1
|
Ochoa E. Alteration of Genomic Imprinting after Assisted Reproductive Technologies and Long-Term Health. Life (Basel) 2021; 11:728. [PMID: 34440472 PMCID: PMC8398258 DOI: 10.3390/life11080728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023] Open
Abstract
Assisted reproductive technologies (ART) are the treatment of choice for some infertile couples and even though these procedures are generally considered safe, children conceived by ART have shown higher reported risks of some perinatal and postnatal complications such as low birth weight, preterm birth, and childhood cancer. In addition, the frequency of some congenital imprinting disorders, like Beckwith-Wiedemann Syndrome and Silver-Russell Syndrome, is higher than expected in the general population after ART. Experimental evidence from animal studies suggests that ART can induce stress in the embryo and influence gene expression and DNA methylation. Human epigenome studies have generally revealed an enrichment of alterations in imprinted regions in children conceived by ART, but no global methylation alterations. ART procedures occur simultaneously with the establishment and maintenance of imprinting during embryonic development, so this may underlie the apparent sensitivity of imprinted regions to ART. The impact in adulthood of imprinting alterations that occurred during early embryonic development is still unclear, but some experimental evidence in mice showed higher risk to obesity and cardiovascular disease after the restriction of some imprinted genes in early embryonic development. This supports the hypothesis that imprinting alterations in early development might induce epigenetic programming of metabolism and affect long-term health. Given the growing use of ART, it is important to determine the impact of ART in genomic imprinting and long-term health.
Collapse
Affiliation(s)
- Eguzkine Ochoa
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| |
Collapse
|
2
|
Chen X, Ma Y, Wang L, Zhang X, Yu Y, Lü W, Xie X, Cheng X. Loss of X Chromosome Inactivation in Androgenetic Complete Hydatidiform Moles With 46, XX Karyotype. Int J Gynecol Pathol 2021; 40:333-341. [PMID: 33021557 PMCID: PMC8183483 DOI: 10.1097/pgp.0000000000000697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Most complete hydatidiform moles (CHMs) showcase an androgenetic nature of the nuclear genome. In the normal female embryo, one of the 2 X chromosomes is inactive. However, the status of X chromosome inactivation (XCI) in androgenetic CHMs remains unknown. Seventy-one androgenetic CHM tissues with the 46, XX karyotype were collected. Seventy-four normal female villi and 74 normal male villi were collected as controls. The expression of XCI markers (XIST, TSIX, and XACT) and an X-linked gene (CDX4) was detected by real-time polymerase chain reaction. Other XCI-associated genes were also examined, including the methylation status of the human androgen receptor gene (HUMARA) by methylation-specific polymerase chain reaction), and the expression of H3K27me3, USP21, and Nanog by Western blot and immunofluorescence, respectively. In addition, 126 CHMs and 63 normal female villous samples were collected for CDX4 immunohistochemical staining. The expression of XIST RNA was significantly lower, and TSIX RNA expression was significantly higher in androgenetic CHMs than that in normal female villi (both P<0.01). The expression of CDX4 mRNA in androgenetic CHMs was elevated compared with that in normal male and normal female villous samples (both P<0.01), and CDX4 protein expression was also higher than that in normal female villous samples (P<0.01). The expression of H3K27me3 was lower in androgenetic CHMs compared with that in normal female villi(P<0.01). The methylation pattern of HUMARA was found lacking in androgenetic CHMs. The expression of Nanog and UPS21 protein in androgenetic CHMs was higher than that in normal villi (both P<0.01). Both X chromosomes are active in androgenetic CHMs with the 46, XX karyotype, and the USP21-Nanog pathway may be involved in the disruption of XCI during this process.
Collapse
|
3
|
Carriere J, Dorfleutner A, Stehlik C. NLRP7: From inflammasome regulation to human disease. Immunology 2021; 163:363-376. [PMID: 34021586 DOI: 10.1111/imm.13372] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Nucleotide-binding oligomerization domain (NOD) and leucine-rich repeat (LRR)-containing receptors or NOD-like receptors (NLRs) are cytosolic pattern recognition receptors, which sense conserved microbial patterns and host-derived danger signals to elicit innate immune responses. The activation of several prototypic NLRs, including NLR and pyrin domain (PYD) containing (NLRP) 1, NLRP3 and NLR and caspase recruitment domain (CARD) containing (NLRC) 4, results in the assembly of inflammasomes, which are large, cytoplasmic multiprotein signalling platforms responsible for the maturation and release of the pro-inflammatory cytokines IL-1β and IL-18, and for the induction of a specialized form of inflammatory cell death called pyroptosis. However, the function of other members of the NLR family, including NLRP7, are less well understood. NLRP7 has been linked to innate immune signalling, but its precise role is still controversial as it has been shown to positively and negatively affect inflammasome responses. Inflammasomes are essential for homeostasis and host defence, but inappropriate inflammasome responses due to hereditary mutations and somatic mosaicism in inflammasome components and defective regulation have been linked to a broad spectrum of human diseases. A compelling connection between NLRP7 mutations and reproductive diseases, and in particular molar pregnancy, has been established. However, the molecular mechanisms by which NLRP7 mutations contribute to reproductive diseases are largely unknown. In this review, we focus on NLRP7 and discuss the current evidence of its role in inflammasome regulation and its implication in human reproductive diseases.
Collapse
Affiliation(s)
- Jessica Carriere
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Andrea Dorfleutner
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Christian Stehlik
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
4
|
Ishida M. New developments in Silver-Russell syndrome and implications for clinical practice. Epigenomics 2016; 8:563-80. [PMID: 27066913 DOI: 10.2217/epi-2015-0010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Silver-Russell syndrome is a clinically and genetically heterogeneous disorder, characterized by prenatal and postnatal growth restriction, relative macrocephaly, body asymmetry and characteristic facial features. It is one of the imprinting disorders, which results as a consequence of aberrant imprinted gene expressions. Currently, maternal uniparental disomy of chromosome 7 accounts for approximately 10% of Silver-Russell syndrome cases, while ~50% of patients have hypomethylation at imprinting control region 1 at chromosome 11p15.5 locus, leaving ~40% of cases with unknown etiologies. This review aims to provide a comprehensive list of molecular defects in Silver-Russell syndrome reported to date and to highlight the importance of multiple-loci/tissue testing and trio (both parents and proband) screening. The epigenetic and phenotypic overlaps with other imprinting disorders will also be discussed.
Collapse
Affiliation(s)
- Miho Ishida
- University College London, Institute of Child Health, Genetics & Genomic Medicine programme, Genetics & Epigenetics in Health & Diseases Section, 30 Guilford Street, London, WC1N 1EH, UK
| |
Collapse
|
5
|
Lepshin MV, Sazhenova EA, Lebedev IN. Multiple epimutations in imprinted genes in the human genome and congenital disorders. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414030053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Dias RP, Maher ER. Genes, assisted reproductive technology and trans-illumination. Epigenomics 2013; 5:331-40. [PMID: 23750647 DOI: 10.2217/epi.13.28] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Genomic imprinting is a parent-of-origin allele-specific epigenetic process that is critical for normal development and health. The establishment and maintenance of normal imprinting is dependent on both cis-acting imprinting control centers, which are marked by differentially (parental allele specific) methylated marks, and trans mechanisms, which regulate the establishment and/or maintenance of the correct methylation epigenotype at the imprinting control centers. Studies of rare human imprinting disorders such as familial hydatidiform mole, Beckwith-Wiedemann syndrome and familial transient neonatal diabetes mellitus have enabled the identification of genetic (e.g., mutations in KHDC3L [C6ORF221], NLRP2 [NALP2], NLRP7 [NALP7] and ZFP57) and environmental (assisted reproductive technologies) factors that can disturb the normal trans mechanisms for imprinting establishment and/or maintenance. Here we review the clinical and molecular aspects of these imprinting disorders in order to demonstrate how the study of rare inherited disorders can illuminate the molecular characteristics of fundamental epigenetic processes, such as genomic imprinting.
Collapse
Affiliation(s)
- Renuka P Dias
- Centre for Rare Diseases & Personalised Medicine, School of Clinical & Experimental Medicine, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | |
Collapse
|
7
|
Beygo J, Ammerpohl O, Gritzan D, Heitmann M, Rademacher K, Richter J, Caliebe A, Siebert R, Horsthemke B, Buiting K. Deep bisulfite sequencing of aberrantly methylated loci in a patient with multiple methylation defects. PLoS One 2013; 8:e76953. [PMID: 24130816 PMCID: PMC3793946 DOI: 10.1371/journal.pone.0076953] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/28/2013] [Indexed: 12/17/2022] Open
Abstract
NLRP7 is a maternal effect gene as maternal mutations in this gene cause recurrent hydatidiform moles, spontaneous abortions and stillbirths, whereas live births are very rare. We have studied a patient with multiple anomalies born to a mother with a heterozygous NLRP7 mutation. By array-based CpG methylation analysis of blood DNA from the patient, his parents and 18 normal controls on Illumina Infinium HumanMethylation27 BeadChips we found that the patient had methylation changes (delta ß ≥ 0.3) at many imprinted loci as well as at 87 CpGs associated with 85 genes of unknown imprinting status. Using a pseudoproband (permutation) approach, we found methylation changes at only 7-24 CpGs (mean 15; standard deviation 4.84) in the controls. Thus, the number of abberantly methylated CpGs in the patient is more than 14 standard deviations higher. In order to identify novel imprinted genes among the 85 conspicuous genes in the patient, we selected 19 (mainly hypomethylated) genes for deep bisulfite amplicon sequencing on the ROCHE/454 Genome Sequencer in the patient and at least two additional controls. These controls had not been included in the array analysis and were heterozygous for a single nucleotide polymorphism at the test locus, so that allele-specific DNA methylation patterns could be determined. Apart from FAM50B, which we proved to be imprinted in blood, we did not observe allele-specific DNA methylation at the other 18 loci. We conclude that the patient does not only have methylation defects at imprinted loci but (at least in blood) also an excess of methylation changes at apparently non-imprinted loci.
Collapse
Affiliation(s)
- Jasmin Beygo
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Daniela Gritzan
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Melanie Heitmann
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Katrin Rademacher
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Julia Richter
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Almuth Caliebe
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Bernhard Horsthemke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Karin Buiting
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
8
|
Mahadevan S, Wen S, Wan YW, Peng HH, Otta S, Liu Z, Iacovino M, Mahen EM, Kyba M, Sadikovic B, Van den Veyver IB. NLRP7 affects trophoblast lineage differentiation, binds to overexpressed YY1 and alters CpG methylation. Hum Mol Genet 2013; 23:706-16. [PMID: 24105472 DOI: 10.1093/hmg/ddt457] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Maternal-effect mutations in NLRP7 cause rare biparentally inherited hydatidiform moles (BiHMs), abnormal pregnancies containing hypertrophic vesicular trophoblast but no embryo. BiHM trophoblasts display abnormal DNA methylation patterns affecting maternally methylated germline differentially methylated regions (gDMRs), suggesting that NLRP7 plays an important role in reprogramming imprinted gDMRs. How NLRP7-a component of the CATERPILLAR family of proteins involved in innate immunity and apoptosis-causes these specific DNA methylation and trophoblast defects is unknown. Because rodents lack NLRP7, we used human embryonic stem cells to study its function and demonstrate that NLRP7 interacts with YY1, an important chromatin-binding factor. Reduced NLRP7 levels alter DNA methylation and accelerate trophoblast lineage differentiation. NLRP7 thus appears to function in chromatin reprogramming and DNA methylation in the germline or early embryonic development, functions not previously associated with members of the NLRP family.
Collapse
|
9
|
Abstract
Zusammenfassung
Bei allen derzeit bekannten Imprintingerkrankungen wurde über eine Assoziation mit molekularen Veränderungen an krankheitsspezifischen chromosomalen Loci berichtet. Die locusspezifische Zuordnung einiger dieser Krankheitsbilder wird erschwert durch den Nachweis so genannter Multilocusmethylierungsdefekte (MLMD): Dabei besteht nicht nur an krankheitsspezifischen geprägten Genorten eine aberrante Methylierung, sondern auch an anderen Loci. Klinisch zeigt sich mehrheitlich die Symptomatik nur einer Imprintingerkrankung, in einzelnen Fällen überlappen sich jedoch verschiedene Krankheitsbilder. Umgekehrt wurden auch Fälle mit gleichartigem MLMD-Muster, aber unterschiedlichen Krankheitsbildern beschrieben. Zur Abklärung von MLMD sollten daher Testverfahren eingesetzt werden, die auf Methylierungsveränderungen an verschiedenen geprägten Loci ausgerichtet sind. Aber auch bei der MLMD-Testung ist eine eindeutige Unterscheidung des zugrunde liegenden Mutationstyps als Basis für eine gezielte genetische Beratung erforderlich.
Collapse
|
10
|
Eggermann T, Leisten I, Binder G, Begemann M, Spengler S. Disturbed methylation at multiple imprinted loci: an increasing observation in imprinting disorders. Epigenomics 2012; 3:625-37. [PMID: 22126250 DOI: 10.2217/epi.11.84] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The widely accepted association between aberrant methylation at specific imprinted loci and distinct imprinting disorders has recently been brought into question by the identification of methylation defects at multiple loci (multilocus methylation defect [MLMD]). Strikingly, in different imprinting disorders, the same MLMD patterns can be observed. The cause for this ambiguous epigenotype-phenotype correlation is currently unknown. Future strategies to solve this enigma have to include all levels of imprinting regulation, ranging from DNA methylation to chromatin organization, as any disturbance of the balanced interaction between the different players in imprinting regulation might cause disturbed expression of imprinted factors. The molecular analysis of MLMD will help in discovering these interactions and contribute to the understanding of genomic imprinting and its disturbances.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institute of Human Genetics, RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | | | | | | | | |
Collapse
|
11
|
Sazhenova EA, Skryabin NA, Sukhanova NN, Lebedev IN. Multilocus epimutations of imprintome in the pathology of human embryo development. Mol Biol 2012. [DOI: 10.1134/s0026893312010207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Hoffner L, Surti U. The genetics of gestational trophoblastic disease: a rare complication of pregnancy. Cancer Genet 2012; 205:63-77. [DOI: 10.1016/j.cancergen.2012.01.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/15/2011] [Accepted: 01/10/2012] [Indexed: 11/28/2022]
|
13
|
Tomizawa SI, Sasaki H. Genomic imprinting and its relevance to congenital disease, infertility, molar pregnancy and induced pluripotent stem cell. J Hum Genet 2012; 57:84-91. [DOI: 10.1038/jhg.2011.151] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Abstract
Genomic imprinting represents a form of epigenetic control of gene expression in which one allele of a gene is preferentially expressed according to the parent-of-origin of the allele. Genomic imprinting plays an important role in normal growth and development. Disruption of imprinting can result in a number of human imprinting syndromes and predispose to cancer. In this chapter, we describe a number of human imprinting syndromes to illustrate the concepts of genomic imprinting and how loss of imprinting of imprinted genes their relationship to human neoplasia.
Collapse
Affiliation(s)
- Derek Hock Kiat Lim
- Department of Medical & Molecular Genetics, University of Birmingham College of Medical and Dental Sciences, Edgbaston, Birmingham, UK
| | | |
Collapse
|
15
|
Abstract
The cis-acting regulatory sequences of imprinted gene loci, called imprinting control regions (ICRs), acquire specific imprint marks in germ cells, including DNA methylation. These epigenetic imprints ensure that imprinted genes are expressed exclusively from either the paternal or the maternal allele in offspring. The last few years have witnessed a rapid increase in studies on how and when ICRs become marked by and subsequently maintain such epigenetic modifications. These novel findings are summarised in this review, which focuses on the germline acquisition of DNA methylation imprints and particularly on the combined role of primary sequence specificity, chromatin configuration, non-histone proteins and transcriptional events.
Collapse
|
16
|
Pinheiro AS, Proell M, Eibl C, Page R, Schwarzenbacher R, Peti W. Three-dimensional structure of the NLRP7 pyrin domain: insight into pyrin-pyrin-mediated effector domain signaling in innate immunity. J Biol Chem 2010; 285:27402-27410. [PMID: 20547486 DOI: 10.1074/jbc.m110.113191] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The innate immune system provides an initial line of defense against infection. Nucleotide-binding domain- and leucine-rich repeat-containing protein (NLR or (NOD-like)) receptors play a critical role in the innate immune response by surveying the cytoplasm for traces of intracellular invaders and endogenous stress signals. NLRs themselves are multi-domain proteins. Their N-terminal effector domains (typically a pyrin or caspase activation and recruitment domain) are responsible for driving downstream signaling and initiating the formation of inflammasomes, multi-component complexes necessary for cytokine activation. However, the currently available structures of NLR effector domains have not yet revealed the mechanism of their differential modes of interaction. Here, we report the structure and dynamics of the N-terminal pyrin domain of NLRP7 (NLRP7 PYD) obtained by NMR spectroscopy. The NLRP7 PYD adopts a six-alpha-helix bundle death domain fold. A comparison of conformational and dynamics features of the NLRP7 PYD with other PYDs showed distinct differences for helix alpha3 and loop alpha2-alpha3, which, in NLRP7, is stabilized by a strong hydrophobic cluster. Moreover, the NLRP7 and NLRP1 PYDs have different electrostatic surfaces. This is significant, because death domain signaling is driven by electrostatic contacts and stabilized by hydrophobic interactions. Thus, these results provide new insights into NLRP signaling and provide a first molecular understanding of inflammasome formation.
Collapse
Affiliation(s)
- Anderson S Pinheiro
- Departments of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island 02912, Austria
| | - Martina Proell
- Department of Molecular Biology, University of Salzburg, A-5020 Salzburg, Austria
| | - Clarissa Eibl
- Department of Molecular Biology, University of Salzburg, A-5020 Salzburg, Austria
| | - Rebecca Page
- Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, Austria
| | | | - Wolfgang Peti
- Departments of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island 02912, Austria.
| |
Collapse
|
17
|
Abstract
Human imprinting disorders can provide critical insights into the role of imprinted genes in human development and health, and the molecular mechanisms that regulate genomic imprinting. To illustrate these concepts we review the clinical and molecular features of several human imprinting syndromes including Beckwith–Wiedemann syndrome, Silver–Russell syndrome, Angelman syndrome, Prader–Willi syndrome, pseudohypoparathyroidism, transient neonatal diabetes, familial complete hydatidiform moles and chromosome 14q32 imprinting domain disorders.
Collapse
Affiliation(s)
- Derek HK Lim
- Birmingham Women’s Hospital, Birmingham UK
- Department of Medical & Molecular Genetics, School of Clinical and Experimental Medicine, University of Birmingham College of Medical and Dental Sciences, Edgbaston, Birmingham, B15 2TT, UK
| | - Eamonn R Maher
- Birmingham Women’s Hospital, Birmingham UK
- Department of Medical & Molecular Genetics, School of Clinical and Experimental Medicine, University of Birmingham College of Medical and Dental Sciences, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
18
|
McDaniel P, Wu X. Identification of oocyte-selective NLRP genes in rhesus macaque monkeys (Macaca mulatta). Mol Reprod Dev 2009; 76:151-9. [PMID: 18509866 DOI: 10.1002/mrd.20937] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oocyte-selective genes control multiple aspects of female gamete development and preimplantation embryogenesis. Several key oocyte-selective factors have been identified in mice recently; however, these factors are not well documented in more advanced species such as nonhuman primates. One of such oocyte-selective factors is NLRP5 (NLR family, Pyrin domain containing 5), also known as Maternal Antigen That Embryos Require (MATER), which is required for preimplantation embryo development beyond the 2-cell stage in mice. Human NLRP family contains 14 members. We identified 14 NLRP gene homologues and examined their spatial and temporal expression in rhesus macaque monkeys (Macaca mulatta). While all 14 NLRP genes are detectable in the macaque gonad, eight of them (NLRP2, 4, 5, 8, 9, 11, 13, and 14) are specifically or preferentially expressed in the ovary. In situ hybridization elucidated a specific oocyte expression pattern of the eight NLRP genes within the ovary. During the oocyte-to-embryo transition, seven of these oocyte-selective NLRP transcripts (excluding NLPR2) are enriched in maturing oocytes and early preimplantation embryos but diminish upon embryo genome activation, indicating an exclusive maternal origin of these transcripts. Though functionally unknown, the spatial and temporal distribution of these oocyte-selective NLRP genes implies important roles of the NLRP family in oogenesis and early embryo development in nonhuman primates.
Collapse
Affiliation(s)
- Patrick McDaniel
- Division of Reproductive Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | |
Collapse
|
19
|
Meyer E, Lim D, Pasha S, Tee LJ, Rahman F, Yates JRW, Woods CG, Reik W, Maher ER. Germline mutation in NLRP2 (NALP2) in a familial imprinting disorder (Beckwith-Wiedemann Syndrome). PLoS Genet 2009; 5:e1000423. [PMID: 19300480 PMCID: PMC2650258 DOI: 10.1371/journal.pgen.1000423] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 02/17/2009] [Indexed: 02/07/2023] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is a fetal overgrowth and human imprinting disorder resulting from the deregulation of a number of genes, including IGF2 and CDKN1C, in the imprinted gene cluster on chromosome 11p15.5. Most cases are sporadic and result from epimutations at either of the two 11p15.5 imprinting centres (IC1 and IC2). However, rare familial cases may be associated with germline 11p15.5 deletions causing abnormal imprinting in cis. We report a family with BWS and an IC2 epimutation in which affected siblings had inherited different parental 11p15.5 alleles excluding an in cis mechanism. Using a positional-candidate gene approach, we found that the mother was homozygous for a frameshift mutation in exon 6 of NLRP2. While germline mutations in NLRP7 have previously been associated with familial hydatidiform mole, this is the first description of NLRP2 mutation in human disease and the first report of a trans mechanism for disordered imprinting in BWS. These observations are consistent with the hypothesis that NLRP2 has a previously unrecognised role in establishing or maintaining genomic imprinting in humans.
Collapse
Affiliation(s)
- Esther Meyer
- Department of Medical and Molecular Genetics, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Derek Lim
- Department of Medical and Molecular Genetics, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
- West Midlands Regional Genetics Service, Birmingham Women's Hospital, Edgbaston, Birmingham, United Kingdom
| | - Shanaz Pasha
- Department of Medical and Molecular Genetics, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Louise J. Tee
- Department of Medical and Molecular Genetics, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Fatimah Rahman
- Department of Medical and Molecular Genetics, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - John R. W. Yates
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
- Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom
- East Anglian Medical Genetics Service, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - C. Geoffrey Woods
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
- Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom
- East Anglian Medical Genetics Service, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Wolf Reik
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Eamonn R. Maher
- Department of Medical and Molecular Genetics, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
- West Midlands Regional Genetics Service, Birmingham Women's Hospital, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
20
|
El-Maarri O, Kareta MS, Mikeska T, Becker T, Diaz-Lacava A, Junen J, Nüsgen N, Behne F, Wienker T, Waha A, Oldenburg J, Chédin F. A systematic search for DNA methyltransferase polymorphisms reveals a rare DNMT3L variant associated with subtelomeric hypomethylation. Hum Mol Genet 2009; 18:1755-68. [PMID: 19246518 DOI: 10.1093/hmg/ddp088] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Causes underlying inter-individual variations in DNA methylation profiles among normal healthy populations are not thoroughly understood. To investigate the contribution of genetic variation in DNA methyltransferase (DNMT) genes to such epigenetic variation, we performed a systematic search for polymorphisms in all known human DNMT genes [DNMT1, DNMT3A, DNMT3B, DNMT3L and DNMT2 (TRDMT1)] in 192 healthy males and females. One hundred and eleven different polymorphisms were detected. Of these, 24 were located in coding regions and 10 resulted in an amino acid change that may affect the corresponding DNMT protein structure or function. Association analysis between all major polymorphisms (frequency > 1%) and quantitative DNA methylation profiles did not return significant results after correction for multiple testing. Polymorphisms leading to an amino acid change were further investigated for changes in global DNA methylation by differential methylation hybridization. This analysis revealed that a rare change at DNMT3L (R271Q) was associated with significant DNA hypomethylation. Biochemical characterization confirmed that DNMT3L(R271Q) is impaired in its ability to stimulate de novo DNA methylation by DNMT3A. Methylated DNA immunoprecipitation based analysis using CpG island microarrays revealed that the hypomethylation in this sample preferentially clustered to subtelomeric genomic regions with affected loci corresponding to a subset of repetitive CpG islands with low predicted promoter potential located outside of genes.
Collapse
Affiliation(s)
- Osman El-Maarri
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wu X. Maternal depletion of NLRP5 blocks early embryogenesis in rhesus macaque monkeys (Macaca mulatta). Hum Reprod 2009; 24:415-24. [DOI: 10.1093/humrep/den403] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
22
|
Sirard JC, Vignal C, Dessein R, Chamaillard M. Nod-like receptors: cytosolic watchdogs for immunity against pathogens. PLoS Pathog 2008; 3:e152. [PMID: 18166077 PMCID: PMC2156082 DOI: 10.1371/journal.ppat.0030152] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In mammals, tissue-specific sets of pattern-recognition molecules, including Nod-like receptors (NLR), enable concomitant and sequential detection of microbial-associated molecular patterns from both the extracellular and intracellular microenvironment. Repressing and de-repressing the cytosolic surveillance machinery contributes to vital immune homeostasis and protective responses within specific tissues. Conversely, defective biology of NLR drives the development of recurrent infectious, autoimmune and/or inflammatory diseases by failing to mount barrier functions against pathogens, to tolerate commensals, and/or to instruct the adaptive immune response against microbes. Better decoding microbial strategies that are evolved to circumvent NLR sensing will provide clues for the development of rational therapies aimed at curing and/or preventing common and emerging immunopathologies.
Collapse
|
23
|
Kou YC, Shao L, Peng HH, Rosetta R, del Gaudio D, Wagner AF, Al-Hussaini TK, Van den Veyver IB. A recurrent intragenic genomic duplication, other novel mutations in NLRP7 and imprinting defects in recurrent biparental hydatidiform moles. Mol Hum Reprod 2007; 14:33-40. [PMID: 18039680 DOI: 10.1093/molehr/gam079] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A complete hydatidiform mole (CHM) is an abnormal pregnancy with hyperproliferative vesicular trophoblast and no fetal development. Most CHM are sporadic and androgenetic, but recurrent HM have biparental inheritance (BiHM) with disrupted DNA methylation at differentially methylated regions (DMRs) of imprinted loci. Some women with recurrent BiHM have mutations in the NLRP7 gene on chromosome 19q13.42. Using bisulfite genomic sequencing at eight imprinted DMRs on DNA from two BiHMs, we found a pattern of failure to acquire or maintain DNA methylation at DMRs (PEG3, SNRPN, KCNQ1OT1, GNAS exon 1A) that normally acquire CpG methylation during oogenesis, but not at H19, which acquires CpG methylation during spermatogenesis. Secondary imprints at the GNAS locus showed variable abnormal patterns with both gain and loss of CpG methylation. We found novel missense and splice-site mutations in NLRP7 in women with non-familial recurrent BiHM. We identified and characterized a homozygous intragenic tandem duplication including exons 2 through 5 of NLRP7 that results in a predicted truncated protein in affected women of three unrelated Egyptian kindreds, suggesting a founder effect. Our findings firmly establish that NLRP7 mutations are a major cause of BiHM and confirm presence of a complex pattern of imprinting abnormalities in BiHM tissues.
Collapse
Affiliation(s)
- Y C Kou
- Department of Obstetrics and Gynecology, Baylor College of Medicine, One Baylor Plaza, Room 721E, Mailstop BCM225, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
El-Maarri O, Becker T, Junen J, Manzoor SS, Diaz-Lacava A, Schwaab R, Wienker T, Oldenburg J. Gender specific differences in levels of DNA methylation at selected loci from human total blood: a tendency toward higher methylation levels in males. Hum Genet 2007; 122:505-14. [PMID: 17851693 DOI: 10.1007/s00439-007-0430-3] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 08/30/2007] [Indexed: 01/05/2023]
Abstract
Abnormal patterns of DNA methylation are observed in many diseases such as tumors and imprinting disorders. Little is known about inter-individual and gender specific variations. Here, we report on accurate and sensitive quantitative measurements of methylation in DNA from total blood in 96 healthy human males and 96 healthy human females. Global methylation was estimated by studying two repetitive DNA elements, namely Line-1 and Alu repeats, while single loci were investigated for three differentially methylated regions (DMRs) at PEG3, NESP55 and H19 imprinted genes and two additional loci at Xq28 (F8 gene) and at 19q13.4 (locus between PEG3 and ubiquitin specific protease 29). We observed inter-individual correlations in the degree of methylation between Alu and Line-1 repeats. Moreover, all studied CpGs showed slightly higher methylation in males (P < 0.0003-0.0381), with the exception of DMRs at imprinted genes (P = 0.0342-0.9616) which were almost equally methylated in both sexes with only a small tendency towards higher methylation in males. This observed difference could be due to the process of X chromosome inactivation or merely to the presence of an additional X chromosome in female cells or could be a result of downstream effects of sex determination.
Collapse
Affiliation(s)
- Osman El-Maarri
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Hydatidiform mole (HM) is a human pregnancy with no embryo but cystic degeneration of chorionic villi. The common form of this condition occurs in 1 in every 1500 pregnancies in western societies and at a higher incidence in some geographic regions and populations. Recurrent moles account for 2% of all molar cases and a few of them occur in more than one family member. By studying a familial form of recurrent moles, a recessive maternal locus responsible for this condition was mapped to 19q13.4 and causative mutations identified. The defective protein, NALP7, is part of the CATERPILLAR protein family with roles in pathogen-induced inflammation and apoptosis. The exact role of NALP7 in the pathophysiology of molar pregnancies is unknown yet. NALP7 could have a role either in oogenesis or in the endometrium during trophoblast invasion and decidualization. In this review, we outlined recent advances in the field of HMs and reviewed the literature in the light of the new data.
Collapse
Affiliation(s)
- R Slim
- Departments of Human Genetics, McGill University Health Center, Montreal H3G 1A4, Canada.
| | | |
Collapse
|