 229 cases and 658 controls. The combined results for 1441 SNPs were used in a joint analysis to test for case and maternal effects. RESULTS Nearly 70 SNPs in 30 genes were found to be associated with NTDs at the p < 0.01 level. The ten strongest association signals (p-value range: 0.0003-0.0023) were found in nine genes (MFTC, CDKN2A, ADA, PEMT, CUBN, GART, DNMT3A, MTHFD1 and T (Brachyury)) and included the known NTD risk factor MTHFD1 R653Q (rs2236225). The single strongest signal was observed in a new candidate, MFTC rs17803441 (OR = 1.61 [1.23-2.08], p = 0.0003 for the minor allele). Though nominally significant, these associations did not remain significant after correction for multiple hypothesis testing. CONCLUSIONS To our knowledge, with respect to sample size and scope of evaluation of candidate polymorphisms, this is the largest NTD genetic association study reported to date. The scale of the study and the stringency of correction are likely to have contributed to real associations failing to survive correction. We have produced a ranked list of variants with the strongest association signals. Variants in the highest rank of associations are likely to include true associations and should be high priority candidates for further study of NTD risk.
Collapse
Affiliation(s)
- Faith Pangilinan
- Molecular Pathogenesis Section, Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Identification of a novel mouse brachyury (T) allele causing a short tail mutation in mice. Cell Biochem Biophys 2011; 58:129-35. [PMID: 20809182 DOI: 10.1007/s12013-010-9097-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Mutations in T-box genes are associated with numerous disease states in humans. The objective of this paper was to characterize the T(shao), a specific T-box mutation, in mice. T(shao), a short-tailed mutant mouse strain in a B6 background, was obtained by ethylnitrosourea mutagenesis. Microsatellite genomic scans mapped the location of the mutation. RT-PCR was used to amplify the identified region and the product was sequenced. DNA of the region was sequenced and scanned for mutations. Tails of T(shao) mice were mostly curly with tail length ranging from less than 1 cm (tail bud) to half of the normal length. T(shao) presented single dominance gene inheritance, and homozygous mutant mice died approximately at E10. Scans of the F2 generation mapped the mutant gene to chromosome 17, near D17Mit143. The Brachyury (T) gene was identified as a potential candidate gene in this location. To confirm this, RT-PCR was performed on RNA from intercrossed 8.5-day embryos, and products were sequenced. A 67-nucleotide deletion in exon 2 of the mutant T gene was identified. Further sequencing of the genomic DNA from this region identified a T to A transversion at the 67th nucleotide of exon 2. The T(shao) mutation is a result of a deletion in exon 2 causing the early termination and loss of function of protein encoded by the T gene, manifesting as a short tail phenotype.
Collapse
|
13
|
Nikolic D, Cvjeticanin S, Petronic I, Jekic B, Brdar R, Damnjanovic T, Bunjevacki V, Maksimovic N. Degree of genetic homozygosity and distribution of AB0 blood types among patients with spina bifida occulta and spina bifida aperta. Arch Med Sci 2010; 6:854-9. [PMID: 22427757 PMCID: PMC3302695 DOI: 10.5114/aoms.2010.19291] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 03/30/2010] [Accepted: 05/25/2010] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Assuming that spina bifida (SB) is a genetically controlled disease, the aim of our study was to evaluate the degree of genetic homozygosity and the distribution of AB0 blood types among patients with SB occulta and SB aperta by the homozygously recessive characteristics (HRC) test. MATERIAL AND METHODS Our study included an analysis of the presence, distribution and individual combination of 15 selected genetically controlled morpho-physiological traits in a sample of 100 patients with SB (SB occulta N = 50 and SB aperta N = 50) and a control group of individuals (N = 100). RESULTS We found a statistically significant difference between the mean values for genetic homozygosity (SB 4.5 ±0.3; control 3.0 ±0.2, p < 0.001) and also differences in the presence of certain individual combinations of such traits. In 12 (80.0%) of the 15 observed characteristics, recessive homozygosity was expressed to a greater degree among the group of SB patients, while for 9 (60.0%) of the traits this level of difference was statistically significant (Σ(χ) (2) = 266.3, p < 0.001). There was no difference in average homozygosity of such genetic markers between groups of SB occulta and SB aperta patients, but the type of individual variation in the two studied groups significantly differed. In the group of patients with SB the frequency of 0 blood group was significantly increased while B blood group was significantly decreased. CONCLUSIONS Our results clearly show that there is a populational genetic difference in the degree of genetic homozygosity and variability between the group of patients with SB and individuals without clinical manifestations, indicating a possible genetic component in the aetiopathogenesis of spina bifida.
Collapse
Affiliation(s)
- Dejan Nikolic
- Physical Medicine and Rehabilitation Department, University Childrens Hospital, Belgrade, Serbia
| | - Suzana Cvjeticanin
- Institute for Human Genetics, Medical Faculty, University of Belgrade, Serbia
| | - Ivana Petronic
- Physical Medicine and Rehabilitation Department, University Childrens Hospital, Belgrade, Serbia
| | - Biljana Jekic
- Institute for Human Genetics, Medical Faculty, University of Belgrade, Serbia
| | - Radivoj Brdar
- Pediatric Surgery Department, University Children’s Hospital, Belgrade, Serbia
| | - Tatjana Damnjanovic
- Institute for Human Genetics, Medical Faculty, University of Belgrade, Serbia
| | - Vera Bunjevacki
- Institute for Human Genetics, Medical Faculty, University of Belgrade, Serbia
| | - Nela Maksimovic
- Institute for Human Genetics, Medical Faculty, University of Belgrade, Serbia
| |
Collapse
|
14
|
Radio FC, Bernardini L, Loddo S, Bottillo I, Novelli A, Mingarelli R, Dallapiccola B. TBX2 gene duplication associated with complex heart defect and skeletal malformations. Am J Med Genet A 2010; 152A:2061-6. [PMID: 20635360 DOI: 10.1002/ajmg.a.33506] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report on a patient with mild mental retardation, prenatal onset growth retardation, cerebellar hypoplasia, and complex heart defect including: interventricular septal defect, patent foramen ovale, aortic coarctation, tricuspid valve insufficiency, mitral valve stenosis, and minor skeletal anomalies with hypo-aplasia of the distal phalanges. A SNP-array analysis detected a de novo duplication of 17q23.2, encompassing the TBX2 gene. Animal models argue for a key role of Tbx2 during cardiac and limb development. Accordingly, we hypothesize that the heart malformation and mild digital anomalies found in this patient could be related to TBX2 gene overexpression, suggesting parallel consequences of TBX2 gene dosage imbalances in animals and in humans.
Collapse
Affiliation(s)
- Francesca Clementina Radio
- Casa Sollievo della Sofferenza Hospital, IRCSS, San Giovanni Rotondo and CSS-Mendel Institute, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Nielsen DA, Ji F, Yuferov V, Ho A, He C, Ott J, Kreek MJ. Genome-wide association study identifies genes that may contribute to risk for developing heroin addiction. Psychiatr Genet 2010; 20:207-14. [PMID: 20520587 PMCID: PMC3832188 DOI: 10.1097/ypg.0b013e32833a2106] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES We have used genome-wide association studies to identify variants that are associated with vulnerability to develop heroin addiction. METHODS DNA from 325 methadone stabilized, former severe heroin addicts and 250 control individuals were pooled by ethnicity (Caucasian and African-American) and analyzed using the Affymetrix GeneChip Mapping 100 K Set. Genome-wide association tests were conducted. RESULTS The strongest association with vulnerability to develop heroin addiction, with experiment-wise significance (P=0.035), was found in Caucasians with the variant rs10494334, a variant in an unannotated region of the genome (1q23.3). In African Americans, the variant most significantly associated with the heroin addiction vulnerability was rs950302, found in the cytosolic dual specificity phosphatase 27 gene DUSP27 (point-wise P=0.0079). Furthermore, analysis of the top 500 variants with the most significant associations (point-wise P< or =0.0036) in Caucasians showed that three of these variants are clustered in the regulating synaptic membrane exocytosis protein 2 gene RIMS2. Of the top 500 variants in African-Americans (point-wise P< or =0.0238), three variants are in the cardiomyopathy associated 3 gene CMYA3. CONCLUSION This study identifies new genes and variants that may increase an individual's vulnerability to develop heroin addiction.
Collapse
Affiliation(s)
- David A Nielsen
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Neural tube defects (NTDs) are common, severe congenital malformations whose causation involves multiple genes and environmental factors. Although more than 200 genes are known to cause NTDs in mice, there has been rather limited progress in delineating the molecular basis underlying most human NTDs. Numerous genetic studies have been carried out to investigate candidate genes in cohorts of patients, with particular reference to those that participate in folate one-carbon metabolism. Although the homocysteine remethylation gene MTHFR has emerged as a risk factor in some human populations, few other consistent findings have resulted from this approach. Similarly, attention focused on the human homologues of mouse NTD genes has contributed only limited positive findings to date, although an emerging association between genes of the non-canonical Wnt (planar cell polarity) pathway and NTDs provides candidates for future studies. Priorities for the next phase of this research include: (i) larger studies that are sufficiently powered to detect significant associations with relatively minor risk factors; (ii) analysis of multiple candidate genes in groups of well-genotyped individuals to detect possible gene-gene interactions; (iii) use of high throughput genomic technology to evaluate the role of copy number variants and to detect 'private' and regulatory mutations, neither of which have been studied to date; (iv) detailed analysis of patient samples stratified by phenotype to enable, for example, hypothesis-driven testing of candidates genes in groups of NTDs with specific defects of folate metabolism, or in groups of fetuses with well-defined phenotypes such as craniorachischisis.
Collapse
|
17
|
Analysis of the fibroblastic growth factor receptor-RAS/RAF/MEK/ERK-ETS2/brachyury signalling pathway in chordomas. Mod Pathol 2009; 22:996-1005. [PMID: 19407855 DOI: 10.1038/modpathol.2009.63] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chordomas are rare primary malignant bone tumours that derive from notochord precursor cells and express brachyury, a molecule involved in notochord development. Little is known about the genetic events responsible for driving the growth of this tumour, but it is well established that brachyury is regulated through fibroblastic growth factor receptors (FGFRs) through RAS/RAF/MEK/ERK and ETS2 in ascidian, Xenopus and zebrafish, although little is known about its regulation in mammals. The aim of this study was to attempt to identify the molecular genetic events that are responsible for the pathogenesis of chordomas with particular focus on the FGFR signalling pathway on the basis of the evidence in the ascidian and Xenopus models that the expression of brachyury requires the activation of this pathway. Immunohistochemistry showed that 47 of 50 chordomas (94%) expressed at least one of the FGFRs, and western blotting showed phosphorylation of fibroblast growth factor receptor substrate 2 alpha (FRS2alpha), an adaptor signalling protein, that links FGFR to the RAS/RAF/MEK/ERK pathway. Screening for mutations in brachyury (all coding exons and promoter), FGFRs 1-4 (previously reported mutations), KRAS (codons 12, 13, 51, 61) and BRAF (exons 11 and 15) failed to show any genetic alterations in 23 chordomas. Fluorescent in situ hybridisation analysis on FGFR4, ETS2 and brachyury failed to show either amplification of these genes, although there was minor allelic gain in brachyury in three tumours, or translocation for ERG and ETS2 loci. The key genetic events responsible for the initiation and progression of chordomas remain to be discovered.
Collapse
|
18
|
Miller SA, Weinmann AS. Common themes emerge in the transcriptional control of T helper and developmental cell fate decisions regulated by the T-box, GATA and ROR families. Immunology 2009; 126:306-15. [PMID: 19302139 PMCID: PMC2669811 DOI: 10.1111/j.1365-2567.2008.03040.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 12/05/2008] [Accepted: 12/05/2008] [Indexed: 01/12/2023] Open
Abstract
Cellular differentiation requires the precise action of lineage-determining transcription factors. In the immune system, CD4(+) T helper cells differentiate into at least three distinct effector lineages, T helper type 1 (Th1), Th2 and Th17, with the fate of the cell at least in part determined by the transcription factors T-box expressed in T cells (T-bet), GATA-3 and retinoid-related orphan receptor gammat (RORgammat), respectively. Importantly, these transcription factors are members of larger families that are required for numerous developmental transitions from early embryogenesis into adulthood. Mutations in members of these transcription factor families are associated with a number of human genetic diseases due to a failure in completing lineage-specification events when the factor is dysregulated. Mechanistically, there are both common and distinct functional activities that are utilized by T-box, GATA and ROR family members to globally alter the cellular gene expression profiles at specific cell fate decision checkpoints. Therefore, understanding the molecular events that contribute to the ability of T-bet, GATA-3 and RORgammat to define T helper cell lineages can provide valuable information relevant to the establishment of other developmental systems and, conversely, information from diverse developmental systems may provide unexpected insights into the molecular mechanisms utilized in T helper cell differentiation.
Collapse
|
19
|
Giampietro PF, Dunwoodie SL, Kusumi K, Pourquié O, Tassy O, Offiah AC, Cornier AS, Alman BA, Blank RD, Raggio CL, Glurich I, Turnpenny PD. Progress in the understanding of the genetic etiology of vertebral segmentation disorders in humans. Ann N Y Acad Sci 2009; 1151:38-67. [PMID: 19154516 DOI: 10.1111/j.1749-6632.2008.03452.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vertebral malformations contribute substantially to the pathophysiology of kyphosis and scoliosis, common health problems associated with back and neck pain, disability, cosmetic disfigurement, and functional distress. This review explores (1) recent advances in the understanding of the molecular embryology underlying vertebral development and relevance to elucidation of etiologies of several known human vertebral malformation syndromes; (2) outcomes of molecular studies elucidating genetic contributions to congenital and sporadic vertebral malformation; and (3) complex interrelationships between genetic and environmental factors that contribute to the pathogenesis of isolated syndromic and nonsyndromic congenital vertebral malformation. Discussion includes exploration of the importance of establishing improved classification systems for vertebral malformation, future directions in molecular and genetic research approaches to vertebral malformation, and translational value of research efforts to clinical management and genetic counseling of affected individuals and their families.
Collapse
Affiliation(s)
- Philip F Giampietro
- Department of Medical Genetic Services, Marshfield Clinic, 1000 North Oak Avenue, Marshfield, WI 54449, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mitchell LE. Spina Bifida Research Resource: Study design and participant characteristics. ACTA ACUST UNITED AC 2008; 82:684-91. [DOI: 10.1002/bdra.20465] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Abstract
No major susceptibility genes for sporadically occurring congenital vertebral malformations (CVM) in humans have been identified to date. Body patterning genes whose mutants cause axial skeletal anomalies in mice are candidates for human CVM susceptibility. T (also known as Brachyury) and TBX6 are critical genes needed to establish mesodermal identity. We hypothesized that mutations in T and/or TBX6 contribute to the pathogenesis of human CVMs. The complete T and TBX6 coding regions, splice junctions, and proximal 500 bp of the promoters were sequenced in 50 phenotyped patients with CVM. Three unrelated patients with sacral agenesis, Klippel-Feil syndrome, and multiple cervical and thoracic vertebral malformations were heterozygous for a c.1013C>T substitution, resulting in a predicted Ala338Val missense alteration in exon 8. A clinically unaffected parent of each patient also harbored the substitution, but the variant did not occur in an ethnically diverse, 443-person reference population. The c.1013C>T variant is significantly associated with CVM (p < 0.001). Alanine 338 shows moderate conservation across species, and valine at this position has not been reported in any species. A fourth patient harbored a c.908-8C>T variant in intron 7. This previously unreported variant was tested in 347 normal control subjects, and 11 heterozygotes and 2 T/T individuals were found. No TBX6 variants were identified. We infer that the c.1013C>T substitution is pathogenic and represents the first report of an association between a missense mutation in the T gene and the occurrence of sporadic CVMs in humans. It is uncertain whether the splice junction variant increases CVM risk. TBX6 mutations do not seem to be associated with CVM. We hypothesize that epistatic interactions between T and other developmental genes and the environment modulate the phenotypic consequences of T variants.
Collapse
|
22
|
Abstract
Spinal dysraphism includes a constellation of frequent and potentially complex malformations of the spine and spinal cord. Open spinal dysraphisms, the majority of which are myelomeningoceles, have a number of associated morbidities that require both immediate and lifelong medical care. The role of the neonatal nurse includes the immediate stabilization of the affected infant, systematic examination of the malformation, and implementation of evidence-based protocols to ameliorate the associated medical problems. Coordination of care and communication and support of the family are essential aspects of care. This article reviews the embryology of open spinal dysraphisms and the steps needed to stabilize and evaluate affected infants.
Collapse
Affiliation(s)
- M Colleen Brand
- Texas Children's Hospital, University of Texas-Houston, School of Nursing, Houston, Texas 77030, USA.
| |
Collapse
|