1
|
Kronenberg ZN, Fiddes IT, Gordon D, Murali S, Cantsilieris S, Meyerson OS, Underwood JG, Nelson BJ, Chaisson MJP, Dougherty ML, Munson KM, Hastie AR, Diekhans M, Hormozdiari F, Lorusso N, Hoekzema K, Qiu R, Clark K, Raja A, Welch AE, Sorensen M, Baker C, Fulton RS, Armstrong J, Graves-Lindsay TA, Denli AM, Hoppe ER, Hsieh P, Hill CM, Pang AWC, Lee J, Lam ET, Dutcher SK, Gage FH, Warren WC, Shendure J, Haussler D, Schneider VA, Cao H, Ventura M, Wilson RK, Paten B, Pollen A, Eichler EE. High-resolution comparative analysis of great ape genomes. Science 2018; 360:eaar6343. [PMID: 29880660 PMCID: PMC6178954 DOI: 10.1126/science.aar6343] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/02/2018] [Indexed: 12/22/2022]
Abstract
Genetic studies of human evolution require high-quality contiguous ape genome assemblies that are not guided by the human reference. We coupled long-read sequence assembly and full-length complementary DNA sequencing with a multiplatform scaffolding approach to produce ab initio chimpanzee and orangutan genome assemblies. By comparing these with two long-read de novo human genome assemblies and a gorilla genome assembly, we characterized lineage-specific and shared great ape genetic variation ranging from single- to mega-base pair-sized variants. We identified ~17,000 fixed human-specific structural variants identifying genic and putative regulatory changes that have emerged in humans since divergence from nonhuman apes. Interestingly, these variants are enriched near genes that are down-regulated in human compared to chimpanzee cerebral organoids, particularly in cells analogous to radial glial neural progenitors.
Collapse
Affiliation(s)
- Zev N Kronenberg
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Ian T Fiddes
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - David Gordon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Shwetha Murali
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Stuart Cantsilieris
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Olivia S Meyerson
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jason G Underwood
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Pacific Biosciences (PacBio) of California, Inc., Menlo Park, CA 94025, USA
| | - Bradley J Nelson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Mark J P Chaisson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Computational Biology and Bioinformatics, University of Southern California, Los Angeles, CA 90089, USA
| | - Max L Dougherty
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Mark Diekhans
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Fereydoun Hormozdiari
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA 95817, USA
| | - Nicola Lorusso
- Department of Biology, University of Bari, Aldo Moro, Bari 70121, Italy
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Ruolan Qiu
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Karen Clark
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Archana Raja
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - AnneMarie E Welch
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Melanie Sorensen
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Carl Baker
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Robert S Fulton
- Departments of Medicine and Genetics, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Joel Armstrong
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Tina A Graves-Lindsay
- Departments of Medicine and Genetics, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Ahmet M Denli
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Emma R Hoppe
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - PingHsun Hsieh
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Christopher M Hill
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Joyce Lee
- Bionano Genomics, San Diego, CA 92121, USA
| | | | - Susan K Dutcher
- Departments of Medicine and Genetics, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Fred H Gage
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Wesley C Warren
- Departments of Medicine and Genetics, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - David Haussler
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Valerie A Schneider
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Han Cao
- Bionano Genomics, San Diego, CA 92121, USA
| | - Mario Ventura
- Department of Biology, University of Bari, Aldo Moro, Bari 70121, Italy
| | - Richard K Wilson
- Departments of Medicine and Genetics, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alex Pollen
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Ganster C, Wernstedt A, Kehrer-Sawatzki H, Messiaen L, Schmidt K, Rahner N, Heinimann K, Fonatsch C, Zschocke J, Wimmer K. Functional PMS2 hybrid alleles containing a pseudogene-specific missense variant trace back to a single ancient intrachromosomal recombination event. Hum Mutat 2010; 31:552-60. [PMID: 20186689 PMCID: PMC3341089 DOI: 10.1002/humu.21223] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sequence exchange between PMS2 and its pseudogene PMS2CL, embedded in an inverted duplication on chromosome 7p22, has been reported to be an ongoing process that leads to functional PMS2 hybrid alleles containing PMS2- and PMS2CL-specific sequence variants at the 5'-and the 3'-end, respectively. The frequency of PMS2 hybrid alleles, their biological significance, and the mechanisms underlying their formation are largely unknown. Here we show that overall hybrid alleles account for one-third of 384 PMS2 alleles analyzed in individuals of different ethnic backgrounds. Depending on the population, 14-60% of hybrid alleles carry PMS2CL-specific sequences in exons 13-15, the remainder only in exon 15. We show that exons 13-15 hybrid alleles, named H1 hybrid alleles, constitute different haplotypes but trace back to a single ancient intrachromosomal recombination event with crossover. Taking advantage of an ancestral sequence variant specific for all H1 alleles we developed a simple gDNA-based polymerase chain reaction (PCR) assay that can be used to identify H1-allele carriers with high sensitivity and specificity (100 and 99%, respectively). Because H1 hybrid alleles harbor missense variant p.N775S of so far unknown functional significance, we assessed the H1-carrier frequency in 164 colorectal cancer patients. So far, we found no indication that the variant plays a major role with regard to cancer susceptibility.
Collapse
Affiliation(s)
| | - Annekatrin Wernstedt
- Clinical Genetics Section, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University Innsbruck, Austria
| | | | - Ludwine Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Alabama
| | - Konrad Schmidt
- Clinical Genetics Section, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University Innsbruck, Austria
| | - Nils Rahner
- Institute of Human Genetics, University of Bonn, Germany
| | - Karl Heinimann
- Research Group Human Genetics, Department of Biomedicine, University Basel, Switzerland
| | - Christa Fonatsch
- Department of Medical Genetics, Medical University Vienna, Austria
| | - Johannes Zschocke
- Clinical Genetics Section, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University Innsbruck, Austria
| | - Katharina Wimmer
- Clinical Genetics Section, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University Innsbruck, Austria
| |
Collapse
|