1
|
Ralf A, Zandstra D, van Wersch B, Köksal Z, Larmuseau MHD, Rosa A, Jobling MA, D'Amato ME, Courts C, Gysi M, Haas C, Flores R, Neis M, Wetton JH, Kiesler K, Ameur A, Azonbakin S, Bôžiková A, Choma A, De Ungria MC, Corradini B, Cruz C, Dunkelmann B, Ferri G, Fleckhaus J, Fragou D, Gaens N, Gonçalves R, Havaš Auguštin D, Helm K, Hölzl-Müller P, Kaliszan M, Kasu M, Kovatsi L, Lesaoana M, Mizuno N, Neuhuber F, Nováčková J, Ňuňuková A, Pamjav H, Parson W, Ramankulov Y, Rangel Villalobos H, Rębała K, Rootsi S, Salvador J, Šarac J, Steffen CR, Stenzl V, Török T, Villems R, Watahiki H, Zhabagin M, Schneider PM, Kayser M. UYSD: a novel data repository accessible via public website for worldwide population frequencies of Y-SNP haplogroups. Eur J Hum Genet 2025:10.1038/s41431-025-01854-5. [PMID: 40341774 DOI: 10.1038/s41431-025-01854-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 05/11/2025] Open
Abstract
For decades, there has been scientific interest in the variation and geographic distribution of paternal lineages associated with the human Y chromosome. However, the relevant data have been dispersed across numerous publications, making it difficult to consolidate. Additionally, understanding the relationships between different variants, and the tools used to analyze them, have evolved over time, further complicating efforts to harmonize this information. The Universal Y-SNP Database (UYSD) marks a substantial advancement by providing a comprehensive and accessible platform for Y-SNP and haplogroup data from populations around the world. UYSD harmonizes diverse datasets into a unified repository, facilitating the exploration of global Y-chromosomal variation. The platform handles data generated with both high- and low-throughput technology and is compatible with the automated analysis software tool, Yleaf v3. Key functionalities include the ability to: i) visualize haplogroup distributions on an interactive world map, ii) estimate haplogroup frequencies in geographic regions with sparse data through interpolation, and iii) display detailed phylogenetic trees of Y-chromosomal haplogroups. Currently, UYSD encompasses data from over 6,600 males across 27 populations. This dataset largely aligns with known global Y-haplogroup patterns, but also reveals unexplored finer-scale geographic variations. While the present dataset is largely European-centered, UYSD is designed for ongoing expansion by the scientific community, aiming to include more global data and higher-resolution population sequencing data. The platform thus offers valuable insights into human genetic diversity and migration patterns, serving several fields of research such as: human population genetics, genetic anthropology, ancient DNA analysis and forensic genetics.
Collapse
Affiliation(s)
- Arwin Ralf
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
- Department of Pathology and Clinical Bioinformatics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Dion Zandstra
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Bram van Wersch
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Zehra Köksal
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maarten H D Larmuseau
- Laboratory of Human Genetic Genealogy, Department Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | | | - Cornelius Courts
- University Hospital of Cologne, Institute of Legal Medicine, Cologne, Germany
| | - Mario Gysi
- University of Zurich, Zurich, Switzerland
| | | | | | - Maximilian Neis
- University Hospital of Cologne, Institute of Legal Medicine, Cologne, Germany
| | - Jon H Wetton
- University of Leicester, Leicester, United Kingdom
| | - Kevin Kiesler
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala University, Uppsala, Sweden
| | | | | | - Andrej Choma
- Institute of Forensic Science, Bratislava, Slovak Republic
| | | | - Beatrice Corradini
- Institute of Legal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Gianmarco Ferri
- Institute of Legal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Jan Fleckhaus
- Ludwig Maximilian University, Institute of Legal Medicine, Munich, Germany
| | - Domniki Fragou
- Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Noah Gaens
- Laboratory of Human Genetic Genealogy, Department Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | | | - Petra Hölzl-Müller
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Mohaimin Kasu
- University of the Western Cape, Western Cape, South Africa
| | - Leda Kovatsi
- Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mpasi Lesaoana
- University of the Western Cape, Western Cape, South Africa
- Lesotho Mounted Police, Maseru, Lesotho
| | - Natsuko Mizuno
- National Research Institute of Police Science, Kashiwa, Japan
| | | | | | - Alena Ňuňuková
- Institute of Forensic Science, Bratislava, Slovak Republic
| | - Horolma Pamjav
- Hungarian Institute for Forensic Sciences, Institute of Forensic Genetics, Budapest, Hungary
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
- Forensic Science Program, The Pennsylvania State University, University Park, PA, USA
| | | | | | | | | | | | - Jelena Šarac
- Institute for Anthropological Research, Zagreb, Croatia
| | - Carolyn R Steffen
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | | | | | | | | | - Maxat Zhabagin
- Nazarbayev University, Astana, Kazakhstan
- National Center for Biotechnology, Astana, Kazakhstan
| | - Peter M Schneider
- University Hospital of Cologne, Institute of Legal Medicine, Cologne, Germany
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
- Department of Pathology and Clinical Bioinformatics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Köksal Z, Børsting C, Bailliet G, Burgos G, Carvalho E, Casas-Vargas A, Castillo A, Gomes MB, Martínez B, Ossa H, Parolin ML, Quiroz A, Toscanini U, Usaquén W, Velázquez IF, Vullo C, Gusmão L, Pereira V. Application of Targeted Y-Chromosomal Capture Enrichment to Increase the Resolution of Native American Haplogroup Q. Hum Mutat 2024; 2024:3046495. [PMID: 40225924 PMCID: PMC11918922 DOI: 10.1155/2024/3046495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/17/2024] [Accepted: 07/15/2024] [Indexed: 04/15/2025]
Abstract
Y-chromosomal haplogroups and the Y-SNPs defining them are relevant for the exploration of male lineages, inference of paternal ancestry, and reconstruction of migration pathways, to name a few. Currently, over 300,000 Y-SNPs have been reported, defining 20 main haplogroups. However, ascertainment bias in the investigations has led to some haplogroups being overlooked, which hinders a representative depiction of certain populations and their migration events. For migration pattern analyses of the first settlers of the Americas, the Native American main founding lineage Q-M3 needs to be further investigated to allow clear genetic differentiation of individuals of different ethnogeographic origins. To increase the resolution within this haplogroup, a total of 7.45 Mb of the Y chromosome of 59 admixed South Americans of haplogroup Q was targeted for sequencing using hybridization capture enrichment. Data were combined with 218 publicly available sequences of Central and South Americans of haplogroup Q. After rigorous data processing, variants not meeting the quality criteria were excluded and 4128 reliable Y-SNPs were reported. A total of 2224 Y-SNPs had previously unknown positions in the phylogenetic tree, and 1291 of these are novel. The phylogenetic relationships between the Y-SNPs were established using the software SNPtotree in order to report a redesigned phylogenetic tree containing 300 branches, defined by 3400 Y-SNPs. The new tree introduces 117 previously undescribed branches and is the most comprehensive phylogenetic tree of the Native American haplogroup Q lineages to date. The 214 sequences were assigned to 135 different low- to high-resolution branches, while in the previous phylogenetic tree, only 195 sequences could be sorted into 14 low-resolution branches with the same quality criteria. The improved genetic differentiation of subhaplogroup Q-M3 has a great potential to resolve migration patterns of Native Americans.
Collapse
Affiliation(s)
- Zehra Köksal
- Section of Forensic GeneticsDepartment of Forensic MedicineFaculty of Health and Medical SciencesUniversity of Copenhagen, Copenhagen, Denmark
| | - Claus Børsting
- Section of Forensic GeneticsDepartment of Forensic MedicineFaculty of Health and Medical SciencesUniversity of Copenhagen, Copenhagen, Denmark
| | - Graciela Bailliet
- Instituto Multidisciplinario de Biología CelularUniversidad Nacional de La PlataCCT-CONICET-La PlataCIC, La Plata, Argentina
| | - Germán Burgos
- One Health Global Research GroupFacultad de MedicinaUniversidad de Las Américas (UDLA), Quito, Ecuador
- Grupo de Medicina XenómicaUniversidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Elizeu Carvalho
- DNA Diagnostic Laboratory (LDD)State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Andrea Casas-Vargas
- Grupo de Genética de Poblaciones e IdentificaciónInstituto de GenéticaUniversidad Nacional de Colombia, Bogotá, Colombia
| | - Adriana Castillo
- Department of Basic SciencesUniversidad Industrial de Santander (UIS), Bucaramanga, Colombia
| | - Marilia Brito Gomes
- Department of Internal MedicineDiabetes UnitState University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Beatriz Martínez
- Instituto de Investigaciones InmunológicasUniversidad de Cartagena, Cartagena, Colombia
| | - Humberto Ossa
- Department of HematologyInstituto de PrevisiónLaboratório de Genética y Biología Molecular, Asunción, Paraguay
- Facultad de CienciasPontificia Universidad Javeriana, Bogotá, Colombia
| | - María Laura Parolin
- Instituto de Diversidad y Evolución Austral (IDEAus)Centro Nacional PatagónicoCONICET, Puerto Madryn, Argentina
| | | | - Ulises Toscanini
- Primer Centro Argentino de Inmunogenética (PRICAI)Fundación Favaloro, Buenos Aires, Argentina
| | - William Usaquén
- Grupo de Genética de Poblaciones e IdentificaciónInstituto de GenéticaUniversidad Nacional de Colombia, Bogotá, Colombia
| | - Irina F. Velázquez
- Instituto de Diversidad y Evolución Austral (IDEAus)Centro Nacional PatagónicoCONICET, Puerto Madryn, Argentina
| | - Carlos Vullo
- DNA Forensic LaboratoryEquipo Argentino de Antropología Forense (EAAF), Córdoba, Argentina
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD)State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Vania Pereira
- Section of Forensic GeneticsDepartment of Forensic MedicineFaculty of Health and Medical SciencesUniversity of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Nguidi M, Gomes V, Vullo C, Rodrigues P, Rotondo M, Longaray M, Catelli L, Martínez B, Campos A, Carvalho E, Orovboni VO, Keshinro SO, Simão F, Gusmão L. Impact of patrilocality on contrasting patterns of paternal and maternal heritage in Central-West Africa. Sci Rep 2024; 14:15653. [PMID: 38977763 PMCID: PMC11231350 DOI: 10.1038/s41598-024-65428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Despite their ancient past and high diversity, African populations are the least represented in human population genetic studies. In this study, uniparental markers (mtDNA and Y chromosome) were used to investigate the impact of sociocultural factors on the genetic diversity and inter-ethnolinguistic gene flow in the three major Nigerian groups: Hausa (n = 89), Yoruba (n = 135) and Igbo (n = 134). The results show a distinct history from the maternal and paternal perspectives. The three Nigerian groups present a similar substrate for mtDNA, but not for the Y chromosome. The two Niger-Congo groups, Yoruba and Igbo, are paternally genetically correlated with populations from the same ethnolinguistic affiliation. Meanwhile, the Hausa is paternally closer to other Afro-Asiatic populations and presented a high diversity of lineages from across Africa. When expanding the analyses to other African populations, it is observed that language did not act as a major barrier to female-mediated gene flow and that the differentiation of paternal lineages is better correlated with linguistic than geographic distances. The results obtained demonstrate the impact of patrilocality, a common and well-established practice in populations from Central-West Africa, in the preservation of the patrilineage gene pool and in the affirmation of identity between groups.
Collapse
Affiliation(s)
- Masinda Nguidi
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.
| | - Verónica Gomes
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Carlos Vullo
- DNA Forensic Laboratory, Equipo Argentino de Antropología Forense (EAAF), Córdoba, Argentina
| | - Pedro Rodrigues
- Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Martina Rotondo
- DNA Forensic Laboratory, Equipo Argentino de Antropología Forense (EAAF), Córdoba, Argentina
| | - Micaela Longaray
- DNA Forensic Laboratory, Equipo Argentino de Antropología Forense (EAAF), Córdoba, Argentina
| | - Laura Catelli
- DNA Forensic Laboratory, Equipo Argentino de Antropología Forense (EAAF), Córdoba, Argentina
| | - Beatriz Martínez
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Afonso Campos
- Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Elizeu Carvalho
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Victoria O Orovboni
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | | | - Filipa Simão
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Testing the Ion AmpliSeq™ HID Y-SNP Research Panel v1 for performance and resolution in admixed South Americans of haplogroup Q. Forensic Sci Int Genet 2022; 59:102708. [DOI: 10.1016/j.fsigen.2022.102708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022]
|
5
|
Joerin-Luque IA, Augusto DG, Calonga-Solís V, de Almeida RC, Lopes CVG, Petzl-Erler ML, Beltrame MH. Uniparental markers reveal new insights on subcontinental ancestry and sex-biased admixture in Brazil. Mol Genet Genomics 2022; 297:419-435. [DOI: 10.1007/s00438-022-01857-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
|
6
|
Simão F, Ribeiro J, Vullo C, Catelli L, Gomes V, Xavier C, Huber G, Bodner M, Quiroz A, Ferreira AP, Carvalho EF, Parson W, Gusmão L. The Ancestry of Eastern Paraguay: A Typical South American Profile with a Unique Pattern of Admixture. Genes (Basel) 2021; 12:1788. [PMID: 34828394 PMCID: PMC8625094 DOI: 10.3390/genes12111788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Immigrants from diverse origins have arrived in Paraguay and produced important demographic changes in a territory initially inhabited by indigenous Guarani. Few studies have been performed to estimate the proportion of Native ancestry that is still preserved in Paraguay and the role of females and males in admixture processes. Therefore, 548 individuals from eastern Paraguay were genotyped for three marker sets: mtDNA, Y-SNPs and autosomal AIM-InDels. A genetic homogeneity was found between departments for each set of markers, supported by the demographic data collected, which showed that only 43% of the individuals have the same birthplace as their parents. The results show a sex-biased intermarriage, with higher maternal than paternal Native American ancestry. Within the native mtDNA lineages in Paraguay (87.2% of the total), most haplogroups have a broad distribution across the subcontinent, and only few are concentrated around the Paraná River basin. The frequency distribution of the European paternal lineages in Paraguay (92.2% of the total) showed a major contribution from the Iberian region. In addition to the remaining legacy of the colonial period, the joint analysis of the different types of markers included in this study revealed the impact of post-war migrations on the current genetic background of Paraguay.
Collapse
Affiliation(s)
- Filipa Simão
- DNA Diagnostic Laboratory, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (F.S.); (J.R.); (A.P.F.); (E.F.C.)
| | - Julyana Ribeiro
- DNA Diagnostic Laboratory, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (F.S.); (J.R.); (A.P.F.); (E.F.C.)
| | - Carlos Vullo
- DNA Forensic Laboratory, Argentinean Forensic Anthropology Team, Córdoba 14001, Argentina; (C.V.); (L.C.)
| | - Laura Catelli
- DNA Forensic Laboratory, Argentinean Forensic Anthropology Team, Córdoba 14001, Argentina; (C.V.); (L.C.)
| | - Verónica Gomes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4099-002 Porto, Portugal;
- Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), 4099-002 Porto, Portugal
| | - Catarina Xavier
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.X.); (G.H.); (M.B.)
| | - Gabriela Huber
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.X.); (G.H.); (M.B.)
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.X.); (G.H.); (M.B.)
| | - Alfredo Quiroz
- Instituto de Previsión Social, Asunción 100153, Paraguay;
| | - Ana Paula Ferreira
- DNA Diagnostic Laboratory, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (F.S.); (J.R.); (A.P.F.); (E.F.C.)
| | - Elizeu F. Carvalho
- DNA Diagnostic Laboratory, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (F.S.); (J.R.); (A.P.F.); (E.F.C.)
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.X.); (G.H.); (M.B.)
- Forensic Science Program, The Pennsylvania State University, State College, PA 16801, USA
| | - Leonor Gusmão
- DNA Diagnostic Laboratory, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (F.S.); (J.R.); (A.P.F.); (E.F.C.)
| |
Collapse
|
7
|
Insights into the Middle Eastern paternal genetic pool in Tunisia: high prevalence of T-M70 haplogroup in an Arab population. Sci Rep 2021; 11:15728. [PMID: 34344940 PMCID: PMC8333252 DOI: 10.1038/s41598-021-95144-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/08/2021] [Indexed: 02/08/2023] Open
Abstract
To obtain refreshed insights into the paternal lineages of Tunisian populations, Y-chromosome diversity was assessed in two populations belonging to an Arab genealogical lineage, Kairouan and Wesletia, as well as in four Tunisian Andalusian populations, Testour, Slouguia, Qalaat-El-Andalous and El Alia. The Arabs from Kairouan revealed 73.47% of E-M81 and close affinities with Berber groups, indicating they are likely arabized Berbers, clearly differentiated from the Arabs from Wesletia, who harbored the highest frequency (71.8%) of the Middle Eastern component ever observed in North Africa. In the Tunisian Andalusians, the North African component largely prevailed, followed by the Middle Eastern contribution. Global comparative analysis highlighted the heterogeneity of Tunisian populations, among which, as a whole, dominated a set of lineages ascribed to be of autochthonous Berber origin (71.67%), beside a component of essentially Middle Eastern extraction (18.35%), and signatures of Sub-Saharan (5.2%), European (3.45%) and Asiatic (1.33%) contributions. The remarkable frequency of T-M70 in Wesletia (17.4%) prompted to refine its phylogeographic analysis, allowing to confirm its Middle Eastern origin, though signs of local evolution in Northern Africa were also detected. Evidence was clear on the ancient introduction of T lineages into the region, probably since Neolithic times associated to spread of agriculture.
Collapse
|
8
|
Masters ET. Traditional food plants of the upper Aswa River catchment of northern Uganda-a cultural crossroads. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2021; 17:24. [PMID: 33823912 PMCID: PMC8022409 DOI: 10.1186/s13002-021-00441-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND In the parkland agroforestry system of northern Uganda, smallholder farming households rely on a diversity of plant species to fulfil their nutritional requirements, many of which also serve a range of medicinal, cultural, and livelihood functions. The purpose of the study was to assemble an inventory of indigenous plant species used as food in four districts within the Aswa River catchment of northern Uganda, and to document their utilization and management by rural communities. METHODS From July 1999 to August 2000, a series of 61 community-based focus group discussions on the utilization of plant biodiversity were conducted in the vernacular language at 34 sites in four districts of northern Uganda, with participation by key informants self-selected on basis of their technical knowledge and personal interest. Of these, 232 respondents subsequently contributed to a collection of herbarium specimens, which were submitted to the Makerere University Herbarium for identification. On receipt of each specimen collected, a structured interview was conducted to document the botanical, ecological, seasonal, and alimentary attributes of each identified taxon, and details of its processing and utilization by the community from which it was obtained. The data analysis was undertaken during 2019 and 2020, including statistical tests to assess the relative importance of the cited taxa using the Relative Importance Index (RI), and to determine the similarity of edible plant use between the four cultures using the Jaccard Index of similarity (JI). RESULTS Key informant interviews yielded 1347 use reports (URs) for 360 identified specimens of 88 indigenous edible plant species. The data describes patterns of use of indigenous edible plants of four cultures of the Aswa River catchment of northern Uganda. RI scores ranged from 0.93 to 0.11, with fruit trees occupying the top 25 taxa (RI 0.45 and above). Jaccard similarity scores ranged from 25.8% between Lango and Acholi, to 15.8% between Acholi and Ethur, indicating that cultural factors appear to be more significant than shared ancestry as determinants of cultural similarity of plant use. CONCLUSIONS The data constitute an inventory of on-farm plant species, including cultivated, semi-cultivated, and wild plants, integrated into a parkland agroforestry system in which useful trees and other plant species are sustained and managed under cultivation. Agricultural and on-farm plant biodiversity may be seen as a food security resource, and a nutritional buffer against increasing risks and stressors on low-input smallholder agriculture. Further studies should assess the intra-species biodiversity of these resources, with respect to farmer-valued traits and vernacular (folk) classification systems.
Collapse
Affiliation(s)
- Eliot T Masters
- World Agroforestry (ICRAF), Nelson Marlborough Institute of Technology (NMIT), 322 Hardy Street, Nelson, 7010, New Zealand.
| |
Collapse
|
9
|
Middle eastern genetic legacy in the paternal and maternal gene pools of Chuetas. Sci Rep 2020; 10:21428. [PMID: 33293675 PMCID: PMC7722846 DOI: 10.1038/s41598-020-78487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/19/2020] [Indexed: 11/08/2022] Open
Abstract
Chuetas are a group of descendants of Majorcan Crypto-Jews (Balearic Islands, Spain) who were socially stigmatized and segregated by their Majorcan neighbours until recently; generating a community that, although after the seventeenth century no longer contained Judaic religious elements, maintained strong group cohesion, Jewishness consciousness, and endogamy. Collective memory fixed 15 surnames as a most important defining element of Chueta families. Previous studies demonstrated Chuetas were a differentiated population, with a considerable proportion of their original genetic make-up. Genetic data of Y-chromosome polymorphism and mtDNA control region showed, in Chuetas’ paternal lineages, high prevalence of haplogroups J2-M172 (33%) and J1-M267 (18%). In maternal lineages, the Chuetas hallmark is the presence of a new sub-branching of the rare haplogroup R0a2m as their modal haplogroup (21%). Genetic diversity in both Y-chromosome and mtDNA indicates the Chueta community has managed to avoid the expected heterogeneity decrease in their gene pool after centuries of isolation and inbreeding. Moreover, the composition of their uniparentally transmitted lineages demonstrates a remarkable signature of Middle Eastern ancestry—despite some degree of host admixture—confirming Chuetas have retained over the centuries a considerable degree of ancestral genetic signature along with the cultural memory of their Jewish origin.
Collapse
|
10
|
Villaescusa P, Seidel M, Nothnagel M, Pinotti T, González-Andrade F, Alvarez-Gila O, M de Pancorbo M, Roewer L. A Y-chromosomal survey of Ecuador's multi-ethnic population reveals new insights into the tri-partite population structure and supports an early Holocene age of the rare Native American founder lineage C3-MPB373. Forensic Sci Int Genet 2020; 51:102427. [PMID: 33254102 DOI: 10.1016/j.fsigen.2020.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 10/23/2022]
Abstract
Ecuador is a multiethnic and pluricultural country with a complex history defined by migration and admixture processes. The present study aims to increase our knowledge on the Ecuadorian Native Amerindian groups and the unique South American Y-chromosome haplogroup C3-MPB373 through the analysis of up to 23 Y-chromosome STRs (Y-STRs) and several Y-SNPs in a sample of 527 Ecuadorians from 7 distinct populations and geographic areas, including Kichwa and non-Kichwa Native Amerindians, Mestizos and Afro-Ecuadorians. Our results reveal the presence of C3-MPB373 both in the Amazonian lowland Kichwa with frequencies up to 28 % and, for the first time, in notable proportions in Kichwa populations from the Ecuadorian highlands. The substantially higher frequencies of C3-MPB373 in the Amazonian lowlands found in Kichwa and Waorani individuals suggest a founder effect in that area. Notably, estimates for the time to the most recent common ancestor (TMRCA) in the range of 7.2-9.0 kya point to an ancient origin of the haplogroup and suggest an early Holocene expansion of C3-MPB373 into South America. Finally, the pairwise genetic distances (RST) separate the Kichwa Salasaka from all the other Native Amerindian and Ecuadorian groups, indicating a so far hidden diversity among the Kichwa-speaking populations and suggesting a more southern origin of this population. In sum, our study provides a more in-depth knowledge of the male genetic structure of the multiethnic Ecuadorian population, as well as a valuable reference dataset for forensic use.
Collapse
Affiliation(s)
- Patricia Villaescusa
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.
| | - Maria Seidel
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Nothnagel
- Department of Statistical Genetics and Bioinformatics, Cologne Center for Genomics, University of Cologne, Cologne, Germany; University Hospital Cologne, Cologne, Germany
| | - Thomaz Pinotti
- Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | | | - Oscar Alvarez-Gila
- Department of Medieval, Early Modern and American History, Faculty of Letters, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Lutz Roewer
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Schaan AP, Gusmão L, Jannuzzi J, Modesto A, Amador M, Marques D, Rabenhorst SH, Montenegro R, Lopes T, Yoshioka FK, Pinto G, Santos S, Costa L, Silbiger V, Ribeiro-Dos-Santos Â. New insights on intercontinental origins of paternal lineages in Northeast Brazil. BMC Evol Biol 2020; 20:15. [PMID: 31996123 PMCID: PMC6990597 DOI: 10.1186/s12862-020-1579-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/09/2020] [Indexed: 12/29/2022] Open
Abstract
Background The current Brazilian population is the product of centuries of admixture between intercontinental founding groups. Although previous results have revealed a heterogeneous distribution of mitochondrial lineages in the Northeast region, the most targeted by foreign settlers during the sixteenth century, little is known about the paternal ancestry of this particular population. Considering historical records have documented a series of territorial invasions in the Northeast by various European populations, we aimed to characterize the male lineages found in Brazilian individuals in order to discover to what extent these migrations have influenced the present-day gene pool. Our approach consisted of employing four hierarchical multiplex assays for the investigation of 45 unique event polymorphisms in the non-recombining portion of the Y-chromosome of 280 unrelated men from several Northeast Brazilian states. Results Primary multiplex results allowed the identification of six major haplogroups, four of which were screened for downstream SNPs and enabled the observation of 19 additional lineages. Results reveal a majority of Western European haplogroups, among which R1b-S116* was the most common (63.9%), corroborating historical records of colonizations by Iberian populations. Nonetheless, FST genetic distances show similarities between Northeast Brazil and several other European populations, indicating multiple origins of settlers. Regarding Native American ancestry, our findings confirm a strong sexual bias against such haplogroups, which represented only 2.5% of individuals, highly contrasting previous results for maternal lineages. Furthermore, we document the presence of several Middle Eastern and African haplogroups, supporting a complex historical formation of this population and highlighting its uniqueness among other Brazilian regions. Conclusions We performed a comprehensive analysis of the major Y-chromosome lineages that form the most dynamic migratory region from the Brazilian colonial period. This evidence suggests that the ongoing entry of European, Middle Eastern, and African males in the Brazilian Northeast, since at least 500 years, was significantly responsible for the present-day genetic architecture of this population.
Collapse
Affiliation(s)
- Ana Paula Schaan
- Human and Medical Genetics Laboratory, Federal University of Pará, Av. Augusto Corrêa, 01 - Cidade Universitária Prof. José Silveira Netto - Guamá, Belém, PA, 66075-110, Brazil
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), Institute of Biology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Juliana Jannuzzi
- DNA Diagnostic Laboratory (LDD), Institute of Biology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Antonio Modesto
- Center for Oncology Research, Federal University of Pará, Belém, PA, 66073-005, Brazil
| | - Marcos Amador
- Human and Medical Genetics Laboratory, Federal University of Pará, Av. Augusto Corrêa, 01 - Cidade Universitária Prof. José Silveira Netto - Guamá, Belém, PA, 66075-110, Brazil
| | - Diego Marques
- Human and Medical Genetics Laboratory, Federal University of Pará, Av. Augusto Corrêa, 01 - Cidade Universitária Prof. José Silveira Netto - Guamá, Belém, PA, 66075-110, Brazil
| | - Silvia Helena Rabenhorst
- Pathology and Legal Medicine Department, Federal University of Ceará, Fortaleza, CE, 60020-181, Brazil
| | - Raquel Montenegro
- Pathology and Legal Medicine Department, Federal University of Ceará, Fortaleza, CE, 60020-181, Brazil
| | - Thayson Lopes
- Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, PI, 64202-020, Brazil
| | - France Keiko Yoshioka
- Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, PI, 64202-020, Brazil
| | - Giovanny Pinto
- Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, PI, 64202-020, Brazil
| | - Sidney Santos
- Human and Medical Genetics Laboratory, Federal University of Pará, Av. Augusto Corrêa, 01 - Cidade Universitária Prof. José Silveira Netto - Guamá, Belém, PA, 66075-110, Brazil
| | - Lorenna Costa
- Clinical and Toxicological Analyses Department, Federal University of Rio Grande do Norte, Natal, RN, 59300-000, Brazil
| | - Vivian Silbiger
- Clinical and Toxicological Analyses Department, Federal University of Rio Grande do Norte, Natal, RN, 59300-000, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Human and Medical Genetics Laboratory, Federal University of Pará, Av. Augusto Corrêa, 01 - Cidade Universitária Prof. José Silveira Netto - Guamá, Belém, PA, 66075-110, Brazil. .,Center for Oncology Research, Federal University of Pará, Belém, PA, 66073-005, Brazil.
| |
Collapse
|
12
|
Jannuzzi J, Ribeiro J, Alho C, de Oliveira Lázaro e Arão G, Cicarelli R, Simões Dutra Corrêa H, Ferreira S, Fridman C, Gomes V, Loiola S, da Mota MF, Ribeiro-dos-Santos Â, de Souza CA, de Sousa Azulay RS, Carvalho EF, Gusmão L. Male lineages in Brazilian populations and performance of haplogroup prediction tools. Forensic Sci Int Genet 2020; 44:102163. [DOI: 10.1016/j.fsigen.2019.102163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/25/2019] [Accepted: 09/19/2019] [Indexed: 11/26/2022]
|
13
|
Ralf A, van Oven M, Montiel González D, de Knijff P, van der Beek K, Wootton S, Lagacé R, Kayser M. Forensic Y-SNP analysis beyond SNaPshot: High-resolution Y-chromosomal haplogrouping from low quality and quantity DNA using Ion AmpliSeq and targeted massively parallel sequencing. Forensic Sci Int Genet 2019; 41:93-106. [PMID: 31063905 DOI: 10.1016/j.fsigen.2019.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
Y-chromosomal haplogroups assigned from male-specific Y-chromosomal single nucleotide polymorphisms (Y-SNPs) allow paternal lineage identification and paternal bio-geographic ancestry inference, both being relevant in forensic genetics. However, most previously developed forensic Y-SNP tools did not provide Y haplogroup resolution on the high level needed in forensic applications, because the limited multiplex capacity of the DNA technologies used only allowed the inclusion of a relatively small number of Y-SNPs. In a proof-of-principle study, we recently demonstrated that high-resolution Y haplogrouping is feasible via two AmpliSeq PCR analyses and simultaneous massively parallel sequencing (MPS) of 530 Y-SNPs allowing the inference of 432 Y-haplogroups. With the current study, we present a largely improved Y-SNP MPS lab tool that we specifically designed for the analysis of low quality and quantity DNA often confronted with in forensic DNA analysis. Improvements include i) Y-SNP marker selection based on the "minimal reference phylogeny for the human Y chromosome" (PhyloTree Y), ii) strong increase of the number of targeted Y-SNPs allowing many more Y haplogroups to be inferred, iii) focus on short amplicon length enabling successful analysis of degraded DNA, and iv) combination of all amplicons in a single AmpliSeq PCR and simultaneous sequencing allowing single DNA aliquot use. This new MPS tool simultaneously analyses 859 Y-SNPs and allows inferring 640 Y haplogroups. Preliminary forensic developmental validation testing revealed that this tool performs highly accurate, is sensitive and robust. We also provide a revised software tool for analysing the sequencing data produced by the new MPS lab tool including final Y haplogroup assignment. We envision the tools introduced here for high-resolution Y-chromosomal haplogrouping to determine a man's paternal lineage and/or paternal bio-geographic ancestry to become widely used in forensic Y-chromosome DNA analysis and other applications were Y haplogroup information from low quality / quantity DNA samples is required.
Collapse
Affiliation(s)
- Arwin Ralf
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3000 CA, Rotterdam, the Netherlands
| | - Mannis van Oven
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3000 CA, Rotterdam, the Netherlands
| | - Diego Montiel González
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3000 CA, Rotterdam, the Netherlands
| | - Peter de Knijff
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands
| | - Kees van der Beek
- Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB, The Hague, the Netherlands
| | - Sharon Wootton
- Human Identification Group, Thermo Fisher Scientific, 180 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Robert Lagacé
- Human Identification Group, Thermo Fisher Scientific, 180 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3000 CA, Rotterdam, the Netherlands.
| |
Collapse
|
14
|
Alonso Morales LA, Casas-Vargas A, Rojas Castro M, Resque R, Ribeiro-dos-Santos ÂK, Santos S, Gusmão L, Usaquén W. Paternal portrait of populations of the middle Magdalena River region (Tolima and Huila, Colombia): New insights on the peopling of Central America and northernmost South America. PLoS One 2018; 13:e0207130. [PMID: 30439976 PMCID: PMC6237345 DOI: 10.1371/journal.pone.0207130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/25/2018] [Indexed: 11/18/2022] Open
Abstract
The valley of the Magdalena River is one of the main population pathways in Colombia. The gene pool and spatial configuration of human groups in this territory have been outlined throughout three historical stages: the Native pre-Hispanic world, Spanish colonization, and XIX century migrations. This research was designed with the goal of characterizing the diversity and distribution pattern of Y-chromosome lineages that are currently present in the Tolima and Huila departments (middle Magdalena River region). Historic cartography was used to identify the main geographic sites where the paternal lineages belonging to this area have gathered. Twelve municipalities were chosen, and a survey that included genealogical information was administered. Samples collected from 83 male volunteers were analyzed for 48 Y-SNPs and 17 Y-STRs. The results showed a highly diverse region characterized by the presence of 16 sublineages within the major clades R, Q, J, G, T and E and revealed that 93% (n = 77) of haplotypes were different. Among these haplogroups, European-specific R1b-M269 lineages were the most representative (57.83%), with six different subhaplogroups and 43 unique haplotypes. Native American paternal ancestry was also detected based on the presence of the Q1a2-M3*(xM19, M194, M199) and Q1a2-M346*(xM3) lineages. Interestingly, all Q1a2-M346*(xM3) samples (n = 7, with five different haplotypes) carried allele six at the DYS391 locus. This allele has a worldwide frequency of 0.169% and was recently associated with a new Native subhaplogroup. An in-depth phylogenetic analysis of these samples suggests the Tolima and Huila region to be the principal area in all Central and South America where this particular Native lineage is found. This lineage has been present in the region for at least 1,809 (+/- 0,5345) years.
Collapse
Affiliation(s)
- Luz Angela Alonso Morales
- Populations Genetics and Identification Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail: (LAAM); (WU)
| | - Andrea Casas-Vargas
- Populations Genetics and Identification Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Madelyn Rojas Castro
- Populations Genetics and Identification Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Rafael Resque
- Laboratório de Toxicologia e Química Farmacêutica, Departamento de Ciências da Saúde e Biológicas, Universidade Federal do Amapá, Macapá, Brazil
| | - Ândrea Kelly Ribeiro-dos-Santos
- Human and Medical Genetics Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará - UFPA), Belém, state of Pará (PA), Brazil
| | - Sidney Santos
- Human and Medical Genetics Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará - UFPA), Belém, state of Pará (PA), Brazil
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), Institute of Biology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - William Usaquén
- Populations Genetics and Identification Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail: (LAAM); (WU)
| |
Collapse
|
15
|
Bajić V, Barbieri C, Hübner A, Güldemann T, Naumann C, Gerlach L, Berthold F, Nakagawa H, Mpoloka SW, Roewer L, Purps J, Stoneking M, Pakendorf B. Genetic structure and sex-biased gene flow in the history of southern African populations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:656-671. [PMID: 30192370 PMCID: PMC6667921 DOI: 10.1002/ajpa.23694] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 07/13/2018] [Accepted: 07/15/2018] [Indexed: 12/31/2022]
Abstract
Objectives We investigated the genetic history of southern African populations with a special focus on their paternal history. We reexamined previous claims that the Y‐chromosome haplogroup E1b1b (E‐M293) was brought to southern Africa by pastoralists from eastern Africa, and investigated patterns of sex‐biased gene flow in southern Africa. Materials and methods We analyzed previously published complete mtDNA genome sequences and ∼900 kb of NRY sequences from 23 populations from Namibia, Botswana, and Zambia, as well as haplogroup frequencies from a large sample of southern African populations and 23 newly genotyped Y‐linked STR loci for samples assigned to haplogroup E1b1b. Results Our results support an eastern African origin for Y‐chromosome haplogroup E1b1b (E‐M293); however, its current distribution in southern Africa is not strongly associated with pastoralism, suggesting more complex demographic events and/or changes in subsistence practices in this region. The Bantu expansion in southern Africa had a notable genetic impact and was probably a rapid, male‐dominated expansion. Our finding of a significant increase in the intensity of the sex‐biased gene flow from north to south may reflect changes in the social dynamics between Khoisan and Bantu groups over time. Conclusions Our study shows that the population history of southern Africa has been complex, with different immigrating groups mixing to different degrees with the autochthonous populations. The Bantu expansion led to heavily sex‐biased admixture as a result of interactions between Khoisan females and Bantu males, with a geographic gradient which may reflect changes in the social dynamics between Khoisan and Bantu groups over time.
Collapse
Affiliation(s)
- Vladimir Bajić
- Department of Evolutionary Genetics, MPI for Evolutionary Anthropology, Leipzig, Germany
| | - Chiara Barbieri
- Department of Linguistic and Cultural Evolution, MPI for the Science of Human History, Jena, Germany.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Alexander Hübner
- Department of Evolutionary Genetics, MPI for Evolutionary Anthropology, Leipzig, Germany
| | - Tom Güldemann
- Department of Linguistic and Cultural Evolution, MPI for the Science of Human History, Jena, Germany.,Institute of Asian and African Studies, Humboldt University, Berlin, Germany
| | - Christfried Naumann
- Institute of Asian and African Studies, Humboldt University, Berlin, Germany
| | - Linda Gerlach
- Department of Human Behavior, Ecology and Culture, MPI for Evolutionary Anthropology, Leipzig, Germany
| | - Falko Berthold
- Max Planck Research Group on Comparative Population Linguistics, MPI for Evolutionary Anthropology, Leipzig, Germary
| | - Hirosi Nakagawa
- Institute of Global Studies, Tokyo University of Foreign Studies, Tokyo, Japan
| | - Sununguko W Mpoloka
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Lutz Roewer
- Charité - Universitätsmedizin Berlin, Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Berlin, Germany
| | - Josephine Purps
- Charité - Universitätsmedizin Berlin, Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Berlin, Germany
| | - Mark Stoneking
- Department of Evolutionary Genetics, MPI for Evolutionary Anthropology, Leipzig, Germany
| | - Brigitte Pakendorf
- Laboratoire «Dynamique du Langage», CNRS & Université de Lyon, Lyon, France
| |
Collapse
|
16
|
D’Atanasio E, Trombetta B, Bonito M, Finocchio A, Di Vito G, Seghizzi M, Romano R, Russo G, Paganotti GM, Watson E, Coppa A, Anagnostou P, Dugoujon JM, Moral P, Sellitto D, Novelletto A, Cruciani F. The peopling of the last Green Sahara revealed by high-coverage resequencing of trans-Saharan patrilineages. Genome Biol 2018; 19:20. [PMID: 29433568 PMCID: PMC5809971 DOI: 10.1186/s13059-018-1393-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/19/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Little is known about the peopling of the Sahara during the Holocene climatic optimum, when the desert was replaced by a fertile environment. RESULTS In order to investigate the role of the last Green Sahara in the peopling of Africa, we deep-sequence the whole non-repetitive portion of the Y chromosome in 104 males selected as representative of haplogroups which are currently found to the north and to the south of the Sahara. We identify 5,966 mutations, from which we extract 142 informative markers then genotyped in about 8,000 subjects from 145 African, Eurasian and African American populations. We find that the coalescence age of the trans-Saharan haplogroups dates back to the last Green Sahara, while most northern African or sub-Saharan clades expanded locally in the subsequent arid phase. CONCLUSIONS Our findings suggest that the Green Sahara promoted human movements and demographic expansions, possibly linked to the adoption of pastoralism. Comparing our results with previously reported genome-wide data, we also find evidence for a sex-biased sub-Saharan contribution to northern Africans, suggesting that historical events such as the trans-Saharan slave trade mainly contributed to the mtDNA and autosomal gene pool, whereas the northern African paternal gene pool was mainly shaped by more ancient events.
Collapse
Affiliation(s)
- Eugenia D’Atanasio
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
| | - Beniamino Trombetta
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Maria Bonito
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Andrea Finocchio
- Dipartimento di Biologia, Università di Roma “Tor Vergata”, Rome, Italy
| | - Genny Di Vito
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Mara Seghizzi
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Rita Romano
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Rome, Italy
| | - Gianluca Russo
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Rome, Italy
| | - Giacomo Maria Paganotti
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | | | - Alfredo Coppa
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
| | - Paolo Anagnostou
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
- Istituto Italiano di Antropologia, Rome, Italy
| | - Jean-Michel Dugoujon
- Centre National de la Recherche Scientifique (CNRS), Université Toulouse-3–Paul-Sabatier, Toulouse, France
| | - Pedro Moral
- Department of Animal Biology-Anthropology, Biodiversity Research Institute, University of Barcelona, Barcelona, Spain
| | | | - Andrea Novelletto
- Dipartimento di Biologia, Università di Roma “Tor Vergata”, Rome, Italy
| | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
- Istituto di Biologia e Patologia Molecolari, CNR, Rome, Italy
| |
Collapse
|
17
|
Khan K, Siddiqi MH, Abbas M, Almas M, Idrees M. Forensic applications of Y chromosomal properties. Leg Med (Tokyo) 2017; 26:86-91. [DOI: 10.1016/j.legalmed.2017.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 04/08/2017] [Accepted: 04/15/2017] [Indexed: 01/17/2023]
|
18
|
Kayser M. Forensic use of Y-chromosome DNA: a general overview. Hum Genet 2017; 136:621-635. [PMID: 28315050 PMCID: PMC5418305 DOI: 10.1007/s00439-017-1776-9] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/08/2017] [Indexed: 11/19/2022]
Abstract
The male-specific part of the human Y chromosome is widely used in forensic DNA analysis, particularly in cases where standard autosomal DNA profiling is not informative. A Y-chromosomal gene fragment is applied for inferring the biological sex of a crime scene trace donor. Haplotypes composed of Y-chromosomal short tandem repeat polymorphisms (Y-STRs) are used to characterise paternal lineages of unknown male trace donors, especially suitable when males and females have contributed to the same trace, such as in sexual assault cases. Y-STR haplotyping applied in crime scene investigation can (i) exclude male suspects from involvement in crime, (ii) identify the paternal lineage of male perpetrators, (iii) highlight multiple male contributors to a trace, and (iv) provide investigative leads for finding unknown male perpetrators. Y-STR haplotype analysis is employed in paternity disputes of male offspring and other types of paternal kinship testing, including historical cases, as well as in special cases of missing person and disaster victim identification involving men. Y-chromosome polymorphisms are applied for inferring the paternal bio-geographic ancestry of unknown trace donors or missing persons, in cases where autosomal DNA profiling is uninformative. In this overview, all different forensic applications of Y-chromosome DNA are described. To illustrate the necessity of forensic Y-chromosome analysis, the investigation of a prominent murder case is described, which initiated two changes in national forensic DNA legislation both covering Y-chromosome use, and was finally solved via an innovative Y-STR dragnet involving thousands of volunteers after 14 years. Finally, expectations for the future of forensic Y-chromosome DNA analysis are discussed.
Collapse
Affiliation(s)
- Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
19
|
Resque R, Gusmão L, Geppert M, Roewer L, Palha T, Alvarez L, Ribeiro-dos-Santos Â, Santos S. Male Lineages in Brazil: Intercontinental Admixture and Stratification of the European Background. PLoS One 2016; 11:e0152573. [PMID: 27046235 PMCID: PMC4821637 DOI: 10.1371/journal.pone.0152573] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 03/16/2016] [Indexed: 12/27/2022] Open
Abstract
The non-recombining nature of the Y chromosome and the well-established phylogeny of Y-specific Single Nucleotide Polymorphisms (Y-SNPs) make them useful for defining haplogroups with high geographical specificity; therefore, they are more apt than the Y-STRs to detect population stratification in admixed populations from diverse continental origins. Different Y-SNP typing strategies have been described to address issues of population history and movements within geographic territories of interest. In this study, we investigated a set of 41 Y-SNPs in 1217 unrelated males from the five Brazilian geopolitical regions, aiming to disclose the genetic structure of male lineages in the country. A population comparison based on pairwise FST genetic distances did not reveal statistically significant differences in haplogroup frequency distributions among populations from the different regions. The genetic differences observed among regions were, however, consistent with the colonization history of the country. The sample from the Northern region presented the highest Native American ancestry (8.4%), whereas the more pronounced African contribution could be observed in the Northeastern population (15.1%). The Central-Western and Southern samples showed the higher European contributions (95.7% and 93.6%, respectively). The Southeastern region presented significant European (86.1%) and African (12.0%) contributions. The subtyping of the most frequent European lineage in Brazil (R1b1a-M269) allowed differences in the genetic European background of the five Brazilian regions to be investigated for the first time.
Collapse
Affiliation(s)
- Rafael Resque
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Toxicologia e Química Farmacêutica, Departamento de Ciências da Saúde e Biológicas, Universidade Federal do Amapá, Macapá, Brazil
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), Institute of Biology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.,IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Maria Geppert
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lutz Roewer
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Teresinha Palha
- Laboratório de Genética Forense, Instituto de Criminalística, Centro de Perícias Científicas Renato Chaves, Belém, Pará, Brasil
| | - Luis Alvarez
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ândrea Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil
| | - Sidney Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
20
|
Marques SL, Gusmão L, Amorim A, Prata MJ, Alvarez L. Y chromosome diversity in a linguistic isolate (Mirandese, NE Portugal). Am J Hum Biol 2016; 28:671-80. [PMID: 26990174 DOI: 10.1002/ajhb.22849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 02/21/2016] [Accepted: 02/21/2016] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES The purpose of this study was to genetically characterize the male lineages of people who speak Mirandese, an interesting case of a linguistic relict that can still be found in the municipality of Miranda do Douro, NE Portugal. This region lies within the area of the Leonese dialects, which are remnants of the Romance dialects spoken in the Kingdom of Leon currently grouped in the Astur-Leonese linguistic continuum. We intended to disclose affinities with surrounding populations, namely from Spain where the Astur-Leonese is also spoken. METHODS Eighty-eight unrelated males (58 from Miranda and 30 from Bragança, the broad Portuguese region where Miranda is located) were genotyped with the combined use of 17 Y chromosome short tandem repeats (Y-STRs) and a high resolution Y chromosome single nucleotide polymorphism (Y-SNPs) strategy. Moreover, 236 males from Miranda and neighboring regions, previously classified as R-M269, were also genotyped. RESULTS R-P312 was the most frequent haplogroup in the Mirandese, followed by J-12f2.1 and T-M70. The male lineages J-12f2.1 and T-M70 were also well represented, and both were shared with descendants of Sephardic Jews. No signs of diversity reduction were detected. CONCLUSIONS Mirandese speakers display a Y chromosome gene pool that shows a subtle differentiation from neighboring populations, mainly attributable to the assimilation of lineages ascribed to be of Jewish ancestry. Although not revealing signs of geographic/linguistic isolation, no clear affinities with other Astur-Leonese populations were detected. The results suggest that in Miranda language sharing is not accompanied by significant gene flow between populations from both sides of the political border. Am. J. Hum. Biol. 28:671-680, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sofia L Marques
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal. .,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | - Leonor Gusmão
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Antonio Amorim
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences of the University of Porto (FCUP), Porto, Portugal
| | - Maria João Prata
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences of the University of Porto (FCUP), Porto, Portugal
| | - Luis Alvarez
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
21
|
Nogueiro I, Neto C, Marques SL, Alves C, Cohen-Addad N, Amorim A, Gusmão L, Alvarez L. Exploring Sephardic lineages in São Tomé e Príncipe. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2015. [DOI: 10.1016/j.fsigss.2015.09.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Oliveira AM, Gusmão L, Schneider PM, Gomes I. Detecting the Paternal Genetic Diversity in West Africa using Y-STRs and Y-SNPs. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2015. [DOI: 10.1016/j.fsigss.2015.09.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Gomes V, Pala M, Salas A, Álvarez-Iglesias V, Amorim A, Gómez-Carballa A, Carracedo Á, Clarke DJ, Hill C, Mormina M, Shaw MA, Dunne DW, Pereira R, Pereira V, Prata MJ, Sánchez-Diz P, Rito T, Soares P, Gusmão L, Richards MB. Mosaic maternal ancestry in the Great Lakes region of East Africa. Hum Genet 2015; 134:1013-27. [PMID: 26188410 DOI: 10.1007/s00439-015-1583-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/04/2015] [Indexed: 01/21/2023]
Abstract
The Great Lakes lie within a region of East Africa with very high human genetic diversity, home of many ethno-linguistic groups usually assumed to be the product of a small number of major dispersals. However, our knowledge of these dispersals relies primarily on the inferences of historical, linguistics and oral traditions, with attempts to match up the archaeological evidence where possible. This is an obvious area to which archaeogenetics can contribute, yet Uganda, at the heart of these developments, has not been studied for mitochondrial DNA (mtDNA) variation. Here, we compare mtDNA lineages at this putative genetic crossroads across 409 representatives of the major language groups: Bantu speakers and Eastern and Western Nilotic speakers. We show that Uganda harbours one of the highest mtDNA diversities within and between linguistic groups, with the various groups significantly differentiated from each other. Despite an inferred linguistic origin in South Sudan, the data from the two Nilotic-speaking groups point to a much more complex history, involving not only possible dispersals from Sudan and the Horn but also large-scale assimilation of autochthonous lineages within East Africa and even Uganda itself. The Eastern Nilotic group also carries signals characteristic of West-Central Africa, primarily due to Bantu influence, whereas a much stronger signal in the Western Nilotic group suggests direct West-Central African ancestry. Bantu speakers share lineages with both Nilotic groups, and also harbour East African lineages not found in Western Nilotic speakers, likely due to assimilating indigenous populations since arriving in the region ~3000 years ago.
Collapse
Affiliation(s)
- Verónica Gomes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Trombetta B, D'Atanasio E, Massaia A, Ippoliti M, Coppa A, Candilio F, Coia V, Russo G, Dugoujon JM, Moral P, Akar N, Sellitto D, Valesini G, Novelletto A, Scozzari R, Cruciani F. Phylogeographic Refinement and Large Scale Genotyping of Human Y Chromosome Haplogroup E Provide New Insights into the Dispersal of Early Pastoralists in the African Continent. Genome Biol Evol 2015; 7:1940-50. [PMID: 26108492 PMCID: PMC4524485 DOI: 10.1093/gbe/evv118] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Haplogroup E, defined by mutation M40, is the most common human Y chromosome clade within Africa. To increase the level of resolution of haplogroup E, we disclosed the phylogenetic relationships among 729 mutations found in 33 haplogroup DE Y-chromosomes sequenced at high coverage in previous studies. Additionally, we dissected the E-M35 subclade by genotyping 62 informative markers in 5,222 samples from 118 worldwide populations. The phylogeny of haplogroup E showed novel features compared with the previous topology, including a new basal dichotomy. Within haplogroup E-M35, we resolved all the previously known polytomies and assigned all the E-M35* chromosomes to five new different clades, all belonging to a newly identified subhaplogroup (E-V1515), which accounts for almost half of the E-M35 chromosomes from the Horn of Africa. Moreover, using a Bayesian phylogeographic analysis and a single nucleotide polymorphism-based approach we localized and dated the origin of this new lineage in the northern part of the Horn, about 12 ka. Time frames, phylogenetic structuring, and sociogeographic distribution of E-V1515 and its subclades are consistent with a multistep demic spread of pastoralism within north-eastern Africa and its subsequent diffusion to subequatorial areas. In addition, our results increase the discriminative power of the E-M35 haplogroup for use in forensic genetics through the identification of new ancestry-informative markers.
Collapse
Affiliation(s)
- Beniamino Trombetta
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza Università di Roma, Italy
| | - Eugenia D'Atanasio
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza Università di Roma, Italy
| | - Andrea Massaia
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza Università di Roma, Italy Present address: The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Marco Ippoliti
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza Università di Roma, Italy
| | - Alfredo Coppa
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Italy
| | | | - Valentina Coia
- Accademia Europea di Bolzano (EURAC), Istituto per le Mummie e l'Iceman, Bolzano, Italy
| | - Gianluca Russo
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Italy
| | - Jean-Michel Dugoujon
- Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse, UMR 5288, Centre National de la Recherche Scientifique (CNRS), Université Toulouse-3-Paul-Sabatier, Toulouse, France
| | - Pedro Moral
- Department of Animal Biology-Anthropology, Biodiversity Research Institute, University of Barcelona, Spain
| | - Nejat Akar
- Pediatrics Department, TOBB-Economy and Technology University Hospital, Ankara, Turkey
| | | | - Guido Valesini
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Italy
| | - Andrea Novelletto
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza Università di Roma, Italy
| | - Rosaria Scozzari
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza Università di Roma, Italy
| | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza Università di Roma, Italy Istituto di Biologia e Patologia Molecolari, CNR, Rome Italy
| |
Collapse
|
25
|
Xavier C, Builes JJ, Gomes V, Ospino JM, Aquino J, Parson W, Amorim A, Gusmão L, Goios A. Admixture and genetic diversity distribution patterns of non-recombining lineages of Native American ancestry in Colombian populations. PLoS One 2015; 10:e0120155. [PMID: 25775361 PMCID: PMC4361580 DOI: 10.1371/journal.pone.0120155] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/20/2015] [Indexed: 11/19/2022] Open
Abstract
Genetic diversity of present American populations results from very complex demographic events involving different types and degrees of admixture. Through the analysis of lineage markers such as mtDNA and Y chromosome it is possible to recover the original Native American haplotypes, which remained identical since the admixture events due to the absence of recombination. However, the decrease in the effective population sizes and the consequent genetic drift effects suffered by these populations during the European colonization resulted in the loss or under-representation of a substantial fraction of the Native American lineages. In this study, we aim to clarify how the diversity and distribution of uniparental lineages vary with the different demographic characteristics (size, degree of isolation) and the different levels of admixture of extant Native groups in Colombia. We present new data resulting from the analyses of mtDNA whole control region, Y chromosome SNP haplogroups and STR haplotypes, and autosomal ancestry informative insertion-deletion polymorphisms in Colombian individuals from different ethnic and linguistic groups. The results demonstrate that populations presenting a high proportion of non-Native American ancestry have preserved nevertheless a substantial diversity of Native American lineages, for both mtDNA and Y chromosome. We suggest that, by maintaining the effective population sizes high, admixture allowed for a decrease in the effects of genetic drift due to Native population size reduction and thus resulting in an effective preservation of the Native American non-recombining lineages.
Collapse
Affiliation(s)
- Catarina Xavier
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Juan José Builes
- Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
- Laboratorio Genes Ltda, Medellín, Colombia
| | - Verónica Gomes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | | | - Juliana Aquino
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Walther Parson
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
- Eberly College of Science, Penn State University, University Park, PA, United States of America
| | - António Amorim
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Leonor Gusmão
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Ana Goios
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- * E-mail:
| |
Collapse
|
26
|
Ralf A, van Oven M, Zhong K, Kayser M. Simultaneous analysis of hundreds of Y-chromosomal SNPs for high-resolution paternal lineage classification using targeted semiconductor sequencing. Hum Mutat 2014; 36:151-9. [PMID: 25338970 DOI: 10.1002/humu.22713] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/08/2014] [Indexed: 11/06/2022]
Abstract
SNPs from the non-recombining part of the human Y chromosome (Y-SNPs) are informative to classify paternal lineages in forensic, genealogical, anthropological, and evolutionary studies. Although thousands of Y-SNPs were identified thus far, previous Y-SNP multiplex tools target only dozens of markers simultaneously, thereby restricting the provided Y-haplogroup resolution and limiting their applications. Here, we overcome this shortcoming by introducing a high-resolution multiplex tool for parallel genotyping-by-sequencing of 530 Y-SNPs using the Ion Torrent PGM platform, which allows classification of 432 worldwide Y haplogroups. Contrary to previous Y-SNP multiplex tools, our approach covers branches of the entire Y tree, thereby maximizing the paternal lineage classification obtainable. We used a default DNA input amount of 10 ng per reaction but preliminary sensitivity testing revealed positive results from as little as 100 pg input DNA. Furthermore, we demonstrate that sample pooling using barcodes is feasible, allowing increased throughput for lower per-sample costs. In addition to the wetlab protocol, we provide a software tool for automated data quality control and haplogroup classification. The unique combination of ultra-high marker density and high sensitivity achievable from low amounts of potentially degraded DNA makes this new multiplex tool suitable for a wide range of Y-chromosome applications.
Collapse
Affiliation(s)
- Arwin Ralf
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
27
|
Marks SJ, Montinaro F, Levy H, Brisighelli F, Ferri G, Bertoncini S, Batini C, Busby GBJ, Arthur C, Mitchell P, Stewart BA, Oosthuizen O, Oosthuizen E, D'Amato ME, Davison S, Pascali V, Capelli C. Static and moving frontiers: the genetic landscape of Southern African Bantu-speaking populations. Mol Biol Evol 2014; 32:29-43. [PMID: 25223418 DOI: 10.1093/molbev/msu263] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A consensus on Bantu-speaking populations being genetically similar has emerged in the last few years, but the demographic scenarios associated with their dispersal are still a matter of debate. The frontier model proposed by archeologists postulates different degrees of interaction among incoming agropastoralist and resident foraging groups in the presence of "static" and "moving" frontiers. By combining mitochondrial DNA and Y chromosome data collected from several southern African populations, we show that Bantu-speaking populations from regions characterized by a moving frontier developing after a long-term static frontier have larger hunter-gatherer contributions than groups from areas where a static frontier was not followed by further spatial expansion. Differences in the female and male components suggest that the process of assimilation of the long-term resident groups into agropastoralist societies was gender biased. Our results show that the diffusion of Bantu languages and culture in Southern Africa was a process more complex than previously described and suggest that the admixture dynamics between farmers and foragers played an important role in shaping the current patterns of genetic diversity.
Collapse
Affiliation(s)
- Sarah J Marks
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Francesco Montinaro
- Department of Zoology, University of Oxford, Oxford, United Kingdom Institute of Legal Medicine, Catholic University, Rome, Italy
| | - Hila Levy
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - Gianmarco Ferri
- Dipartimento ad Attività Integrata di Laboratori, Anatomia Patologica, Medicina Legale, U.O. Struttura Complessa di Medicina Legale, Azienda Ospedaliero, Universitaria di Modena, Modena, Italy
| | | | - Chiara Batini
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - George B J Busby
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Charles Arthur
- School of Archaeology, University of Oxford, Oxford, United Kingdom
| | - Peter Mitchell
- School of Archaeology, University of Oxford, Oxford, United Kingdom School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | | - Maria Eugenia D'Amato
- Biotechnology Department, Forensic DNA Laboratory, University of the Western Cape, Bellville, South Africa
| | - Sean Davison
- Biotechnology Department, Forensic DNA Laboratory, University of the Western Cape, Bellville, South Africa
| | | | - Cristian Capelli
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
Oliveira AM, Domingues PM, Gomes V, Amorim A, Jannuzzi J, de Carvalho EF, Gusmão L. Male lineage strata of Brazilian population disclosed by the simultaneous analysis of STRs and SNPs. Forensic Sci Int Genet 2014; 13:264-8. [PMID: 25259770 DOI: 10.1016/j.fsigen.2014.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 12/09/2022]
Abstract
Brazil has a large territory divided in five geographical regions harboring highly diverse populations that resulted from different degrees and modes of admixture between Native Americans, Europeans and Africans. In this study, a sample of 605 unrelated males was genotyped for 17 Y-STRs and 46 Y-SNPs aiming a deep characterization of the male gene pool of Rio de Janeiro and its comparison with other Brazilian populations. High values of Y-STR haplotype diversity (0.9999±0.0001) and Y-SNP haplogroup diversity (0.7589±0.0171) were observed. Population comparisons at both haplotype and haplogroup levels showed significant differences between Brazilian South Eastern and Northern populations that can be explained by differences in the proportion of African and Native American Y chromosomes. Statistical significant differences between admixed urban samples from the five regions of Brazil were not previously detected at haplotype level based on smaller size samples from South East, which emphasizes the importance of sample size to detected population stratification for an accurate interpretation of profile matches in kinship and forensic casework. Although not having an intra-population discrimination power as high as the Y-STRs, the Y-SNPs are more powerful to disclose differences in admixed populations. In this study, the combined analysis of these two types of markers proved to be a good strategy to predict population sub-structure, which should be taken into account when delineating forensic database strategies for Y chromosome haplotypes.
Collapse
Affiliation(s)
- Andréa M Oliveira
- DNA Diagnostic Laboratory (LDD), Institute of Biology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Patricia M Domingues
- DNA Diagnostic Laboratory (LDD), Institute of Biology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Verónica Gomes
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - António Amorim
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal; FCUP - Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Juliana Jannuzzi
- DNA Diagnostic Laboratory (LDD), Institute of Biology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Elizeu F de Carvalho
- DNA Diagnostic Laboratory (LDD), Institute of Biology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), Institute of Biology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.
| |
Collapse
|
29
|
Vullo C, Gomes V, Romanini C, Oliveira AM, Rocabado O, Aquino J, Amorim A, Gusmão L. Association between Y haplogroups and autosomal AIMs reveals intra-population substructure in Bolivian populations. Int J Legal Med 2014; 129:673-80. [PMID: 24878616 DOI: 10.1007/s00414-014-1025-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 05/15/2014] [Indexed: 12/24/2022]
Abstract
For the correct evaluation of the weight of genetic evidence in a forensic context, databases must reflect the structure of the population, with all possible groups being represented. Countries with a recent history of admixture between strongly differentiated populations are usually highly heterogeneous and sub-structured. Bolivia is one of these countries, with a high diversity of ethnic groups and different levels of admixture (among Native Americans, Europeans and Africans) across the territory. For a better characterization of the male lineages in Bolivia, 17 Y-STR and 42 Y-SNP loci were genotyped in samples from La Paz and Chuquisaca. Only European and Native American Y-haplogroups were detected, and no sub-Saharan African chromosomes were found. Significant differences were observed between the two samples, with a higher frequency of European lineages in Chuquisaca than in La Paz. A sample belonging to haplogroup Q1a3a1a1-M19 was detected in La Paz, in a haplotype background different from those previously found in Argentina. This result supports an old M19 North-south dispersion in South America, possibly via two routes. When comparing the ancestry of each individual assessed through his Y chromosome with the one estimated using autosomal AIMs, (a) increased European ancestry in individuals with European Y chromosomes and (b) higher Native American ancestry in the carriers of Native American Y-haplogroups were observed, revealing an association between autosomal and Y-chromosomal markers. The results of this study demonstrate that a sub-structure does exist in Bolivia at both inter- and intrapopulation levels, a fact which must be taken into account in the evaluation of forensic genetic evidence.
Collapse
Affiliation(s)
- Carlos Vullo
- DNA Forensic Laboratory, Argentinean Forensic Anthropology Team (EAAF), Córdoba, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Noguera MC, Schwegler A, Gomes V, Briceño I, Alvarez L, Uricoechea D, Amorim A, Benavides E, Silvera C, Charris M, Bernal JE, Gusmão L. Colombia's racial crucible: Y chromosome evidence from six admixed communities in the Department of Bolivar. Ann Hum Biol 2013; 41:453-9. [PMID: 24215508 DOI: 10.3109/03014460.2013.852244] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES To determine the African, European and Native-American paternal contributions in genetic samples from the Department of Bolivar (Colombia) with the aims of establishing (1) possible population substructures, and (2) the proportion of biological African heritage in admixed populations of European, Amerindian, and African descent. METHODS Y-SNPs were typed in samples from six communities, including Palenque (renowned for its African linguistic and cultural heritage). RESULTS Findings reveal a high diversity of Y-haplogroups. With the exception of Palenque, the sum of European male lineages uniformly exceeded 57%. In Palenque, African lineages accounted for 57.7% of its chromosomes, with European male lineages constituting a mere 38.5%. In Pinillos, a significant proportion (23.8%) of the chromosomes belongs to the Native American haplogroup Q1a3a*-M3. Genetic differentiation analyses reveal significant divergences in most pairwise comparisons among the Bolivar municipalities, and the same holds between Bolivar and other South American populations. CONCLUSIONS Heterogeneous patterns of admixture reveal a genetic substructure within the Department of Bolivar. On the paternal side, five out of the six communities studied exhibit a predominantly European gene pool. The exception is Palenque, where European input (38%) is more significant than we had expected.
Collapse
Affiliation(s)
- María Claudia Noguera
- Pontificia Universidad Javeriana, Instituto de Genética Humana, Facultad de Medicina , Bogotá , Colombia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
AMY-tree: an algorithm to use whole genome SNP calling for Y chromosomal phylogenetic applications. BMC Genomics 2013; 14:101. [PMID: 23405914 PMCID: PMC3583733 DOI: 10.1186/1471-2164-14-101] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 12/19/2012] [Indexed: 12/02/2022] Open
Abstract
Background Due to the rapid progress of next-generation sequencing (NGS) facilities, an explosion of human whole genome data will become available in the coming years. These data can be used to optimize and to increase the resolution of the phylogenetic Y chromosomal tree. Moreover, the exponential growth of known Y chromosomal lineages will require an automatic determination of the phylogenetic position of an individual based on whole genome SNP calling data and an up to date Y chromosomal tree. Results We present an automated approach, ‘AMY-tree’, which is able to determine the phylogenetic position of a Y chromosome using a whole genome SNP profile, independently from the NGS platform and SNP calling program, whereby mistakes in the SNP calling or phylogenetic Y chromosomal tree are taken into account. Moreover, AMY-tree indicates ambiguities within the present phylogenetic tree and points out new Y-SNPs which may be phylogenetically relevant. The AMY-tree software package was validated successfully on 118 whole genome SNP profiles of 109 males with different origins. Moreover, support was found for an unknown recurrent mutation, wrong reported mutation conversions and a large amount of new interesting Y-SNPs. Conclusions Therefore, AMY-tree is a useful tool to determine the Y lineage of a sample based on SNP calling, to identify Y-SNPs with yet unknown phylogenetic position and to optimize the Y chromosomal phylogenetic tree in the future. AMY-tree will not add lineages to the existing phylogenetic tree of the Y-chromosome but it is the first step to analyse whole genome SNP profiles in a phylogenetic framework.
Collapse
|
32
|
Boattini A, Castrì L, Sarno S, Useli A, Cioffi M, Sazzini M, Garagnani P, De Fanti S, Pettener D, Luiselli D. mtDNA variation in East Africa unravels the history of Afro-Asiatic groups. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 150:375-85. [PMID: 23283748 DOI: 10.1002/ajpa.22212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/19/2012] [Indexed: 01/01/2023]
Abstract
East Africa (EA) has witnessed pivotal steps in the history of human evolution. Due to its high environmental and cultural variability, and to the long-term human presence there, the genetic structure of modern EA populations is one of the most complicated puzzles in human diversity worldwide. Similarly, the widespread Afro-Asiatic (AA) linguistic phylum reaches its highest levels of internal differentiation in EA. To disentangle this complex ethno-linguistic pattern, we studied mtDNA variability in 1,671 individuals (452 of which were newly typed) from 30 EA populations and compared our data with those from 40 populations (2970 individuals) from Central and Northern Africa and the Levant, affiliated to the AA phylum. The genetic structure of the studied populations--explored using spatial Principal Component Analysis and Model-based clustering--turned out to be composed of four clusters, each with different geographic distribution and/or linguistic affiliation, and signaling different population events in the history of the region. One cluster is widespread in Ethiopia, where it is associated with different AA-speaking populations, and shows shared ancestry with Semitic-speaking groups from Yemen and Egypt and AA-Chadic-speaking groups from Central Africa. Two clusters included populations from Southern Ethiopia, Kenya and Tanzania. Despite high and recent gene-flow (Bantu, Nilo-Saharan pastoralists), one of them is associated with a more ancient AA-Cushitic stratum. Most North-African and Levantine populations (AA-Berber, AA-Semitic) were grouped in a fourth and more differentiated cluster. We therefore conclude that EA genetic variability, although heavily influenced by migration processes, conserves traces of more ancient strata.
Collapse
Affiliation(s)
- Alessio Boattini
- Department of Biological, Geological and Environmental Sciences, Laboratory of Molecular Anthropology, University of Bologna, 40126, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Simms TM, Wright MR, Martinez E, Regueiro M, McCartney Q, Herrera RJ. Y-STR diversity and sex-biased gene flow among Caribbean populations. Gene 2012. [PMID: 23178184 DOI: 10.1016/j.gene.2012.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, we report, for the first time, the allele and haplotype frequencies of 17 Y-STR (Y-filer) loci in the populations of Haiti, Jamaica and the Bahamas (Abaco, Eleuthera, Exuma, Grand Bahama, Long Island and New Providence). This investigation was undertaken to assess the paternal genetic structure of the abovementioned Caribbean islands. A total of 607 different haplotypes were identified among the 691 males examined, of which 537 (88.5%) were unique. Haplotype diversities (HD) ranged from 0.989 in Long Island to 1.000 in Grand Bahama, with limited haplotype sharing observed among these Caribbean collections. Discriminatory capacity (DC) values were also high, ranging from 79.1% to 100% in Long Island and Grand Bahama, respectively, illustrating the capacity of this set of markers to differentiate between patrilineal related individuals within each population. Phylogenetic comparison of the Bahamian, Haitian and Jamaican groups with available African, European, East Asian and Native American populations reveals strong genetic ties with the continental African collections, a finding that corroborates our earlier work using autosomal STR and Y-chromosome binary markers. In addition, various degrees of sex-biased gene flow exhibiting disproportionately higher European paternal (as compared to autosomal) influences were detected in all Caribbean islands genotyped except for Abaco and Eleuthera. We attribute the presence or absence of asymmetric gene flow to unique, island specific demographic events and family structures.
Collapse
Affiliation(s)
- Tanya M Simms
- Department of Molecular and Human Genetics, College of Medicine, Florida International University, Miami, FL 33199, USA
| | | | | | | | | | | |
Collapse
|
34
|
Scozzari R, Massaia A, D’Atanasio E, Myres NM, Perego UA, Trombetta B, Cruciani F. Molecular dissection of the basal clades in the human Y chromosome phylogenetic tree. PLoS One 2012; 7:e49170. [PMID: 23145109 PMCID: PMC3492319 DOI: 10.1371/journal.pone.0049170] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/04/2012] [Indexed: 11/19/2022] Open
Abstract
One hundred and forty-six previously detected mutations were more precisely positioned in the human Y chromosome phylogeny by the analysis of 51 representative Y chromosome haplogroups and the use of 59 mutations from literature. Twenty-two new mutations were also described and incorporated in the revised phylogeny. This analysis made it possible to identify new haplogroups and to resolve a deep trifurcation within haplogroup B2. Our data provide a highly resolved branching in the African-specific portion of the Y tree and support the hypothesis of an origin in the north-western quadrant of the African continent for the human MSY diversity.
Collapse
Affiliation(s)
- Rosaria Scozzari
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Andrea Massaia
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Eugenia D’Atanasio
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Natalie M. Myres
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
- AncestryDNA, Provo, Utah, United States of America
| | - Ugo A. Perego
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, Pavia, Italy
| | - Beniamino Trombetta
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
35
|
The genetic landscape of Equatorial Guinea and the origin and migration routes of the Y chromosome haplogroup R-V88. Eur J Hum Genet 2012; 21:324-31. [PMID: 22892526 DOI: 10.1038/ejhg.2012.167] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Human Y chromosomes belonging to the haplogroup R1b1-P25, although very common in Europe, are usually rare in Africa. However, recently published studies have reported high frequencies of this haplogroup in the central-western region of the African continent and proposed that this represents a 'back-to-Africa' migration during prehistoric times. To obtain a deeper insight into the history of these lineages, we characterised the paternal genetic background of a population in Equatorial Guinea, a Central-West African country located near the region in which the highest frequencies of the R1b1 haplogroup in Africa have been found to date. In our sample, the large majority (78.6%) of the sequences belong to subclades in haplogroup E, which are the most frequent in Bantu groups. However, the frequency of the R1b1 haplogroup in our sample (17.0%) was higher than that previously observed for the majority of the African continent. Of these R1b1 samples, nine are defined by the V88 marker, which was recently discovered in Africa. As high microsatellite variance was found inside this haplogroup in Central-West Africa and a decrease in this variance was observed towards Northeast Africa, our findings do not support the previously hypothesised movement of Chadic-speaking people from the North across the Sahara as the explanation for these R1b1 lineages in Central-West Africa. The present findings are also compatible with an origin of the V88-derived allele in the Central-West Africa, and its presence in North Africa may be better explained as the result of a migration from the south during the mid-Holocene.
Collapse
|
36
|
Simms TM, Wright MR, Hernandez M, Perez OA, Ramirez EC, Martinez E, Herrera RJ. Y-chromosomal diversity in Haiti and Jamaica: Contrasting levels of sex-biased gene flow. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2012; 148:618-31. [DOI: 10.1002/ajpa.22090] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 04/04/2012] [Indexed: 11/06/2022]
|
37
|
Understanding the Y chromosome variation in Korea—relevance of combined haplogroup and haplotype analyses. Int J Legal Med 2012; 126:589-99. [DOI: 10.1007/s00414-012-0703-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/26/2012] [Indexed: 11/26/2022]
|
38
|
Haber M, Platt DE, Ashrafian Bonab M, Youhanna SC, Soria-Hernanz DF, Martínez-Cruz B, Douaihy B, Ghassibe-Sabbagh M, Rafatpanah H, Ghanbari M, Whale J, Balanovsky O, Wells RS, Comas D, Tyler-Smith C, Zalloua PA. Afghanistan's ethnic groups share a Y-chromosomal heritage structured by historical events. PLoS One 2012; 7:e34288. [PMID: 22470552 PMCID: PMC3314501 DOI: 10.1371/journal.pone.0034288] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/25/2012] [Indexed: 11/24/2022] Open
Abstract
Afghanistan has held a strategic position throughout history. It has been inhabited since the Paleolithic and later became a crossroad for expanding civilizations and empires. Afghanistan's location, history, and diverse ethnic groups present a unique opportunity to explore how nations and ethnic groups emerged, and how major cultural evolutions and technological developments in human history have influenced modern population structures. In this study we have analyzed, for the first time, the four major ethnic groups in present-day Afghanistan: Hazara, Pashtun, Tajik, and Uzbek, using 52 binary markers and 19 short tandem repeats on the non-recombinant segment of the Y-chromosome. A total of 204 Afghan samples were investigated along with more than 8,500 samples from surrounding populations important to Afghanistan's history through migrations and conquests, including Iranians, Greeks, Indians, Middle Easterners, East Europeans, and East Asians. Our results suggest that all current Afghans largely share a heritage derived from a common unstructured ancestral population that could have emerged during the Neolithic revolution and the formation of the first farming communities. Our results also indicate that inter-Afghan differentiation started during the Bronze Age, probably driven by the formation of the first civilizations in the region. Later migrations and invasions into the region have been assimilated differentially among the ethnic groups, increasing inter-population genetic differences, and giving the Afghans a unique genetic diversity in Central Asia.
Collapse
Affiliation(s)
- Marc Haber
- The Lebanese American University, Chouran, Beirut, Lebanon
- Evolutionary Biology Institute, Pompeu Fabra University, Barcelona, Spain
| | - Daniel E. Platt
- Bioinformatics and Pattern Discovery, IBM T. J. Watson Research Centre, Yorktown Heights, New York, United States of America
| | - Maziar Ashrafian Bonab
- Biological Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | | | - David F. Soria-Hernanz
- Evolutionary Biology Institute, Pompeu Fabra University, Barcelona, Spain
- The Genographic Project, National Geographic Society, Washington, D.C., United States of America
| | | | | | | | | | | | - John Whale
- Biological Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Oleg Balanovsky
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | - R. Spencer Wells
- The Genographic Project, National Geographic Society, Washington, D.C., United States of America
| | - David Comas
- Evolutionary Biology Institute, Pompeu Fabra University, Barcelona, Spain
| | - Chris Tyler-Smith
- Wellcome Trust Genome Campus, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Pierre A. Zalloua
- The Lebanese American University, Chouran, Beirut, Lebanon
- Harvard School of Public Health, Harvard University, Boston, Massachusetts, United States of America
- * E-mail:
| | | |
Collapse
|
39
|
Brito P, Carvalho M, Gomes V, Melo M, Bogas V, Balsa F, Andrade L, Serra A, Lopes V, Gusmão L, Anjos M, Corte-Real F. Y-SNP analysis in an Angola population. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2011. [DOI: 10.1016/j.fsigss.2011.09.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Simms TM, Martinez E, Herrera KJ, Wright MR, Perez OA, Hernandez M, Ramirez EC, McCartney Q, Herrera RJ. Paternal lineages signal distinct genetic contributions from British Loyalists and continental Africans among different Bahamian islands. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 146:594-608. [DOI: 10.1002/ajpa.21616] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 08/05/2011] [Indexed: 02/02/2023]
|
41
|
Batini C, Ferri G, Destro-Bisol G, Brisighelli F, Luiselli D, Sanchez-Diz P, Rocha J, Simonson T, Brehm A, Montano V, Elwali NE, Spedini G, D'Amato ME, Myres N, Ebbesen P, Comas D, Capelli C. Signatures of the Preagricultural Peopling Processes in Sub-Saharan Africa as Revealed by the Phylogeography of Early Y Chromosome Lineages. Mol Biol Evol 2011; 28:2603-13. [DOI: 10.1093/molbev/msr089] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
42
|
|
43
|
Warf BC, Stagno V, Mugamba J. Encephalocele in Uganda: ethnic distinctions in lesion location, endoscopic management of hydrocephalus, and survival in 110 consecutive children. J Neurosurg Pediatr 2011; 7:88-93. [PMID: 21194291 DOI: 10.3171/2010.9.peds10326] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT This study characterizes the first clinical series of encephalocele (EC) from East or Central Africa, and is the largest reported from the African continent. The authors explored survival, the efficacy of primary endoscopic management of associated hydrocephalus, and ethnic differences in EC location. METHODS One hundred ten consecutive children presented to CURE Children's Hospital of Uganda for treatment of EC over a 9-year period. Clinical data, including patient demographic information, birth date, lesion type (sincipital, parietal, or occipital), operative data, and subsequent course had been entered prospectively into a clinical database. Home visits to update the status of those lost to follow-up were done when possible. With appropriate institutional approvals, the database was reviewed for this retrospective study. Two-tailed probability values calculated using the Fisher exact test were used to assess the significance of differences among groups, with p < 0.05 being considered significant. The Kaplan-Meier method was used for analysis of survival and treatment success probabilities. RESULTS There were 53 (48%) occipital, 33 (30%) sincipital, and 24 (22%) parietal lesions. Occipital lesions were significantly more common among children of Bantu origin (p = 0.02). Nilotes demonstrated a roughly equal distribution among sincipital, parietal, and occipital locations. The female/male ratio was 1.2, with no difference between EC types (range 1.0-1.4, p = 0.6-0.8). Of 110 patients, 108 (98%) underwent surgical repair at a median age of 1 month (mean 15.7 months), whereas 2 had treatment for hydrocephalus only. Wound revision was required in 13% of cases. Surgery-related mortality was 3%. One-year and 5-year survival rates were 87% (95% CI 0.79-0.93) and 61% (95% CI 0.51-0.70), respectively. Hydrocephalus required treatment in 32%, and was equally common among the 3 EC types. Thirteen patients were treated with combined endoscopic third ventriculostomy/choroid plexus cauterization (ETV/CPC) and 2 with ETV alone, whereas 18 patients received primary shunt placement. Predicted treatment success at 1 year was 79% for ETV or ETV/CPC (95% CI 0.50-0.94) and 47% for shunt placement (95% CI 0.24-0.71). CONCLUSIONS Analysis of this first EC series from this region suggests that sincipital lesions are 3 times more common in East than in West Africa. Occipital lesions predominate in patients of Bantu origin, but not among those of Nilotic descent. Hydrocephalus incidence was equally common among different EC types, and endoscopic treatment was more successful (79%) than shunting (47%) at 1 year. The 5-year mortality rate was similar to that for infants with myelomeningocele in Uganda, and more than twice that for their unaffected peers.
Collapse
Affiliation(s)
- Benjamin C Warf
- Department of Neurosurgery, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|
44
|
de Filippo C, Barbieri C, Whitten M, Mpoloka SW, Gunnarsdóttir ED, Bostoen K, Nyambe T, Beyer K, Schreiber H, de Knijff P, Luiselli D, Stoneking M, Pakendorf B. Y-chromosomal variation in sub-Saharan Africa: insights into the history of Niger-Congo groups. Mol Biol Evol 2010; 28:1255-69. [PMID: 21109585 DOI: 10.1093/molbev/msq312] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Technological and cultural innovations as well as climate changes are thought to have influenced the diffusion of major language phyla in sub-Saharan Africa. The most widespread and the richest in diversity is the Niger-Congo phylum, thought to have originated in West Africa ∼ 10,000 years ago (ya). The expansion of Bantu languages (a family within the Niger-Congo phylum) ∼ 5,000 ya represents a major event in the past demography of the continent. Many previous studies on Y chromosomal variation in Africa associated the Bantu expansion with haplogroup E1b1a (and sometimes its sublineage E1b1a7). However, the distribution of these two lineages extends far beyond the area occupied nowadays by Bantu-speaking people, raising questions on the actual genetic structure behind this expansion. To address these issues, we directly genotyped 31 biallelic markers and 12 microsatellites on the Y chromosome in 1,195 individuals of African ancestry focusing on areas that were previously poorly characterized (Botswana, Burkina Faso, Democratic Republic of Congo, and Zambia). With the inclusion of published data, we analyzed 2,736 individuals from 26 groups representing all linguistic phyla and covering a large portion of sub-Saharan Africa. Within the Niger-Congo phylum, we ascertain for the first time differences in haplogroup composition between Bantu and non-Bantu groups via two markers (U174 and U175) on the background of haplogroup E1b1a (and E1b1a7), which were directly genotyped in our samples and for which genotypes were inferred from published data using linear discriminant analysis on short tandem repeat (STR) haplotypes. No reduction in STR diversity levels was found across the Bantu groups, suggesting the absence of serial founder effects. In addition, the homogeneity of haplogroup composition and pattern of haplotype sharing between Western and Eastern Bantu groups suggests that their expansion throughout sub-Saharan Africa reflects a rapid spread followed by backward and forward migrations. Overall, we found that linguistic affiliations played a notable role in shaping sub-Saharan African Y chromosomal diversity, although the impact of geography is clearly discernible.
Collapse
Affiliation(s)
- Cesare de Filippo
- Max Planck Research Group on Comparative Population Linguistics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Haber M, Platt DE, Khoury S, Badro DA, Abboud M, Tyler-Smith C, Zalloua PA. Y-chromosome R-M343 African lineages and sickle cell disease reveal structured assimilation in Lebanon. J Hum Genet 2010; 56:29-33. [PMID: 20981037 DOI: 10.1038/jhg.2010.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have sought to identify signals of assimilation of African male lines in Lebanon by exploring the association of sickle cell disease (SCD) in Lebanon with Y-chromosome haplogroups that are informative of the disease origin and its exclusivity to the Muslim community. A total of 732 samples were analyzed, including 33 SCD patients from Lebanon genotyped for 28 binary markers and 19 short tandem repeats on the non-recombinant segment of the Y chromosome. Genetic organization was identified using populations known to have influenced the genetic structure of the Lebanese population, in addition to African populations with high incidence of SCD. Y-chromosome haplogroup R-M343 sub-lineages distinguish between sub-Saharan African and Lebanese Y chromosomes. We detected a limited penetration of SCD into Lebanese R-M343 carriers, restricted to Lebanese Muslims. We suggest that this penetration brought the sickle cell gene along with the African R-M343, probably with the Saharan caravan slave trade.
Collapse
Affiliation(s)
- Marc Haber
- Medical School, The Lebanese American University, Beirut, Lebanon
| | | | | | | | | | | | | |
Collapse
|