1
|
Ding Y, Feng X, Liu Z, Liao Y, Pu L, Liu J, Wang H, Zhai Z, Xiong S. HDAC2-miR183-5p epigenetic circuit contributes to the growth of Philadelphia chromosome-positive B cell acute lymphoblastic leukemia via PTEN/AKT and c-MYC signaling pathway. J Leukoc Biol 2025; 117:qiae200. [PMID: 39258325 DOI: 10.1093/jleuko/qiae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/08/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024] Open
Abstract
Philadelphia chromosome-positive B cell acute lymphoblastic leukemia [Ph(+) B-ALL] is a hematological malignancy with a poor prognosis. Epigenetic abnormalities, especially abnormal histone acetylation and microRNA (miRNA) dysregulation, are a group of epigenetic patterns that contribute to leukemia progression. However, their regulatory mechanisms in Ph(+) B-ALL have not been fully elucidated. In this study, we identified that miR-183-5p is significantly downregulated in Ph(+) B-ALL and associated with poor prognosis. Moreover, we found that the BCR-ABL fusion gene is a key target gene of miR-183-5p. MiR-183-5p directly targets the BCR-ABL gene and induces cell apoptosis via PTEN/AKT and c-MYC signaling pathways. In addition, a histone deacetylase inhibitor could mitigate the suppressive effects of HDAC2 on miR-183-5p by promoting promoter acetylation, thereby enhancing cell apoptosis. In conclusion, our results indicate that miR-183-5p is a potential biomarker and suggest that a novel HDAC2-miR-183-5p epigenetic circuitry regulation may be involved in the pathogenesis of Ph(+) B-ALL. Taken together, These findings provide new insights into the design of promising molecular-targeted drugs for Ph(+) B-ALL.
Collapse
Affiliation(s)
- Yangyang Ding
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui 230031, China
| | - Xiangjiang Feng
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui 230031, China
| | - Zelin Liu
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui 230031, China
| | - Ya Liao
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui 230031, China
| | - Lianfang Pu
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui 230031, China
| | - Jun Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230031, China
| | - Huiping Wang
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui 230031, China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui 230031, China
| | - Zhimin Zhai
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui 230031, China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui 230031, China
| | - Shudao Xiong
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui 230031, China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui 230031, China
| |
Collapse
|
2
|
Saunders EJ, Kote-Jarai Z, Eeles RA. Identification of Germline Genetic Variants that Increase Prostate Cancer Risk and Influence Development of Aggressive Disease. Cancers (Basel) 2021; 13:760. [PMID: 33673083 PMCID: PMC7917798 DOI: 10.3390/cancers13040760] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PrCa) is a heterogeneous disease, which presents in individual patients across a diverse phenotypic spectrum ranging from indolent to fatal forms. No robust biomarkers are currently available to enable routine screening for PrCa or to distinguish clinically significant forms, therefore late stage identification of advanced disease and overdiagnosis plus overtreatment of insignificant disease both remain areas of concern in healthcare provision. PrCa has a substantial heritable component, and technological advances since the completion of the Human Genome Project have facilitated improved identification of inherited genetic factors influencing susceptibility to development of the disease within families and populations. These genetic markers hold promise to enable improved understanding of the biological mechanisms underpinning PrCa development, facilitate genetically informed PrCa screening programmes and guide appropriate treatment provision. However, insight remains largely lacking regarding many aspects of their manifestation; especially in relation to genes associated with aggressive phenotypes, risk factors in non-European populations and appropriate approaches to enable accurate stratification of higher and lower risk individuals. This review discusses the methodology used in the elucidation of genetic loci, genes and individual causal variants responsible for modulating PrCa susceptibility; the current state of understanding of the allelic spectrum contributing to PrCa risk; and prospective future translational applications of these discoveries in the developing eras of genomics and personalised medicine.
Collapse
Affiliation(s)
- Edward J. Saunders
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
| | - Zsofia Kote-Jarai
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
| | - Rosalind A. Eeles
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
- Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| |
Collapse
|
3
|
Zheng Z, Zheng X, Zhu Y, Gu X, Gu W, Xie X, Hu W, Jiang J. miR-183-5p Inhibits Occurrence and Progression of Acute Myeloid Leukemia via Targeting Erbin. Mol Ther 2019; 27:542-558. [PMID: 30799283 PMCID: PMC6401194 DOI: 10.1016/j.ymthe.2019.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 01/15/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023] Open
Abstract
Erbin has been shown to have significant effects on the development of solid tumors. However, little is known about its function and regulatory mechanism in hematological malignancies. The biological function of Erbin on cell proliferation was measured in vitro and in vivo. The predicted target of Erbin was validated by dual-luciferase reporter assay and rescue experiment. We found that overexpression of Erbin could inhibit the cell proliferation and promote the cell differentiation of acute myeloid leukemia (AML) cells, whereas depletion of Erbin could enhance the cell proliferation and block the cell differentiation in AML cells in vitro and in vivo. Besides, miR-183-5p was identified as the upstream regulator that negatively regulated the Erbin expression. The results were confirmed by dual-luciferase reporter and RNA pull-down assay. Furthermore, we found that miR-183-5p negatively regulated Erbin, resulting in enhanced cell proliferation of AML cells via activation of RAS/RAF/MEK/ERK and PI3K/AKT/FoxO3a pathways. The activation of RAS/RAF/MEK/ERK and PI3K/AKT/FoxO3a pathways was mediated by Erbin interacting with Grb2. These results were also validated by rescue experiments in vitro and in vivo. All above-mentioned findings indicated that the miR-183-5p/Erbin signaling pathway might represent a novel prognostic biomarker or therapeutic target for treatment of AML.
Collapse
Affiliation(s)
- Zhuojun Zheng
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China; Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China; Cancer Immunotherapy Engineering Research Center of Jiangsu Province, Changzhou, Jiangsu Province, China; Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu Province, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China; Cancer Immunotherapy Engineering Research Center of Jiangsu Province, Changzhou, Jiangsu Province, China; Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu Province, China
| | - Yuandong Zhu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Xiaoyan Gu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China; Cancer Immunotherapy Engineering Research Center of Jiangsu Province, Changzhou, Jiangsu Province, China; Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu Province, China
| | - Weiying Gu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| | - Xiaobao Xie
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Wenwei Hu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China; Cancer Immunotherapy Engineering Research Center of Jiangsu Province, Changzhou, Jiangsu Province, China; Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu Province, China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China; Cancer Immunotherapy Engineering Research Center of Jiangsu Province, Changzhou, Jiangsu Province, China; Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu Province, China.
| |
Collapse
|
4
|
|
5
|
Decker B, Ostrander EA. Dysregulation of the homeobox transcription factor gene HOXB13: role in prostate cancer. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2014; 7:193-201. [PMID: 25206306 PMCID: PMC4157396 DOI: 10.2147/pgpm.s38117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Prostate cancer (PC) is the most common noncutaneous cancer in men, and epidemiological studies suggest that about 40% of PC risk is heritable. Linkage analyses in hereditary PC families have identified multiple putative loci. However, until recently, identification of specific risk alleles has proven elusive. Cooney et al used linkage mapping and segregation analysis to identify a putative risk locus on chromosome 17q21-22. In search of causative variant(s) in genes from the candidate region, a novel, potentially deleterious G84E substitution in homeobox transcription factor gene HOXB13 was observed in multiple hereditary PC families. In follow-up testing, the G84E allele was enriched in cases, especially those with an early diagnosis or positive family history of disease. This finding was replicated by others, confirming HOXB13 as a PC risk gene. The HOXB13 protein plays diverse biological roles in embryonic development and terminally differentiated tissue. In tumor cell lines, HOXB13 participates in a number of biological functions, including coactivation and localization of the androgen receptor and FOXA1. However, no consensus role has emerged and many questions remain. All HOXB13 variants with a proposed role in PC risk are predicted to damage the protein and lie in domains that are highly conserved across species. The G84E variant has the strongest epidemiological support and lies in a highly conserved MEIS protein-binding domain, which binds cofactors required for activation. On the basis of epidemiological and biological data, the G84E variant likely modulates the interaction between the HOXB13 protein and the androgen receptor, as well as affecting FOXA1-mediated transcriptional programming. However, further studies of the mutated protein are required to clarify the mechanisms by which this translates into PC risk.
Collapse
Affiliation(s)
- Brennan Decker
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA ; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Nelson Q, Agarwal N, Stephenson R, Cannon-Albright LA. A population-based analysis of clustering identifies a strong genetic contribution to lethal prostate cancer. Front Genet 2013; 4:152. [PMID: 23970893 PMCID: PMC3747326 DOI: 10.3389/fgene.2013.00152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/22/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Prostate cancer is a common and often deadly cancer. Decades of study have yet to identify genes that explain much familial prostate cancer. Traditional linkage analysis of pedigrees has yielded results that are rarely validated. We hypothesize that there are rare segregating variants responsible for high-risk prostate cancer pedigrees, but recognize that within-pedigree heterogeneity is responsible for significant noise that overwhelms signal. Here we introduce a method to identify homogeneous subsets of prostate cancer, based on cancer characteristics, which show the best evidence for an inherited contribution. METHODS We have modified an existing method, the Genealogical Index of Familiality (GIF) used to show evidence for significant familial clustering. The modification allows a test for excess familial clustering of a subset of prostate cancer cases when compared to all prostate cancer cases. RESULTS Consideration of the familial clustering of eight clinical subsets of prostate cancer cases compared to the expected familial clustering of all prostate cancer cases identified three subsets of prostate cancer cases with evidence for familial clustering significantly in excess of expected. These subsets include prostate cancer cases diagnosed before age 50 years, prostate cancer cases with body mass index (BMI) greater than or equal to 30, and prostate cancer cases for whom prostate cancer contributed to death. CONCLUSIONS This analysis identified several subsets of prostate cancer cases that cluster significantly more than expected when compared to all prostate cancer familial clustering. A focus on high-risk prostate cancer cases or pedigrees with these characteristics will reduce noise and could allow identification of the rare predisposition genes or variants responsible.
Collapse
Affiliation(s)
- Quentin Nelson
- Internal Medicine, University of Utah School of Medicine Salt Lake City, UT, USA
| | | | | | | |
Collapse
|
7
|
Xu J, Sun J, Zheng SL. Prostate cancer risk-associated genetic markers and their potential clinical utility. Asian J Androl 2013; 15:314-22. [PMID: 23564047 PMCID: PMC3739659 DOI: 10.1038/aja.2013.42] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 03/16/2013] [Accepted: 03/18/2013] [Indexed: 02/02/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers among men in Western developed countries and its incidence has increased considerably in many other parts of the world, including China. The etiology of PCa is largely unknown but is thought to be multifactorial, where inherited genetics plays an important role. In this article, we first briefly review results from studies of familial aggregation and genetic susceptibility to PCa. We then recap key findings of rare and high-penetrance PCa susceptibility genes from linkage studies in PCa families. We devote a significant portion of this article to summarizing discoveries of common and low-penetrance PCa risk-associated single-nucleotide polymorphisms (SNPs) from genetic association studies in PCa cases and controls, especially those from genome-wide association studies (GWASs). A strong focus of this article is to review the literature on the potential clinical utility of these implicated genetic markers. Most of these published studies described PCa risk estimation using a genetic score derived from multiple risk-associated SNPs and its utility in determining the need for prostate biopsy. Finally, we comment on the newly proposed concept of genetic score; the notion is to treat it as a marker for genetic predisposition, similar to family history, rather than a diagnostic marker to discriminate PCa patients from non-cancer patients. Available evidence to date suggests that genetic score is an objective and better measurement of inherited risk of PCa than family history. Another unique feature of this article is the inclusion of genetic association studies of PCa in Chinese and Japanese populations.
Collapse
Affiliation(s)
- Jianfeng Xu
- Fudan Institute of Urology, Huashan Hospital, Fudan UniversityFudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | | | | |
Collapse
|
8
|
Isaacs WB. Inherited susceptibility for aggressive prostate cancer. Asian J Androl 2012; 14:415-8. [PMID: 22543676 PMCID: PMC3568760 DOI: 10.1038/aja.2011.146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 03/30/2012] [Accepted: 03/30/2012] [Indexed: 01/17/2023] Open
Abstract
Whether or not there is inherited basis for prostate cancer aggressiveness is not clear, but advances in DNA analysis should provide an answer to this question in the very near future.
Collapse
Affiliation(s)
- William B Isaacs
- Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
| |
Collapse
|
9
|
Lange EM, Salinas CA, Zuhlke KA, Ray AM, Wang Y, Lu Y, Ho LA, Luo J, Cooney KA. Early onset prostate cancer has a significant genetic component. Prostate 2012; 72:147-56. [PMID: 21538423 PMCID: PMC3784829 DOI: 10.1002/pros.21414] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 04/06/2011] [Indexed: 11/07/2022]
Abstract
BACKGROUND Prostate cancer (PCa) affects more than 190,000 men each year with ∼10% of men diagnosed at ≤55 years, that is, early onset (EO) PCa. Based on historical findings for other cancers, EO PCa likely reflects a stronger underlying genetic etiology. METHODS We evaluated the association between EO PCa and previously identified single nucleotide polymorphisms (SNPs) in 754 Caucasian cases from the Michigan Prostate Cancer Genetics Project (mean 49.8 years at diagnosis), 2,713 Caucasian controls from Illumina's iControlDB database and 1,163 PCa cases diagnosed at >55 years from the Cancer Genetic Markers of Susceptibility Study (CGEMS). RESULTS Significant associations existed for 13 of 14 SNPs (rs9364554 on 6q25, rs10486567 on 7p15, rs6465657 on 7q21, rs6983267 on 8q24, rs1447295 on 8q24, rs1571801 on 9q33, rs10993994 on 10q11, rs4962416 on 10q26, rs7931342 on 11q13, rs4430796 on 17q12, rs1859962 on 17q24.3, rs2735839 on 19q13, and rs5945619 on Xp11.22, but not rs2660753 on 3p12). EO PCa cases had a significantly greater cumulative number of risk alleles (mean 12.4) than iControlDB controls (mean 11.2; P = 2.1 × 10(-33)) or CGEMS cases (mean 11.9; P = 1.7 × 10(-5)). Notably, EO PCa cases had a higher frequency of the risk allele than CGEMS cases at 11 of 13 associated SNPs, with significant differences for five SNPs. EO PCa cases diagnosed at <50 (mean 12.8) also had significantly more risk alleles than those diagnosed at 50-55 years (mean 12.1; P = 0.0003). CONCLUSIONS These results demonstrate the potential for identifying PCa-associated genetic variants by focusing on the subgroup of men diagnosed with EO disease.
Collapse
Affiliation(s)
- Ethan M. Lange
- Department of Genetics, University of North Carolina, Chapel Hill NC 27599
- Department of Biostatistics, University of North Carolina, Chapel Hill NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill NC 27599
| | - Claudia A. Salinas
- Department of Internal Medicine, University of Michigan Medical School, AnnArbor, MI 48109
| | - Kimberly A. Zuhlke
- Department of Internal Medicine, University of Michigan Medical School, AnnArbor, MI 48109
| | - Anna M. Ray
- Department of Internal Medicine, University of Michigan Medical School, AnnArbor, MI 48109
| | - Yunfei Wang
- Department of Genetics, University of North Carolina, Chapel Hill NC 27599
- Department of Biostatistics, University of North Carolina, Chapel Hill NC 27599
| | - Yurong Lu
- Department of Genetics, University of North Carolina, Chapel Hill NC 27599
| | - Lindsey A. Ho
- Department of Biostatistics, University of North Carolina, Chapel Hill NC 27599
| | - Jingchun Luo
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill NC 27599
| | - Kathleen A. Cooney
- Department of Internal Medicine, University of Michigan Medical School, AnnArbor, MI 48109
- Department of Urology, University of Michigan Medical School, AnnArbor, MI 48109
- University of Michigan Comprehensive Cancer Center, AnnArbor, MI 48109
| |
Collapse
|
10
|
Fridley BL, Serie D, Jenkins G, White K, Bamlet W, Potter JD, Goode EL. Bayesian mixture models for the incorporation of prior knowledge to inform genetic association studies. Genet Epidemiol 2010; 34:418-26. [PMID: 20583285 PMCID: PMC2910528 DOI: 10.1002/gepi.20494] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the last decade, numerous genome-wide linkage and association studies of complex diseases have been completed. The critical question remains of how to best use this potentially valuable information to improve study design and statistical analysis in current and future genetic association studies. With genetic effect size for complex diseases being relatively small, the use of all available information is essential to untangle the genetic architecture of complex diseases. One promising approach to incorporating prior knowledge from linkage scans, or other information, is to up- or down-weight P-values resulting from genetic association study in either a frequentist or Bayesian manner. As an alternative to these methods, we propose a fully Bayesian mixture model to incorporate previous knowledge into on-going association analysis. In this approach, both the data and previous information collectively inform the association analysis, in contrast to modifying the association results (P-values) to conform to the prior knowledge. By using a Bayesian framework, one has flexibility in modeling, and is able to comprehensively assess the impact of model specification on posterior inferences. We illustrate the use of this method through a genome-wide linkage study of colorectal cancer, and a genome-wide association study of colorectal polyps.
Collapse
Affiliation(s)
- Brooke L Fridley
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Lange EM, Beebe-Dimmer JL, Ray AM, Zuhlke KA, Ellis J, Wang Y, Walters S, Cooney KA. Genome-wide linkage scan for prostate cancer susceptibility from the University of Michigan Prostate Cancer Genetics Project: suggestive evidence for linkage at 16q23. Prostate 2009; 69:385-91. [PMID: 19035517 PMCID: PMC2712837 DOI: 10.1002/pros.20891] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Prostate cancer linkage studies have been used to localize rare and presumably highly penetrant cancer susceptibility genes. Underlying genetic heterogeneity, as well as the high sporadic background of the disease, has resulted in many signals that are often not reproducible between research studies. METHODS We conducted a SNP-based genome wide linkage scan on 131 Caucasian prostate cancer families participating in the University of Michigan Prostate Cancer Genetics Project (PCGP). RESULTS The strongest evidence for linkage was detected at 16q23 (LOD = 2.70 at rs1079635). Prostate cancer linkage to the same region of 16q23 has been observed by others and the region contains several strong candidate genes including the known prostate cancer tumor suppressor genes ATBF1 and WWOX. This linkage signal was not detected in our prior linkage study on 175 PCGP families, illustrating the genetic heterogeneity underlying prostate cancer susceptibility. CONCLUSIONS Further linkage studies in combination with tumor analyses from linked families are in progress to identify the putative hereditary prostate cancer gene at 16q23.
Collapse
Affiliation(s)
- Ethan M. Lange
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina
- The Curriculumin Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina
| | - Jennifer L. Beebe-Dimmer
- Karmanos Cancer Institute, Detroit, Michigan
- Department of Internal Medicine, Wayne State University, Detroit, Michigan
| | - Anna M. Ray
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kimberly A. Zuhlke
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jaclyn Ellis
- The Curriculumin Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina
| | - Yunfei Wang
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Sarah Walters
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kathleen A. Cooney
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Internal Medicine and Urology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
12
|
Stanford JL, FitzGerald LM, McDonnell SK, Carlson EE, McIntosh LM, Deutsch K, Hood L, Ostrander EA, Schaid DJ. Dense genome-wide SNP linkage scan in 301 hereditary prostate cancer families identifies multiple regions with suggestive evidence for linkage. Hum Mol Genet 2009; 18:1839-48. [PMID: 19251732 DOI: 10.1093/hmg/ddp100] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The search for susceptibility loci in hereditary prostate cancer (HPC) has proven challenging due to genetic and disease heterogeneity. Multiple risk loci have been identified to date, however few loci have been replicated across independent linkage studies. In addition, most previous analyses have been hampered by the relatively poor information content provided by microsatellite scans. To overcome these issues, we have performed linkage analyses on members of 301 HPC families genotyped using the Illumina SNP linkage panel IVb. The information content for this panel, averaged over all pedigrees and all chromosomes, was 86% (range 83-87% over chromosomes). Analyses were also stratified on families according to disease aggressiveness, age at diagnosis and number of affected individuals to achieve more genetically homogeneous subsets. Suggestive evidence for linkage was identified at 7q21 (HLOD = 1.87), 8q22 (KCLOD = 1.88) and 15q13-q14 (HLOD = 1.99) in 289 Caucasian families, and nominal evidence for linkage was identified at 2q24 (LOD = 1.73) in 12 African American families. Analysis of more aggressive prostate cancer phenotypes provided evidence for linkage to 11q25 (KCLOD = 2.02), 15q26 (HLOD = 1.99) and 17p12 (HLOD = 2.13). Subset analyses according to age at diagnosis and number of affected individuals also identified several regions with suggestive evidence for linkage, including a KCLOD of 2.82 at 15q13-q14 in 128 Caucasian families with younger ages at diagnosis. The results presented here provide further evidence for a prostate cancer susceptibility locus on chromosome 15q and demonstrate the power of utilizing high information content SNP scans in combination with homogenous collections of large prostate cancer pedigrees.
Collapse
Affiliation(s)
- Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ostrander EA, Udler MS. The role of the BRCA2 gene in susceptibility to prostate cancer revisited. Cancer Epidemiol Biomarkers Prev 2008; 17:1843-8. [PMID: 18708369 PMCID: PMC2562346 DOI: 10.1158/1055-9965.epi-08-0556] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer is a genetically complex disease with multiple predisposing factors affecting presentation, progression, and outcome. Epidemiologic studies have long shown an aggregation of breast and prostate cancer in some families. More recently, studies have reported an apparent excess of prostate cancer cases among BRCA2 mutation-carrying families. Additionally, population-based screens of early-onset prostate cancer patients have suggested that the prevalence of deleterious BRCA2 mutations in this group is 1% to 2%, imparting a significantly increased risk of the disease compared with noncarrier cases. However, studies of high-risk prostate cancer families suggest that BRCA2 plays at most a minimal role in these individuals, highlighting the potential genetic heterogeneity of the disease. In this commentary, we review the current literature and hypotheses surrounding the relationship between BRCA2 mutations and susceptibility to prostate cancer and speculate on the potential for involvement of additional genes.
Collapse
Affiliation(s)
- Elaine A Ostrander
- Cancer Genetic Branch, National Human Genome Research Institute, NIH, Room 52451, Building 50, Bethesda, MD 20892, USA.
| | | |
Collapse
|
14
|
Murabito JM, Rosenberg CL, Finger D, Kreger BE, Levy D, Splansky GL, Antman K, Hwang SJ. A genome-wide association study of breast and prostate cancer in the NHLBI's Framingham Heart Study. BMC MEDICAL GENETICS 2007; 8 Suppl 1:S6. [PMID: 17903305 PMCID: PMC1995609 DOI: 10.1186/1471-2350-8-s1-s6] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Breast and prostate cancer are two commonly diagnosed cancers in the United States. Prior work suggests that cancer causing genes and cancer susceptibility genes can be identified. METHODS We conducted a genome-wide association study (Affymetrix 100K SNP GeneChip) of cancer in the community-based Framingham Heart Study. We report on 2 cancer traits--prostate cancer and breast cancer--in up to 1335 participants from 330 families (54% women, mean entry age 33 years). Multivariable-adjusted residuals, computed using Cox proportional hazards models, were tested for association with qualifying SNPs (70, 987 autosomal SNPs with genotypic call rate > or =80%, minor allele frequency > or =10%, Hardy-Weinberg test p > or = 0.001) using generalized estimating equations (GEE) models and family based association tests (FBAT). RESULTS There were 58 women with breast cancer and 59 men with prostate cancer. No SNP associations attained genome-wide significance. The top SNP associations in GEE models for each trait were as follows: breast cancer, rs2075555, p = 8.0 x 10(-8) in COL1A1; and prostate cancer, rs9311171, p = 1.75 x 10(-6) in CTDSPL. In analysis of selected candidate cancer susceptibility genes, two MSR1 SNPs (rs9325782, GEE p = 0.008 and rs2410373, FBAT p = 0.021) were associated with prostate cancer and three ERBB4 SNPs (rs905883 GEE p = 0.0002, rs7564590 GEE p = 0.003, rs7558615 GEE p = 0.0078) were associated with breast cancer. The previously reported risk SNP for prostate cancer, rs1447295, was not included on the 100K chip. Results of cancer phenotype-genotype associations for all autosomal SNPs are web posted at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007 webcite. CONCLUSION Although no association attained genome-wide significance, several interesting associations emerged for breast and prostate cancer. These findings can serve as a resource for replication in other populations to identify novel biologic pathways contributing to cancer susceptibility.
Collapse
Affiliation(s)
- Joanne M Murabito
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Section of General Internal Medicine and the Sections of Hematology/Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Carol L Rosenberg
- Section of General Internal Medicine and the Sections of Hematology/Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Daniel Finger
- Section of General Internal Medicine and the Sections of Hematology/Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Bernard E Kreger
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Section of General Internal Medicine and the Sections of Hematology/Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Daniel Levy
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Greta Lee Splansky
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - Karen Antman
- Section of General Internal Medicine and the Sections of Hematology/Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Shih-Jen Hwang
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| |
Collapse
|
15
|
Christensen GB, Camp NJ, Farnham JM, Cannon-Albright LA. Genome-wide linkage analysis for aggressive prostate cancer in Utah high-risk pedigrees. Prostate 2007; 67:605-13. [PMID: 17299800 DOI: 10.1002/pros.20554] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND It has been proposed that studying alternative phenotypes, such as tumor aggressiveness, may be a solution for overcoming the apparent heterogeneity that has hindered the identification of prostate cancer (PC) genes. We present the results of a genome-scan for predisposition to aggressive PC using the Utah high-risk pedigree resource. METHODS We identified 259 subjects with aggressive PC in 57 extended and nuclear families. Parametric and non-parametric multipoint linkage statistics were calculated for a genome-wide set of 401 microsatellite markers using the MCLINK software package. Stratification analyses by the number of affected subjects per pedigree (<5, >or=5) and the average age at diagnosis of affected subjects (<70 years, >or=70 years) were also performed. RESULTS No significant results were observed at the genome-wide level, but suggestive evidence for linkage was observed on chromosomes 9q (HLOD = 2.04) and 14q (HLOD = 2.08); several pedigrees showed individual evidence for linkage at each locus (LOD > 0.58). The subset of pedigrees with earlier age at onset demonstrated nominal linkage evidence on chromosomes 3q (HLOD = 1.79), 8q (HLOD = 1.67), and 20q (HLOD=1.82). The late-onset subset showed suggestive linkage on chromosome 6p (HLOD = 2.37) and the subset of pedigrees with fewer than five affected subjects showed suggestive linkage on chromosome 10p (HLOD = 1.99). CONCLUSIONS Linkage evidence observed on chromosomes 6p, 8q, and 20q support previously reported PC aggressiveness loci. While these results are encouraging, further research is necessary to identify the gene or genes responsible for PC aggressiveness and surmount the overarching problem of PC heterogeneity.
Collapse
Affiliation(s)
- G B Christensen
- Department of Biomedical Informatics, University of Utah School of Medicine, Utah, USA.
| | | | | | | |
Collapse
|
16
|
Lange EM, Robbins CM, Gillanders EM, Zheng SL, Xu J, Wang Y, White KA, Chang BL, Ho LA, Trent JM, Carpten JD, Isaacs WB, Cooney KA. Fine-mapping the putative chromosome 17q21-22 prostate cancer susceptibility gene to a 10 cM region based on linkage analysis. Hum Genet 2006; 121:49-55. [PMID: 17120048 DOI: 10.1007/s00439-006-0274-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 10/02/2006] [Indexed: 11/25/2022]
Abstract
Prostate cancer linkage studies have suggested the existence of a prostate cancer susceptibility gene on chromosome 17q21-22. We now report the results of an extended linkage analysis including 95 new multiplex prostate cancer families and 9 additional microsatellite markers resulting in a maximum LOD score of 2.99 at approximately 81-82 cM for all 453 pedigrees. Results from these 95 new pedigrees provide additional support for a chromosome 17q21-22 prostate cancer susceptibility gene. Inclusion of the 9 additional markers significantly reduced the size of the candidate region, as defined using a 1-LOD support interval, especially when focusing analyses on subsets of pedigrees with four or more confirmed affecteds or average age of diagnosis less than or equal to 65 years. A novel subset analysis of only those families (n = 147) that had four or more prostate cancer cases and an average age of prostate cancer diagnosis < or = 65 years results in a maximum LOD score of 5.49 at 78 cM with a 1-LOD support interval of 10 cM. This large set of pedigrees with four more prostate cancer cases characterized by early-onset disease will serve as a useful resource for identifying the putative 17q21-22 prostate cancer susceptibility gene.
Collapse
Affiliation(s)
- Ethan M Lange
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Schaid DJ, McDonnell SK, Zarfas KE, Cunningham JM, Hebbring S, Thibodeau SN, Eeles RA, Easton DF, Foulkes WD, Simard J, Giles GG, Hopper JL, Mahle L, Moller P, Badzioch M, Bishop DT, Evans C, Edwards S, Meitz J, Bullock S, Hope Q, Guy M, Hsieh CL, Halpern J, Balise RR, Oakley-Girvan I, Whittemore AS, Xu J, Dimitrov L, Chang BL, Adams TS, Turner AR, Meyers DA, Friedrichsen DM, Deutsch K, Kolb S, Janer M, Hood L, Ostrander EA, Stanford JL, Ewing CM, Gielzak M, Isaacs SD, Walsh PC, Wiley KE, Isaacs WB, Lange EM, Ho LA, Beebe-Dimmer JL, Wood DP, Cooney KA, Seminara D, Ikonen T, Baffoe-Bonnie A, Fredriksson H, Matikainen MP, Tammela TLJ, Bailey-Wilson J, Schleutker J, Maier C, Herkommer K, Hoegel JJ, Vogel W, Paiss T, Wiklund F, Emanuelsson M, Stenman E, Jonsson BA, Grönberg H, Camp NJ, Farnham J, Cannon-Albright LA, Catalona WJ, Suarez BK, Roehl KA, Investigators of the International Consortium for Prostate Cancer Genetics. Pooled genome linkage scan of aggressive prostate cancer: results from the International Consortium for Prostate Cancer Genetics. Hum Genet 2006; 120:471-85. [PMID: 16932970 DOI: 10.1007/s00439-006-0219-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 06/05/2006] [Indexed: 10/24/2022]
Abstract
While it is widely appreciated that prostate cancers vary substantially in their propensity to progress to a life-threatening stage, the molecular events responsible for this progression have not been identified. Understanding these molecular mechanisms could provide important prognostic information relevant to more effective clinical management of this heterogeneous cancer. Hence, through genetic linkage analyses, we examined the hypothesis that the tendency to develop aggressive prostate cancer may have an important genetic component. Starting with 1,233 familial prostate cancer families with genome scan data available from the International Consortium for Prostate Cancer Genetics, we selected those that had at least three members with the phenotype of clinically aggressive prostate cancer, as defined by either high tumor grade and/or stage, resulting in 166 pedigrees (13%). Genome-wide linkage data were then pooled to perform a combined linkage analysis for these families. Linkage signals reaching a suggestive level of significance were found on chromosomes 6p22.3 (LOD = 3.0), 11q14.1-14.3 (LOD = 2.4), and 20p11.21-q11.21 (LOD = 2.5). For chromosome 11, stronger evidence of linkage (LOD = 3.3) was observed among pedigrees with an average at diagnosis of 65 years or younger. Other chromosomes that showed evidence for heterogeneity in linkage across strata were chromosome 7, with the strongest linkage signal among pedigrees without male-to-male disease transmission (7q21.11, LOD = 4.1), and chromosome 21, with the strongest linkage signal among pedigrees that had African American ancestry (21q22.13-22.3; LOD = 3.2). Our findings suggest several regions that may contain genes which, when mutated, predispose men to develop a more aggressive prostate cancer phenotype. This provides a basis for attempts to identify these genes, with potential clinical utility for men with aggressive prostate cancer and their relatives.
Collapse
Affiliation(s)
- Daniel J Schaid
- Harwick 7, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|