2
|
Lin A, Hua RX, Zhou M, Fu W, Zhang J, Zhou H, Li S, Cheng J, Zhu J, Xia H, Liu G, He J. YTHDC1 gene polymorphisms and Wilms tumor susceptibility in Chinese children: A five-center case-control study. Gene 2021; 783:145571. [PMID: 33737126 DOI: 10.1016/j.gene.2021.145571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/03/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Wilms tumor is a common pediatric tumor with abundant genetic drivers. YTHDC1 is an important reader of the N6-methyladenosine modification that widely regulates eukaryotic transcripts. YTHDC1 has been associated with the occurrence and development of some tumors. However, this is the first study on YTHDC1 gene polymorphisms and Wilms tumor susceptibility. In brief, we conducted a five-center case-control study to explore the associations between YTHDC1 polymorphisms (rs2293596 T > C, rs2293595 T > C, and rs3813832 T > C) and Wilms tumor susceptibility in Chinese children. A total of 404 cases and 1198 controls were successfully genotyped using TaqMan real-time PCR. Odds ratios (ORs) and 95% confidence intervals (CIs) were used as the evaluation indicators. We found that children with the 2-3 risk genotypes were more likely to develop Wilms tumor than those with the 0-1 risk genotypes (adjusted OR = 1.28, 95% CI = 1.01-1.62, P = 0.042). However, no other statistically significant results were found in this research study. The combined effect of YTHDC1 polymorphisms significantly increases Wilms tumor susceptibility. Our results need to be verified in different populations after increasing the sample size and controlling for confounding factors.
Collapse
Affiliation(s)
- Ao Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Mingming Zhou
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, Shannxi, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Guochang Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| |
Collapse
|
8
|
Khurana E, Fu Y, Colonna V, Mu XJ, Kang HM, Lappalainen T, Sboner A, Lochovsky L, Chen J, Harmanci A, Das J, Abyzov A, Balasubramanian S, Beal K, Chakravarty D, Challis D, Chen Y, Clarke D, Clarke L, Cunningham F, Evani US, Flicek P, Fragoza R, Garrison E, Gibbs R, Gümüş ZH, Herrero J, Kitabayashi N, Kong Y, Lage K, Liluashvili V, Lipkin SM, MacArthur DG, Marth G, Muzny D, Pers TH, Ritchie GRS, Rosenfeld JA, Sisu C, Wei X, Wilson M, Xue Y, Yu F, Dermitzakis ET, Yu H, Rubin MA, Tyler-Smith C, Gerstein M. Integrative annotation of variants from 1092 humans: application to cancer genomics. Science 2013; 342:1235587. [PMID: 24092746 PMCID: PMC3947637 DOI: 10.1126/science.1235587] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Interpreting variants, especially noncoding ones, in the increasing number of personal genomes is challenging. We used patterns of polymorphisms in functionally annotated regions in 1092 humans to identify deleterious variants; then we experimentally validated candidates. We analyzed both coding and noncoding regions, with the former corroborating the latter. We found regions particularly sensitive to mutations ("ultrasensitive") and variants that are disruptive because of mechanistic effects on transcription-factor binding (that is, "motif-breakers"). We also found variants in regions with higher network centrality tend to be deleterious. Insertions and deletions followed a similar pattern to single-nucleotide variants, with some notable exceptions (e.g., certain deletions and enhancers). On the basis of these patterns, we developed a computational tool (FunSeq), whose application to ~90 cancer genomes reveals nearly a hundred candidate noncoding drivers.
Collapse
Affiliation(s)
- Ekta Khurana
- Program in Computational Biology and Bioinformatics, Yale
University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale
University, New Haven, CT 06520, USA
| | - Yao Fu
- Program in Computational Biology and Bioinformatics, Yale
University, New Haven, CT 06520, USA
| | - Vincenza Colonna
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus,
Cambridge, CB10 1SA, UK
- Institute of Genetics and Biophysics, National Research Council
(CNR), 80131 Naples, Italy
| | - Xinmeng Jasmine Mu
- Program in Computational Biology and Bioinformatics, Yale
University, New Haven, CT 06520, USA
| | - Hyun Min Kang
- Center for Statistical Genetics, Biostatistics, University of
Michigan, Ann Arbor, MI 48109, USA
| | - Tuuli Lappalainen
- Department of Genetic Medicine and Development, University of Geneva
Medical School, 1211 Geneva, Switzerland
- Institute for Genetics and Genomics in Geneva (iGE3), University of
Geneva, 1211 Geneva, Switzerland
- Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
| | - Andrea Sboner
- Institute for Precision Medicine and the Department of Pathology and
Laboratory Medicine, Weill Cornell Medical College and New York-Presbyterian
Hospital, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute
for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021,
USA
| | - Lucas Lochovsky
- Program in Computational Biology and Bioinformatics, Yale
University, New Haven, CT 06520, USA
| | - Jieming Chen
- Program in Computational Biology and Bioinformatics, Yale
University, New Haven, CT 06520, USA
- Integrated Graduate Program in Physical and Engineering Biology,
Yale University, New Haven, CT 06520, USA
| | - Arif Harmanci
- Program in Computational Biology and Bioinformatics, Yale
University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale
University, New Haven, CT 06520, USA
| | - Jishnu Das
- Department of Biological Statistics and Computational Biology,
Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University,
Ithaca, NY 14853, USA
| | - Alexej Abyzov
- Program in Computational Biology and Bioinformatics, Yale
University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale
University, New Haven, CT 06520, USA
| | - Suganthi Balasubramanian
- Program in Computational Biology and Bioinformatics, Yale
University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale
University, New Haven, CT 06520, USA
| | - Kathryn Beal
- European Molecular Biology Laboratory, European Bioinformatics
Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Dimple Chakravarty
- Institute for Precision Medicine and the Department of Pathology and
Laboratory Medicine, Weill Cornell Medical College and New York-Presbyterian
Hospital, New York, NY 10065, USA
| | - Daniel Challis
- Baylor College of Medicine, Human Genome Sequencing Center,
Houston, TX 77030, USA
| | - Yuan Chen
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus,
Cambridge, CB10 1SA, UK
| | - Declan Clarke
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics
Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Fiona Cunningham
- European Molecular Biology Laboratory, European Bioinformatics
Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Uday S. Evani
- Baylor College of Medicine, Human Genome Sequencing Center,
Houston, TX 77030, USA
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics
Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Robert Fragoza
- Weill Institute for Cell and Molecular Biology, Cornell University,
Ithaca, NY 14853, USA
- Department of Molecular Biology and Genetics, Cornell University,
Ithaca, NY 14853, USA
| | - Erik Garrison
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Richard Gibbs
- Baylor College of Medicine, Human Genome Sequencing Center,
Houston, TX 77030, USA
| | - Zeynep H. Gümüş
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute
for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021,
USA
- Department of Physiology and Biophysics, Weill Cornell Medical
College, New York, NY, 10065, USA
| | - Javier Herrero
- European Molecular Biology Laboratory, European Bioinformatics
Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Naoki Kitabayashi
- Institute for Precision Medicine and the Department of Pathology and
Laboratory Medicine, Weill Cornell Medical College and New York-Presbyterian
Hospital, New York, NY 10065, USA
| | - Yong Kong
- Department of Molecular Biophysics and Biochemistry, Yale
University, New Haven, CT 06520, USA
- Keck Biotechnology Resource Laboratory, Yale University, New Haven,
CT 06511, USA
| | - Kasper Lage
- Pediatric Surgical Research Laboratories, MassGeneral Hospital for
Children, Massachusetts General Hospital, Boston, MA 02114, USA
- Analytical and Translational Genetics Unit, Massachusetts General
Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Center for Biological Sequence Analysis, Department of Systems
Biology, Technical University of Denmark, Lyngby, Denmark
- Center for Protein Research, University of Copenhagen, Copenhagen,
Denmark
| | - Vaja Liluashvili
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute
for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021,
USA
- Department of Physiology and Biophysics, Weill Cornell Medical
College, New York, NY, 10065, USA
| | - Steven M. Lipkin
- Department of Medicine, Weill Cornell Medical College, New York, NY
10065, USA
| | - Daniel G. MacArthur
- Analytical and Translational Genetics Unit, Massachusetts General
Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of
Harvard and Massachusetts Institute of Technology (MIT), Cambridge, MA 02142,
USA
| | - Gabor Marth
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Donna Muzny
- Baylor College of Medicine, Human Genome Sequencing Center,
Houston, TX 77030, USA
| | - Tune H. Pers
- Center for Biological Sequence Analysis, Department of Systems
Biology, Technical University of Denmark, Lyngby, Denmark
- Division of Endocrinology and Center for Basic and Translational
Obesity Research, Children’s Hospital, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Graham R. S. Ritchie
- European Molecular Biology Laboratory, European Bioinformatics
Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jeffrey A. Rosenfeld
- Department of Medicine, Rutgers New Jersey Medical School, Newark,
NJ 07101, USA
- IST/High Performance and Research Computing, Rutgers University
Newark, NJ 07101, USA
- Sackler Institute for Comparative Genomics, American Museum of
Natural History, New York, NY 10024, USA
| | - Cristina Sisu
- Program in Computational Biology and Bioinformatics, Yale
University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale
University, New Haven, CT 06520, USA
| | - Xiaomu Wei
- Weill Institute for Cell and Molecular Biology, Cornell University,
Ithaca, NY 14853, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY
10065, USA
| | - Michael Wilson
- Program in Computational Biology and Bioinformatics, Yale
University, New Haven, CT 06520, USA
- Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Yali Xue
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus,
Cambridge, CB10 1SA, UK
| | - Fuli Yu
- Baylor College of Medicine, Human Genome Sequencing Center,
Houston, TX 77030, USA
| | | | - Emmanouil T. Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva
Medical School, 1211 Geneva, Switzerland
- Institute for Genetics and Genomics in Geneva (iGE3), University of
Geneva, 1211 Geneva, Switzerland
- Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
| | - Haiyuan Yu
- Department of Biological Statistics and Computational Biology,
Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University,
Ithaca, NY 14853, USA
| | - Mark A. Rubin
- Institute for Precision Medicine and the Department of Pathology and
Laboratory Medicine, Weill Cornell Medical College and New York-Presbyterian
Hospital, New York, NY 10065, USA
| | - Chris Tyler-Smith
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus,
Cambridge, CB10 1SA, UK
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale
University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale
University, New Haven, CT 06520, USA
- Department of Computer Science, Yale University, New Haven, CT
06520, USA
| |
Collapse
|