1
|
Bilal M, Haack TB, Buchert R, Peralta S, Ahmad I, Faisal, Abbasi S, Ahmad W. Sequence Variants in the WNT10B Underlying Non-Syndromic Split-Hand/Foot Malformation. Mol Syndromol 2023; 14:469-476. [PMID: 38058757 PMCID: PMC10697732 DOI: 10.1159/000531069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/10/2023] [Indexed: 12/08/2023] Open
Abstract
Introduction Split hand and foot malformation (SHFM) or ectrodactyly is a rare limb deformity characterized by median cleft of the hand and foot with impaired or missing central rays. It can occur as an isolated anomaly or in association with abnormalities of other body parts. Methods After delineating the clinical features of two families (A-B), with non-syndromic SHFM, exome and Sanger sequencing were employed to search for the disease-causing variants. Results Analysis of exome and Sanger sequencing data revealed two causative variants in the WNT10B gene in affected members of the two families. This included a novel missense change [c.338G>C; p.(Gly113Ala)] in family A and a previously reported frameshift variant [c.884-896delTCCAGCCCCGTCT; p.(Phe295Cysfs*87)] in family B. Conclusion Our findings add a novel variant in WNT10B gene as the underlying cause of SHFM. The finding adds to the growing body of knowledge about the genetic basis of developmental disorders and provides valuable insights into the molecular mechanisms that regulate limb development.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Tobias B. Haack
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Rebecca Buchert
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Susana Peralta
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Imtiaz Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Faisal
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sanaullah Abbasi
- Department of Biochemistry, Shah Abdul Latif, Khairpur, Pakistan
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
2
|
Chmielewska JJ, Burkardt D, Granadillo JL, Slaugh R, Morgan S, Rotenberg J, Keren B, Mignot C, Escobar L, Turnpenny P, Zuteck M, Seaver LH, Ploski R, Dziembowska M, Wynshaw-Boris A, Adegbola A. PTPN4 germline variants result in aberrant neurodevelopment and growth. HGG ADVANCES 2021; 2:100033. [PMID: 34527963 PMCID: PMC8439436 DOI: 10.1016/j.xhgg.2021.100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/31/2021] [Indexed: 11/29/2022] Open
Abstract
Protein-tyrosine phosphatases (PTPs) are pleomorphic regulators of eukaryotic cellular responses to extracellular signals that function by modulating the phosphotyrosine of specific proteins. A handful of PTPs have been implicated in germline and somatic human disease. Using exome sequencing, we identified missense and truncating variants in PTPN4 in six unrelated individuals with varying degrees of intellectual disability or developmental delay. The variants occurred de novo in all five subjects in whom segregation analysis was possible. Recurring features include postnatal growth deficiency or excess, seizures, and, less commonly, structural CNS, heart, or skeletal anomalies. PTPN4 is a widely expressed protein tyrosine phosphatase that regulates neuronal cell homeostasis by protecting neurons against apoptosis. We suggest that pathogenic variants in PTPN4 confer risk for growth and cognitive abnormalities in humans.
Collapse
Affiliation(s)
- Joanna J. Chmielewska
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Deepika Burkardt
- Center for Human Genetics and Department of Genetics and Genome Sciences, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | - Jorge Luis Granadillo
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel Slaugh
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Boris Keren
- Département de Génétique, APHP, Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Cyril Mignot
- Département de Génétique, APHP, Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris, France
| | - Luis Escobar
- Medical Genetics and Neurodevelopmental Center, Peyton Manning Children’s Hospital, Indianapolis, IN, USA
| | - Peter Turnpenny
- University of Exeter Medical School and Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Melissa Zuteck
- Medical Genetics and Genomics, Spectrum Health/Helen Devos Children’s Hospital, Grand Rapids, MI, USA
| | - Laurie H. Seaver
- Medical Genetics and Genomics, Spectrum Health/Helen Devos Children’s Hospital, Grand Rapids, MI, USA
- Department of Pediatrics and Human Development, Michigan State College of Human Medicine, Grand Rapids, MI, USA
| | - Rafal Ploski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| | - Magdalena Dziembowska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Anthony Wynshaw-Boris
- Center for Human Genetics and Department of Genetics and Genome Sciences, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | - Abidemi Adegbola
- Center for Human Genetics and Department of Genetics and Genome Sciences, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
3
|
Peng Y, Yang S, Xi H, Hu J, Jia Z, Pang J, Liu J, Yu W, Tang C, Wang H. Whole genome sequencing reveals translocation breakpoints disrupting TP63 gene underlying split hand/foot malformation in a Chinese family. Mol Genet Genomic Med 2021; 9:e1604. [PMID: 33471964 PMCID: PMC8104154 DOI: 10.1002/mgg3.1604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 01/08/2023] Open
Abstract
Background Split hand/foot malformation (SHFM) is a congenital limb developmental disorder, which impairs the fine activities of hand/foot in the affected individuals seriously. SHFM is commonly inherited as an autosomal dominant disease with incomplete penetrance. Chromosomal aberrations such as copy number variations and translocations have been linked to SHFM. This study aimed to identify the genetic cause for three patients with bilateral hand and foot malformation in a Chinese family. Methods Karyotyping, single‐nucleotide polymorphism (SNP) array, whole exome sequencing, whole genome sequencing, and Sanger sequencing were applied to identify the pathogenic variant. Results Karyotyping revealed that the three patients had balanced reciprocal translocation, 46, XX, t(3;15) (q29;q22). SNP array identified no pathogenic copy number variation in the proband. Trio‐WES (fetus–mother–father) sequencing results revealed no pathogenic variants in the genes related to SHFM. Whole‐genome low‐coverage mate‐pair sequencing (WGL‐MPS), breakpoint PCR, and Sanger sequencing identified the breakpoints disrupting TP63 in the patients, but not in healthy family members. Conclusion This study firstly reports that a translocation breakpoint disrupting TP63 contributes to the SHFM in a Chinese family, which expands our knowledge of genetic risk and counseling underlying SHFM. It provides a basis for genetic counseling and prenatal diagnosis (preimplantation genetic diagnosis) for this family.
Collapse
Affiliation(s)
- Ying Peng
- Department of Medical Genetics, National Health Commission Key Laboratory of Birth Defects Research, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Shuting Yang
- Department of Medical Genetics, National Health Commission Key Laboratory of Birth Defects Research, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Hui Xi
- Department of Medical Genetics, National Health Commission Key Laboratory of Birth Defects Research, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Jiancheng Hu
- Department of Medical Genetics, National Health Commission Key Laboratory of Birth Defects Research, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Zhengjun Jia
- Department of Medical Genetics, National Health Commission Key Laboratory of Birth Defects Research, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Jialun Pang
- Department of Medical Genetics, National Health Commission Key Laboratory of Birth Defects Research, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Jing Liu
- Department of Medical Genetics, National Health Commission Key Laboratory of Birth Defects Research, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Wenxian Yu
- Department of Medical Genetics, National Health Commission Key Laboratory of Birth Defects Research, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hua Wang
- Department of Medical Genetics, National Health Commission Key Laboratory of Birth Defects Research, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| |
Collapse
|
4
|
Klar AJS. Split hand/foot malformation genetics supports the chromosome 7 copy segregation mechanism for human limb development. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150415. [PMID: 27821526 PMCID: PMC5104513 DOI: 10.1098/rstb.2015.0415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 12/17/2022] Open
Abstract
Genetic aberrations of several unlinked loci cause human congenital split hand/foot malformation (SHFM) development. Mutations of the DLX5 (distal-less) transcription factor-encoding gene in chromosome 7 cause SHFM through haploinsufficiency, but the vast majority of cases result from heterozygous chromosomal aberrations of the region without mutating the DLX5 gene. To resolve this paradox, we invoke a chromosomal epigenetic mechanism for limb development. It is composed of a monochromatid gene expression phenomenon that we discovered in two fission yeasts with the selective chromosome copy segregation phenomenon that we discovered in mouse cells. Accordingly, one daughter cell inherits both expressed DLX5 copies while the other daughter inherits both epigenetically silenced ones from a single deterministic cell of the developing limb. Thus, differentiated daughter cells after further proliferation will correspondingly produce proximal/distal-limb tissues. Published results of a Chr. 7 translocation with a centromere-proximal breakpoint situated over 41 million bases away from the DLX locus, centromeric and DLX5-region inversions have satisfied key genetic and developmental biology predictions of the mechanism. Further genetic tests of the mechanism are proposed. We propose that the DNA double helical structure itself causes the development of sister cells' gene regulation asymmetry. We also argue against the conventionally invoked morphogen model of development.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Amar J S Klar
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Building 539, Room 154, Frederick, MD 21702-1201, USA
| |
Collapse
|
5
|
Abstract
BACKGROUND The congenital absence of the tibia is a rare disease, and an orthopaedic surgeon may not encounter such cases during the course of his/her career. This is the largest report to date of the management of such cases by a single surgeon. The foot and leg were persevered in the majority of the cases, and a functional evaluation system was used to report outcomes. METHODS Thirty-six patients with tibial hemimelia, who had been under the direct care of the authors since infancy, were evaluated clinically and radiographically. The patients or their parents filled out the Pediatric Quality of Life and the parents' satisfaction forms. The surgical interventions performed, and their effects on school attendance and, and also the shoe type they wore were documented. RESULTS Thirty-six patients (19 girls and 17 boys) with 48 tibial-deficient limbs (19 right, 5 left, and 12 both right and left sides) were studied. The patients were assessed at 12 years (2.5 to 32.5 y), with a mean follow-up of 9 years (2 to 23 y). The 48 limbs included 14 type I, 16 type II, 11 type IV, and 7 unclassified by using the Jones classification; and 6 type I, 11 type II, 16 type III, 1 type IV, and 14 type VII by using the Weber classification. Primary amputation was performed in 8 patients (10 limbs) and limb preservation surgeries on 38 legs (28 patients). Tibiofibular synostosis, centralization of the ankle, and Ilizarov lengthening were the most common procedures. Nonunion of tibiofibular synostosis (2 cases) and knee stiffness (6 cases) were the main complications. Among the reconstructed limbs, 12 were in regular and 18 in modified shoes. The Pediatric Quality of Life of 68 points in the reconstructed group was a significant achievement, and it was also better than the score of patients who had undergone amputation. CONCLUSION Reconstruction of tibial hemimelia with foot preservation provides good functional outcome in the majority of cases. LEVEL OF EVIDENCE Level IV.
Collapse
|
6
|
Selective chromatid segregation mechanism proposed for the human split hand/foot malformation development by chromosome 2 translocations: A perspective. Dev Biol 2015; 408:7-13. [PMID: 26477560 DOI: 10.1016/j.ydbio.2015.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 11/20/2022]
Abstract
Three unrelated chromosome 2q14.1-14.2 region translocations caused the split hand/foot limb malformation development in humans by an unknown mechanism. Their etiology was described by the autosomal dominant inheritance with incomplete penetrance genetic model although authors stated, "the understanding of the genotype-to-phenotype relationship has been most challenging". The conundrums are that no mutation was found in known genes located at or near the translocation breakpoints, some limbs were malformed while others were not in the same patient and surprisingly breakpoints lie at relatively large distance of more than 2.5 million bases to have caused disorder-causing gene mutations in a single gene. To help understand translocations etiology for limb development, we invoke the selective DNA strand/chromatid-specific epigenetic imprinting and segregation mechanism employed by the two highly diverged fission yeasts to produce daughter cells of different cell types by mitosis. By this mechanism, an anterior- and posterior-limb-tissues-generating pair of daughter cells is produced by a single deterministic cell dividing in the anlagen of the limb bud. Accordingly, malformation develops simply because translocations hinder the proper distribution of chromatid-specific epialleles of a limb developmental gene during the deterministic cell's mitosis. It is tempting to speculate that such a mechanism might involve the HOXD-cluster genes situated centromere-distal to the translocation breakpoints many million bases away at the 2q31.1 region. Further genetic tests of the hypothesis are proposed for the human and mouse limb development. In sum, genetic analysis of translocations suggests that the sequence asymmetry of strands in the double-helical DNA structure of a developmental gene forms the physical basis of daughter cells' developmental asymmetry, thus opposing the morphogen-gradient research paradigm of limb development.
Collapse
|
7
|
Gregory LC, Gaston-Massuet C, Andoniadou CL, Carreno G, Webb EA, Kelberman D, McCabe MJ, Panagiotakopoulos L, Saldanha JW, Spoudeas HA, Torpiano J, Rossi M, Raine J, Canham N, Martinez-Barbera JP, Dattani MT. The role of the sonic hedgehog signalling pathway in patients with midline defects and congenital hypopituitarism. Clin Endocrinol (Oxf) 2015; 82:728-38. [PMID: 25327282 DOI: 10.1111/cen.12637] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/22/2014] [Accepted: 10/13/2014] [Indexed: 01/28/2023]
Abstract
INTRODUCTION The Gli family of zinc finger (GLI) transcription factors mediates the sonic hedgehog signalling pathway (HH) essential for CNS, early pituitary and ventral forebrain development in mice. Human mutations in this pathway have been described in patients with holoprosencephaly (HPE), isolated congenital hypopituitarism (CH) and cranial/midline facial abnormalities. Mutations in Sonic hedgehog (SHH) have been associated with HPE but not CH, despite murine studies indicating involvement in pituitary development. OBJECTIVES/METHODS We aimed to establish the role of the HH pathway in the aetiology of hypothalamo-pituitary disorders by screening our cohort of patients with midline defects and/or CH for mutations in SHH, GLI2, Shh brain enhancer 2 (SBE2) and growth-arrest specific 1 (GAS1). RESULTS Two variants and a deletion of GLI2 were identified in three patients. A novel variant at a highly conserved residue in the zinc finger DNA-binding domain, c.1552G > A [pE518K], was identified in a patient with growth hormone deficiency and low normal free T4. A nonsynonymous variant, c.2159G > A [p.R720H], was identified in a patient with a short neck, cleft palate and hypogonadotrophic hypogonadism. A 26·6 Mb deletion, 2q12·3-q21·3, encompassing GLI2 and 77 other genes, was identified in a patient with short stature and impaired growth. Human embryonic expression studies and molecular characterisation of the GLI2 mutant p.E518K support the potential pathogenicity of GLI2 mutations. No mutations were identified in GAS1 or SBE2. A novel SHH variant, c.1295T>A [p.I432N], was identified in two siblings with variable midline defects but normal pituitary function. CONCLUSIONS Our data suggest that mutations in SHH, GAS1 and SBE2 are not associated with hypopituitarism, although GLI2 is an important candidate for CH.
Collapse
Affiliation(s)
- L C Gregory
- Genetics and Epigenetics in Health and Disease Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Al Kaissi A, Ganger R, Rötzer KM, Klaushofer K, Grill F. A child with split-hand/foot associated with tibial hemimelia (SHFLD syndrome) and thrombocytopenia maps to chromosome region 17p13.3. Am J Med Genet A 2014; 164A:2338-43. [PMID: 24838992 DOI: 10.1002/ajmg.a.36614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 03/14/2014] [Indexed: 11/10/2022]
Abstract
We describe a-2-year-old boy who presented with a neonatal history of thrombocytopenia associated with a constellation of limb malformations mimicking split hand/foot malformation with long bone deficiency (SHFLD) syndrome. Limb malformations consisted of unilateral monodactyly with radial aplasia, unilateral split foot and bilateral club foot. Tibial aplasia of one limb and tibial hypoplasia of the other limb were notable. Partial agenesis of the sacrum was additional skeletal malformation. Craniofacial features included dense thick scalp hair, narrow frontal area, thick eye-brows, deep-set eyes, depressed nasal bridge, and small overhanging nasal tip, full-cheeks, and large ears. Array-CGH showed duplication of the short arm of chromosome 17p13.3 in the boy and his father, respectively. The father was free from any skeletal abnormalities, though he shares similar craniofacial dysmorphic features like his son. In addition, a paternal sib (uncle of the proband) manifested a phenotype similar to that of the proband. To the best of our knowledge the overall phenotypic and genotypic characterizations were consistent but not completely compatible with the traditional type of TAR syndrome or with SHFLD syndrome. We report on what might be a novel variant of SHFLD associated with transient thrombocytopenia, dysmorphic facial features, and a constellation of bone malformations.
Collapse
Affiliation(s)
- Ali Al Kaissi
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK, Vienna, Austria; AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital, Vienna, Austria; Paediatric Department, Orthopaedic Hospital of Speising, Vienna, Austria
| | | | | | | | | |
Collapse
|
9
|
Gurrieri F, Everman DB. Clinical, genetic, and molecular aspects of split-hand/foot malformation: an update. Am J Med Genet A 2013; 161A:2860-72. [PMID: 24115638 DOI: 10.1002/ajmg.a.36239] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 08/26/2013] [Indexed: 12/26/2022]
Abstract
We here provide an update on the clinical, genetic, and molecular aspects of split-hand/foot malformation (SHFM). This rare condition, affecting 1 in 8,500-25,000 newborns, is extremely complex because of its variability in clinical presentation, irregularities in its inheritance pattern, and the heterogeneity of molecular genetic alterations that can be found in affected individuals. Both syndromal and nonsyndromal forms are reviewed and the major molecular genetic alterations thus far reported in association with SHFM are discussed. This updated overview should be helpful for clinicians in their efforts to make an appropriate clinical and genetic diagnosis, provide an accurate recurrence risk assessment, and formulate a management plan.
Collapse
Affiliation(s)
- Fiorella Gurrieri
- Istituto di Genetica Medica, Università Cattolica del Sacro Cuore, Rome, Italy
| | | |
Collapse
|
10
|
Flemming GMC, Klammt J, Ambler G, Bao Y, Blum WF, Cowell C, Donaghue K, Howard N, Kumar A, Sanchez J, Stobbe H, Pfäffle RW. Functional characterization of a heterozygous GLI2 missense mutation in patients with multiple pituitary hormone deficiency. J Clin Endocrinol Metab 2013; 98:E567-75. [PMID: 23408573 PMCID: PMC3590478 DOI: 10.1210/jc.2012-3224] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The GLI2 transcription factor is a major effector protein of the sonic hedgehog pathway and suggested to play a key role in pituitary development. Genomic GLI2 aberrations that mainly result in truncated proteins have been reported to cause holoprosencephaly or holoprosencephaly-like features, sometimes associated with hypopituitarism. OBJECTIVE Our objective was to determine the frequency of GLI2 mutations in patients with multiple pituitary hormone deficiency (MPHD). DESIGN Patients were selected from participants in the Genetics and Neuroendocrinology of Short Stature International Study (GeNeSIS) program. Patients with mutations within established candidate genes were excluded. PATIENTS A total of 165 patients with MPHD defined as GH deficiency and at least 1 additional pituitary hormone deficiency were studied regardless of the presence of extrapituitary clinical manifestations. MAIN OUTCOME MEASURES Prevalence of GLI2 variations in MPHD patients was assessed and detailed phenotypic characterization is given. Transcriptional activity of identified GLI2 variants was evaluated by functional reporter assays. RESULTS In 5 subjects, 4 heterozygous missense variants were identified, of which 2 are unpublished so far. One variant, p.R516P, results in vitro in a complete loss of protein function. In addition to GH deficiency, the carrier of the mutation demonstrates deficiency of thyrotrope and gonadotrope function, a maldescended posterior pituitary lobe, and polydactyly, but no midline defects. CONCLUSIONS For the first time, we show that heterozygous amino acid substitutions within GLI2 may lead to MPHD with mild extrapituitary findings. The phenotype of GLI2 mutations is variable, and penetrance is incomplete. GLI2 mutations are associated with anterior pituitary hypoplasia, and frequently, ectopy of the posterior lobe occurs.
Collapse
Affiliation(s)
- G M C Flemming
- Hospital for Children and Adolescents, University of Leipzig, D-04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Split-hand/foot malformation with long-bone deficiency and BHLHA9 duplication: two cases and expansion of the phenotype to radial agenesis. Eur J Med Genet 2012. [PMID: 23202277 DOI: 10.1016/j.ejmg.2012.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Split-hand/foot malformation (SHFM) with long-bone deficiency (SHFLD, MIM#119100) is a rare condition characterised by SHFM associated with long-bone malformation usually involving the tibia. Previous published data reported several unrelated patients with 17p13.3 duplication and SHFLD. Recently, BHLHA9 has been proposed to be the major candidate gene responsible for this limb malformation. Here we report two new patients affected with ectrodactyly harbouring a 17p13.3 duplication detected by array-CGH. Both duplications contain 3 genes including BHLHA9 and are inherited from an unaffected parent. One of the patients presents a complete radial agenesis, expanding the phenotype of SHFLD3.
Collapse
|
12
|
17p13.3 microduplications are associated with split-hand/foot malformation and long-bone deficiency (SHFLD). Eur J Hum Genet 2011; 19:1144-51. [PMID: 21629300 DOI: 10.1038/ejhg.2011.97] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Split-hand/foot malformation with long-bone deficiency (SHFLD) is a relatively rare autosomal-dominant skeletal disorder, characterized by variable expressivity and incomplete penetrance. Although several chromosomal loci for SHFLD have been identified, the molecular basis and pathogenesis of most SHFLD cases are unknown. In this study we describe three unrelated kindreds, in which SHFLD segregated with distinct but overlapping duplications in 17p13.3, a region previously linked to SHFLD. In a large three-generation family, the disorder was found to segregate with a 254 kb microduplication; a second microduplication of 527 kb was identified in an affected female and her unaffected mother, and a 430 kb microduplication versus microtriplication was identified in three affected members of a multi-generational family. These findings, along with previously published data, suggest that one locus responsible for this form of SHFLD is located within a 173 kb overlapping critical region, and that the copy gains are incompletely penetrant.
Collapse
|
13
|
Takatsuki S, Nakamura R, Haga Y, Mitsui K, Hashimoto T, Shimojima K, Saji T, Yamamoto T. Severe pulmonary emphysema in a girl with interstitial deletion of 2q24.2q24.3 includingITGB6. Am J Med Genet A 2010; 152A:1020-5. [DOI: 10.1002/ajmg.a.33362] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Kitaoka T, Namba N, Kim JY, Kubota T, Miura K, Miyoshi Y, Hirai H, Kogo M, Ozono K. A Japanese male patient with 'fibular aplasia, tibial campomelia and oligodactyly': an additional case report. Clin Pediatr Endocrinol 2009; 18:81-6. [PMID: 23926365 PMCID: PMC3687608 DOI: 10.1297/cpe.18.81] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 03/16/2009] [Indexed: 11/04/2022] Open
Abstract
We report a male infant with FATCO syndrome, an acronym for fibular aplasia, tibial campomelia, and oligosyndactyly. Courtens et al. reported an infant with oligosyndactyly of the left hand, complete absence of the right fibula, bowing of the right tibia, and absence of the right fifth metatarsal and phalanges. They noted 5 patients with similar clinical features, and proposed the FATCO syndrome. Our patient had a left-sided cleft lip, cleft palate, oligosyndactyly of the right hand and bilateral feet, and bilateral anterior bowing of the limbs associated with overlying skin dimpling. Radiographs showed a short angulated tibia with left fibular aplasia and right fibular hypoplasia. We consider our case the 6th patient with FATCO syndrome, and the cleft lip and palate, not reported in the previous 5 patients, may allow us to further understand the development of the extremities and facies.
Collapse
Affiliation(s)
- Taichi Kitaoka
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zechi-Ceide RM, Ribeiro LA, Raskin S, Bertolacini CDP, Guion-Almeida ML, Richieri-Costa A. Holoprosencephaly, ectrodactyly, and bilateral cleft of lip and palate: exclusion of SHH, TGIF, SIX3, GLI2, TP73L, and DHCR7 as candidate genes. Am J Med Genet A 2009; 149A:1277-9. [PMID: 19449411 DOI: 10.1002/ajmg.a.32844] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We describe a Brazilian boy with semilobar holoprosencephaly, ectrodactyly, bilateral cleft of lip and palate, and severe mental retardation. The karyotype was normal and the screening for mutations in the genes SHH, TGIF, SIX3, GLI2, TP73L, and DHCR7 did not show any change. This rare condition was described previously in seven male patients. Clinical and genetic aspects are discussed.
Collapse
Affiliation(s)
- Roseli Maria Zechi-Ceide
- Department of Clinical Genetics, Hospital of Rehabilitation of Craniofacial Anomalies (HRAC), University of São Paulo, Bauru, SP, Brazil
| | | | | | | | | | | |
Collapse
|
16
|
Furniss D, Kan SH, Taylor IB, Johnson D, Critchley PS, Giele HP, Wilkie AOM. Genetic screening of 202 individuals with congenital limb malformations and requiring reconstructive surgery. J Med Genet 2009; 46:730-5. [PMID: 19429598 PMCID: PMC2764122 DOI: 10.1136/jmg.2009.066027] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background: Congenital limb malformations (CLMs) are common and present to a variety of specialties, notably plastic and orthopaedic surgeons, and clinical geneticists. The authors aimed to characterise causative mutations in an unselected cohort of patients with CLMs requiring reconstructive surgery. Methods: 202 patients presenting with CLM were recruited. The authors obtained G-banded karyotypes and screened EN1, GLI3, HAND2, HOXD13, ROR2, SALL1, SALL4, ZRS of SHH, SPRY4, TBX5, TWIST1 and WNT7A for point mutations using denaturing high performance liquid chromatography (DHPLC) and direct sequencing. Multiplex ligation dependent probe amplification (MLPA) kits were developed and used to measure copy number in GLI3, HOXD13, ROR2, SALL1, SALL4,TBX5 and the ZRS of SHH. Results: Within the cohort, causative genetic alterations were identified in 23 patients (11%): mutations in GLI3 (n = 5), HOXD13 (n = 5), the ZRS of SHH (n = 4), and chromosome abnormalities (n = 4) were the most common lesions found. Clinical features that predicted the discovery of a genetic cause included a bilateral malformation, positive family history, and having increasing numbers of limbs affected (all p<0.01). Additionally, specific patterns of malformation predicted mutations in specific genes. Conclusions: Based on higher mutation prevalence the authors propose that GLI3, HOXD13 and the ZRS of SHH should be prioritised for introduction into molecular genetic testing programmes for CLM. The authors have developed simple criteria that can refine the selection of patients by surgeons for referral to clinical geneticists. The cohort also represents an excellent resource to test for mutations in novel candidate genes.
Collapse
Affiliation(s)
- D Furniss
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
David D, Marques B, Ferreira C, Vieira P, Corona-Rivera A, Ferreira JC, van Bokhoven H. Characterization of two ectrodactyly-associated translocation breakpoints separated by 2.5 Mb on chromosome 2q14.1-q14.2. Eur J Hum Genet 2009; 17:1024-33. [PMID: 19223936 DOI: 10.1038/ejhg.2009.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Split hand-split foot malformation or ectrodactyly is a heterogeneous congenital defect of digit formation. The aim of this study is the mapping of the breakpoints and a detailed molecular characterization of the candidate genes for an isolated and syndromic form of ectrodactyly, both associated with de novo apparently balanced chromosome translocations involving the same chromosome 2 band, [t(2;11)(q14.2;q14.2)] and [t(2;4)(q14.1;q35)], respectively. Breakpoints were mapped by fluorescence in situ hybridization using bacterial artificial chromosome clones. Where possible, these breakpoints were further delimited. Candidate genes were screened for pathogenic mutations and the expression levels of two of them analysed. The isolated bilateral split foot malformation-associated chromosome 2 breakpoint was localized at 120.9 Mb, between the two main candidate genes, encoding GLI-Kruppel family member GLI2 and inhibin-betaB. The second breakpoint associated with holoprosencephaly, hypertelorism and ectrodactyly syndrome was mapped 2.5 Mb proximal at 118.4 Mb and the candidate genes identified from this region were the insulin-induced protein 2 and the homeobox protein engrailed-1. No clear pathogenic mutations were identified in any of these genes. The breakpoint between INHBB and GLI2 coincides with a previously identified translocation breakpoint associated with ectrodactyly. We propose a mechanism by which translocations in the 2q14.1-q14.2 region disrupt the specific arrangement of long-range regulatory elements that control the tight quantitative spatiotemporal expression of one or more genes from the breakpoint region.
Collapse
Affiliation(s)
- Dezso David
- Department of Genetics, National Institute of Health Dr Ricardo Jorge, Lisboa, Portugal.
| | | | | | | | | | | | | |
Collapse
|
18
|
Elliott AM, Evans JA. The association of split hand foot malformation (SHFM) and congenital heart defects. ACTA ACUST UNITED AC 2008; 82:425-34. [DOI: 10.1002/bdra.20452] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|