1
|
Li H, Yu XH, Ou X, Ouyang XP, Tang CK. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis. Prog Lipid Res 2021; 83:101109. [PMID: 34097928 DOI: 10.1016/j.plipres.2021.101109] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a quickly emerging global health problem representing the most common chronic liver disease in the world. Atherosclerotic cardiovascular disease represents the leading cause of mortality in NAFLD patients. Cholesterol metabolism has a crucial role in the pathogenesis of both NAFLD and atherosclerosis. The liver is the major organ for cholesterol metabolism. Abnormal hepatic cholesterol metabolism not only leads to NAFLD but also drives the development of atherosclerotic dyslipidemia. The cholesterol level in hepatocytes reflects the dynamic balance between endogenous synthesis, uptake, esterification, and export, a process in which cholesterol is converted to neutral cholesteryl esters either for storage in cytosolic lipid droplets or for secretion as a major constituent of plasma lipoproteins, including very-low-density lipoproteins, chylomicrons, high-density lipoproteins, and low-density lipoproteins. In this review, we describe decades of research aimed at identifying key molecules and cellular players involved in each main aspect of hepatic cholesterol metabolism. Furthermore, we summarize the recent advances regarding the biological processes of hepatic cholesterol transport and its role in NAFLD and atherosclerosis.
Collapse
Affiliation(s)
- Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China
| | - Xiang Ou
- Department of Endocrinology, the First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Xin-Ping Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Desmarchelier C, Wolff E, Defoort C, Nowicki M, Morange P, Alessi M, Valéro R, Nicolay A, Lairon D, Borel P. A Combination of Single Nucleotide Polymorphisms is Associated with the Interindividual Variability of Cholesterol Bioavailability in Healthy Adult Males. Mol Nutr Food Res 2020; 64:e2000480. [DOI: 10.1002/mnfr.202000480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/04/2020] [Indexed: 01/05/2023]
Affiliation(s)
| | - Estelle Wolff
- Aix‐Marseille University, INRAE, INSERM, C2VN 13005 Marseille France
| | - Catherine Defoort
- Aix‐Marseille University, INRAE, INSERM, C2VN 13005 Marseille France
| | - Marion Nowicki
- Aix‐Marseille University, INRAE, INSERM, C2VN 13005 Marseille France
| | | | | | - René Valéro
- Aix‐Marseille University, INRAE, INSERM, C2VN 13005 Marseille France
- APHM, CHU Conception Department of Nutrition Metabolic Diseases and Endocrinology 13005 Marseille France
| | - Alain Nicolay
- Aix‐Marseille University, INRAE, INSERM, C2VN 13005 Marseille France
| | - Denis Lairon
- Aix‐Marseille University, INRAE, INSERM, C2VN 13005 Marseille France
| | - Patrick Borel
- Aix‐Marseille University, INRAE, INSERM, C2VN 13005 Marseille France
| |
Collapse
|
3
|
Walther B, Lett AM, Bordoni A, Tomás‐Cobos L, Nieto JA, Dupont D, Danesi F, Shahar DR, Echaniz A, Re R, Fernandez AS, Deglaire A, Gille D, Schmid A, Vergères G. GutSelf: Interindividual Variability in the Processing of Dietary Compounds by the Human Gastrointestinal Tract. Mol Nutr Food Res 2019; 63:e1900677. [PMID: 31483113 PMCID: PMC6900003 DOI: 10.1002/mnfr.201900677] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/25/2019] [Indexed: 12/19/2022]
Abstract
Nutritional research is currently entering the field of personalized nutrition, to a large extent driven by major technological breakthroughs in analytical sciences and biocomputing. An efficient launching of the personalized approach depends on the ability of researchers to comprehensively monitor and characterize interindividual variability in the activity of the human gastrointestinal tract. This information is currently not available in such a form. This review therefore aims at identifying and discussing published data, providing evidence on interindividual variability in the processing of the major nutrients, i.e., protein, fat, carbohydrates, vitamins, and minerals, along the gastrointestinal tract, including oral processing, intestinal digestion, and absorption. Although interindividual variability is not a primary endpoint of most studies identified, a significant number of publications provides a wealth of information on this topic for each category of nutrients. This knowledge remains fragmented, however, and understanding the clinical relevance of most of the interindividual responses to food ingestion described in this review remains unclear. In that regard, this review has identified a gap and sets the base for future research addressing the issue of the interindividual variability in the response of the human organism to the ingestion of foods.
Collapse
Affiliation(s)
- Barbara Walther
- AgroscopeFederal Department of Economic AffairsEducation and Research EAER3003BerneSwitzerland
| | - Aaron M. Lett
- Section for Nutrition ResearchDepartment of MedicineImperial College LondonLondonUK
| | - Alessandra Bordoni
- Department of Agri‐Food Sciences and TechnologiesUniversity of Bologna47521CesenaItaly
| | | | | | - Didier Dupont
- UMR 1253Science et Technologie du Lait et de l'ŒufINRA35000RennesFrance
| | - Francesca Danesi
- Department of Agri‐Food Sciences and TechnologiesUniversity of Bologna47521CesenaItaly
| | - Danit R. Shahar
- Department of Public HealthThe S. Daniel Abraham International Center for Health and NutritionBen‐Gurion University of the Negev84105Beer‐ShevaIsrael
| | - Ana Echaniz
- Cambridge Food Science LtdCB23 5ABCambridgeUK
| | - Roberta Re
- Cambridge Food Science LtdCB23 5ABCambridgeUK
| | | | - Amélie Deglaire
- UMR 1253Science et Technologie du Lait et de l'ŒufINRA35000RennesFrance
| | - Doreen Gille
- AgroscopeFederal Department of Economic AffairsEducation and Research EAER3003BerneSwitzerland
| | - Alexandra Schmid
- AgroscopeFederal Department of Economic AffairsEducation and Research EAER3003BerneSwitzerland
| | - Guy Vergères
- AgroscopeFederal Department of Economic AffairsEducation and Research EAER3003BerneSwitzerland
| |
Collapse
|
4
|
Wang YT, Maitusong B, Ma YT, Fu ZY, Yang YN, Ma X, Li XM, Liu F, Chen BD. Acyl-CoA: cholesterol acyltransferases-2 gene polymorphism is associated with increased susceptibility to coronary artery disease in Uygur population in Xinjiang, China. Biosci Rep 2019; 39:BSR20182129. [PMID: 30696703 PMCID: PMC6390127 DOI: 10.1042/bsr20182129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/06/2019] [Accepted: 01/25/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Acyl-CoA: cholesterol acyltransferases (ACAT) is the only enzyme that catalyzes the synthesis of cholesterol esters (CE) from free cholesterol and long-chain fatty acyl-CoA and plays a critical role in cellular cholesterol homeostasis. In the present study, our primary objective was to explore whether the single-nucleotide polymorphisms (SNPs) in ACAT-2 gene were associated with coronary artery disease (CAD) in Uygur subjects, in Xinjiang, China. METHODS We designed a case-control study including 516 CAD patients and 318 age- and sex-matched control subjects. Using the improved multiplex ligation detection reaction (iMLDR) method, we genotyped two SNPs (rs28765985 and rs7308390) of ACAT-2 gene in all subjects. RESULTS We found that the genotypes, the dominant model (CC + CT vs TT) and over-dominant model (CT vs CC + TT) of rs28765985 were significantly different between CAD patients and the controls (P=0.027, P=0.012 and P=0.035, respectively). The rs28765985 C allele was associated with a significantly elevated CAD risk [CC/CT vs TT: odds ratio (OR) = 1.48, 95% confidence interval (CI) = 1.02-2.16, P=0.04] after adjustment for confounders. The TC and LDL-C levels were significantly higher in rs28765985 CC/CT genotypes than that in TT genotypes (P<0.05). CONCLUSIONS Rs28765985 of ACAT-2 gene are associated with CAD in Uygur subjects. Subjects with CC/CT genotype or C allele of rs28765985 were associated with an increased risk of CAD.
Collapse
Affiliation(s)
- Yong-Tao Wang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Buamina Maitusong
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Box 210, 17177 Stockholm, Sweden
| | - Yi-Tong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Zhen-Yan Fu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Yi-Ning Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Xiang Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Xiao-Mei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Fen Liu
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Bang-Dang Chen
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| |
Collapse
|
5
|
He X, Leow KY, Yang H, Heng CK. Functional characterization of two single nucleotide polymorphisms of acyl-coenzyme A:cholesterol acyltransferase 2. Gene 2015; 566:236-41. [PMID: 25917363 DOI: 10.1016/j.gene.2015.04.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/20/2015] [Accepted: 04/21/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND Acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2) plays a critical role in the formation of cholesteryl esters from cholesterol and fatty acids, and is a potential target for treating hypercholesterolemia. We recently reported the significant effects of two human ACAT2 gene polymorphisms, 41A>G (Glu(14)Gly, rs9658625) and 734C>T (Thr(254)Ile, rs2272296), on plasma lipid levels and coronary artery disease susceptibility in a case-control association study. In the present study, we evaluated the possible biological influence of the two polymorphism using two approaches. METHODS In the first approach, the functional impact of the two polymorphisms was predicted in-silico using available web-based software, and in the second approach, the varying functions of the two polymorphisms were characterized in in vitro experiments, using ACAT2-deficient AC-29 cells. RESULTS Our results show that the enzymatic activity of mutant Glu(14)Gly is approximately two times higher than wildtype, and that this increase is primarily due to the increased expression and/or stability of the mutant ACAT2 protein. CONCLUSIONS These results suggest that the genetic variation at Glu(14)Gly is functionally important and may contribute to ACAT2 protein expression and stability.
Collapse
Affiliation(s)
- Xuelian He
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore; Central Laboratory, Wuhan Children's Hospital, China.
| | - Koon-Yeow Leow
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Hongyuan Yang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore.
| |
Collapse
|
6
|
Ruggles KV, Turkish A, Sturley SL. Making, baking, and breaking: the synthesis, storage, and hydrolysis of neutral lipids. Annu Rev Nutr 2013; 33:413-51. [PMID: 23701589 DOI: 10.1146/annurev-nutr-071812-161254] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The esterification of amphiphilic alcohols with fatty acids is a ubiquitous strategy implemented by eukaryotes and some prokaryotes to conserve energy and membrane progenitors and simultaneously detoxify fatty acids and other lipids. This key reaction is performed by at least four evolutionarily unrelated multigene families. The synthesis of this "neutral lipid" leads to the formation of a lipid droplet, which despite the clear selective advantage it confers is also a harbinger of cellular and organismal malaise. Neutral lipid deposition as a cytoplasmic lipid droplet may be thermodynamically favored but nevertheless is elaborately regulated. Optimal utilization of these resources by lipolysis is similarly multigenic in determination and regulation. We present here a perspective on these processes that originates from studies in model organisms, and we include our thoughts on interventions that target reductions in neutral lipids as therapeutics for human diseases such as obesity and diabetes.
Collapse
Affiliation(s)
- Kelly V Ruggles
- Institute of Human Nutrition, Columbia University Medical Center, New York, NY 10032, USA.
| | | | | |
Collapse
|
7
|
Yoshida T, Kato K, Yokoi K, Watanabe S, Metoki N, Satoh K, Aoyagi Y, Nishigaki Y, Nozawa Y, Yamada Y. Association of candidate gene polymorphisms with chronic kidney disease in Japanese individuals with hypertension. Hypertens Res 2009; 32:411-8. [PMID: 19282863 DOI: 10.1038/hr.2009.22] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although hypertension has been recognized as a risk factor for chronic kidney disease (CKD), the genetic factors for predisposition to CKD in individuals with hypertension remain largely unknown. The purpose of this study was to identify the genetic variants that confer susceptibility to CKD among individuals with hypertension. The study population comprised 3696 Japanese individuals with hypertension (2265 men, 1431 women), including 1257 individuals (789 men, 468 women) with CKD (estimated glomerular filtration rate (eGFR) <60 ml min(-1) per 1.73 m(2)) and 2439 controls (1476 men, 963 women; eGFR >or=60 ml min(-1) per 1.73 m(2)). The genotypes for 30 polymorphisms of 26 candidate genes were determined. An initial screening of allele frequencies by the chi(2)-test revealed that eight polymorphisms were significantly (false discovery rate <0.05) associated with the prevalence of CKD in hypertensive individuals. Subsequent multivariable logistic regression analysis with adjustment for covariates as well as a stepwise forward selection procedure revealed that the T --> C (Val591Ala) polymorphism of APOB (rs679899), the -681C --> G polymorphism of PPARG (rs10865710), the T --> C (Cys1367Arg) polymorphism of WRN (rs1346044), the -850C --> T polymorphism of TNF (rs1799724), the -219G --> T polymorphism of APOE (rs405509), the C --> T polymorphism of PTGS1 (rs883484) and the 41A --> G (Glu14Gly) polymorphism of ACAT2 (rs9658625) were significantly (P<0.05) associated with the prevalence of CKD. Our results suggest that APOB, WRN, ACAT2, APOE, PPARG, TNF and PTGS1 are susceptibility loci for CKD among Japanese individuals with hypertension. Determination of the genotypes for these polymorphisms may prove informative for the assessment of genetic risk for CKD among such individuals.
Collapse
Affiliation(s)
- Tetsuro Yoshida
- Department of Cardiovascular Medicine, Inabe General Hospital, Inabe, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rainwater DL, Cox LA, Rogers J, VandeBerg JL, Mahaney MC. Localization of multiple pleiotropic genes for lipoprotein metabolism in baboons. J Lipid Res 2009; 50:1420-8. [PMID: 19270339 DOI: 10.1194/jlr.m800583-jlr200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We employed a novel approach to identify the key loci that harbor genes influencing lipoprotein metabolism in approximately 2,000 pedigreed baboons fed various diets differing in levels of fat and cholesterol. In this study, 126 overlapping traits related to both LDL and HDL metabolism were normalized and subjected to genome-wide linkage screening. As was expected, the traits were highly, but not completely, correlated. We exploited the information in these correlated traits by focusing on those genomic regions harboring quantitative trait loci (QTL) for multiple traits, reasoning that the more influential genes would impact a larger number of traits. This study identified five major QTL clusters (each with at least two significant logarithm of the odds scores >4.7), two of which had not been previously reported in baboons. One of these mapped to the baboon ortholog of human chromosome 1p32-p34 and influenced concentrations of LDL-cholesterol on Basal and high-fat, low-cholesterol diets. The other novel QTL cluster mapped to the baboon ortholog of human chromosome 12q13.13-q14.1 and influenced LDL size properties on high-fat, low-cholesterol and high-fat, high-cholesterol, but not Basal, diets. Confirming the value of this approach, three of the QTL clusters replicated published linkage findings for the same or similar traits.
Collapse
Affiliation(s)
- David L Rainwater
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX 78245, USA.
| | | | | | | | | |
Collapse
|
9
|
Harrap SB. Cardiovascular Genetics – Two Steps Forward, One Step Back. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2007. [DOI: 10.47102/annals-acadmedsg.v36n6p373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
10
|
|