1
|
Kósa M, Horváth E, Kalmár T, Maróti Z, Földesi I, Bereczki C. A Patient Diagnosed with Mosaic Trisomy 18 Presenting New Symptoms: Diaphragmatic Relaxation and Cyclic Vomiting Syndrome. Updated Review of Mosaic Trisomy 18 Cases. J Pediatr Genet 2024; 13:320-325. [PMID: 39502855 PMCID: PMC11534437 DOI: 10.1055/s-0042-1757621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/31/2022] [Indexed: 12/03/2022]
Abstract
Although data on T18 are widespread, there is a lack of knowledge on mosaic trisomy 18 (mT18). A current review of mT18 symptomatology, long-term follow-up, and potential health risks is lacking for health care professionals. Our paper addresses these, emphasizing the importance of regular tumor screening as a key message for mT18 patient follow-up. We also present the case of a female patient with mT18 who presented with diaphragmatic relaxation and cyclic vomiting syndrome (CVS), which had previously not been reported in this genetic condition. On further investigating the etiology of CVS, we revealed a novel mitochondrial mutation in the MT-ND6 gene in heteroplasmic form. Based on the literature, we hypothesize that the mitochondrial mutation together with mT18 could result in CVS.
Collapse
Affiliation(s)
- Magdolna Kósa
- Department of Pediatrics and Pediatric Health Center, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Emese Horváth
- Department of Medical Genetics, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Tibor Kalmár
- Department of Pediatrics and Pediatric Health Center, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Zoltán Maróti
- Department of Pediatrics and Pediatric Health Center, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Imre Földesi
- Department of Laboratory Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Csaba Bereczki
- Department of Pediatrics and Pediatric Health Center, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
Barchitta M, Maugeri A, La Mastra C, Favara G, La Rosa MC, Magnano San Lio R, Gholizade Atani Y, Gallo G, Agodi A. Pre-pregnancy BMI, gestational weight gain, and telomere length in amniotic fluid: a causal graph analysis. Sci Rep 2024; 14:23396. [PMID: 39379607 PMCID: PMC11461511 DOI: 10.1038/s41598-024-74765-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
Previous investigations have suggested a potential association between pre-pregnancy body mass index (BMI) and gestational weight gain (GWG) with telomere length (TL) in various tissues of pregnant women and newborns. Nonetheless, as association does not imply causation, our objective was to investigate the causal connections among pre-pregnancy BMI, GWG, and TL in amniotic fluid. The analysis included 136 mother-child pairs from the Mamma & Bambino cohort, and three causal graph models were developed to depict the interconnections between pre-pregnancy BMI, GWG, and TL. Causal graph analysis was conducted utilizing the do-operator to estimate the causal effect of GWG and the controlled direct effect of pregestational BMI. We revealed that transitioning from non-adequate to adequate GWG had a positive impact on the probability of having "long" TL (i.e., a value greater than the population median) in all three models. When considering the effect of pre-pregnancy BMI, the highest probability of "long" TL was observed in normal weight women with adequate GWG. In contrast, the effect of adequate GWG became minimal among overweight women. These results shed light on the potential causality between pre-pregnancy BMI, GWG, and TL in amniotic fluid, emphasizing the importance of appropriate weight management before and during pregnancy for optimal TL outcomes.
Collapse
Affiliation(s)
- M Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies 'GF Ingrassia', University of Catania, Catania, Italy
| | - A Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies 'GF Ingrassia', University of Catania, Catania, Italy
| | - C La Mastra
- Department of Medical and Surgical Sciences and Advanced Technologies 'GF Ingrassia', University of Catania, Catania, Italy
| | - G Favara
- Department of Medical and Surgical Sciences and Advanced Technologies 'GF Ingrassia', University of Catania, Catania, Italy
| | - M C La Rosa
- Department of Medical and Surgical Sciences and Advanced Technologies 'GF Ingrassia', University of Catania, Catania, Italy
| | - R Magnano San Lio
- Department of Medical and Surgical Sciences and Advanced Technologies 'GF Ingrassia', University of Catania, Catania, Italy
| | - Y Gholizade Atani
- Department of Mathematics and Informatics, University of Catania, Catania, Italy
| | - G Gallo
- Department of Mathematics and Informatics, University of Catania, Catania, Italy
| | - A Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies 'GF Ingrassia', University of Catania, Catania, Italy.
| |
Collapse
|
3
|
Bonney EA. A Framework for Understanding Maternal Immunity. Immunol Allergy Clin North Am 2023; 43:e1-e20. [PMID: 37179052 PMCID: PMC10484232 DOI: 10.1016/j.iac.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This is an alternative and controversial framing of the data relevant to maternal immunity. It argues for a departure from classical theory to view, interrogate and interpret existing data.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont Robert Larner College of Medicine, Given Building, Room C246, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| |
Collapse
|
4
|
Liu P, Vossaert L. Emerging technologies for prenatal diagnosis: The application of whole genome and RNA sequencing. Prenat Diagn 2022; 42:686-696. [PMID: 35416301 PMCID: PMC10014115 DOI: 10.1002/pd.6146] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022]
Abstract
DNA sequencing technologies for clinical genetic testing have been rapidly evolving in recent years, and steadily become more important within the field of prenatal diagnostics. This review aims to give an overview of recent developments and to describe how they have the potential to fill the gaps of the currently clinically implemented methods for prenatal diagnosis of various genetic disorders. It has been shown for postnatal testing that whole genome sequencing provides a set of added benefits compared to exome sequencing, and it is to be expected that this will be the case for prenatal testing as well. RNA-sequencing, already used postnatally, can provide valuable complementary data to DNA-based testing, and aid in variant interpretation. While not ready for clinical implementation, emerging technologies such as long-read and Hi-C sequencing analyses might add to the toolbox for interpreting the expanding genetic data sets generated by genome-wide sequencing. Lastly, we also discuss some more practical implications of introducing these emerging technologies, which generate larger and larger genomic data sets, in the prenatal field.
Collapse
Affiliation(s)
- Pengfei Liu
- Baylor College of Medicine and Baylor Genetics, Houston, Texas, USA
| | | |
Collapse
|
5
|
Kim MA, Lee EJ, Yang W, Shin HY, Kim YH, Kim JH. Identification of a novel gene signature in second-trimester amniotic fluid for the prediction of preterm birth. Sci Rep 2022; 12:3085. [PMID: 35361790 PMCID: PMC8971495 DOI: 10.1038/s41598-021-04709-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/30/2021] [Indexed: 11/09/2022] Open
Abstract
Preterm birth affects approximately 5% to 7% of live births worldwide and is the leading cause of neonatal morbidity and mortality. Amniotic fluid supernatant (AFS) contains abundant cell-free nucleic acids (cfNAs) that can provide genetic information associated with pregnancy complications. In the current study, cfNAs of AFS in the early second-trimester before the onset of symptoms of preterm birth were analyzed, and we compared gene expression levels between spontaneous preterm birth (n = 5) and term birth (n = 5) groups using sequencing analysis. Differential expression analyses detected 24 genes with increased and 6 genes with decreased expression in the preterm birth group compared to term birth. Upregulated expressions of RDH14, ZNF572, VOPP1, SERPINA12, and TCF15 were validated in an extended AFS sample by quantitative PCR (preterm birth group, n = 21; term birth group, n = 40). Five candidate genes displayed a significant increase in mRNA expression in immortalized trophoblast HTR-8/SVneo cell with H2O2 treatment. Moreover, the expression of five candidate genes was increased to more than twofold by pretreatment with lipopolysaccharide in HTR-8/SVneo cells. Changes in gene expression between preterm birth and term birth is strongly correlated with oxidative stress and infection during pregnancy. Specific expression patterns of genes could be used as potential markers for the early identification of women at risk of having a spontaneous preterm birth.
Collapse
Affiliation(s)
- Min-A Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Eun-Ju Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Wookyeom Yang
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ha-Yeon Shin
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Han Kim
- Department of Obstetrics and Gynecology, Severance Hospital, Institute of Women's Life Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Wang J, Chen Z, He F, Lee T, Cai W, Chen W, Miao N, Zeng Z, Hussain G, Yang Q, Guo Q, Sun T. Single-Cell Transcriptomics of Cultured Amniotic Fluid Cells Reveals Complex Gene Expression Alterations in Human Fetuses With Trisomy 18. Front Cell Dev Biol 2022; 10:825345. [PMID: 35392164 PMCID: PMC8980718 DOI: 10.3389/fcell.2022.825345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Trisomy 18, commonly known as Edwards syndrome, is the second most common autosomal trisomy among live born neonates. Multiple tissues including cardiac, abdominal, and nervous systems are affected by an extra chromosome 18. To delineate the complexity of anomalies of trisomy 18, we analyzed cultured amniotic fluid cells from two euploid and three trisomy 18 samples using single-cell transcriptomics. We identified 6 cell groups, which function in development of major tissues such as kidney, vasculature and smooth muscle, and display significant alterations in gene expression as detected by single-cell RNA-sequencing. Moreover, we demonstrated significant gene expression changes in previously proposed trisomy 18 critical regions, and identified three new regions such as 18p11.32, 18q11 and 18q21.32, which are likely associated with trisomy 18 phenotypes. Our results indicate complexity of trisomy 18 at the gene expression level and reveal genetic reasoning of diverse phenotypes in trisomy 18 patients.
Collapse
Affiliation(s)
- Jing Wang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
- College of Materials Science and Engineering, Huaqiao University, Xiamen, China
| | - Zixi Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco- Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Fei He
- Genergy Bio-Technology (Shanghai) Co., Ltd, Shanghai, China
| | - Trevor Lee
- Department of Cell and Developmental Biology, Cornell University Weill Medical College, New York, NY, United States
| | - Wenjie Cai
- Department of Radiation Oncology, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, China
| | - Wanhua Chen
- Department of Clinical Laboratory, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, China
| | - Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Zhiwei Zeng
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Ghulam Hussain
- Neurochemical Biology and Genetics Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Qingwei Yang
- Department of Neurology, School of Medicine, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Qiwei Guo
- United Diagnostic and Research Center for Clinical Genetics, School of Medicine and School of Public Health, Women and Children’s Hospital, Xiamen University, Xiamen, China
- *Correspondence: Qiwei Guo, ; Tao Sun,
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
- *Correspondence: Qiwei Guo, ; Tao Sun,
| |
Collapse
|
7
|
Akiel M. The genetic architecture behind congenital heart disease: A review of genetic and epigenetic factors. JOURNAL OF NATURE AND SCIENCE OF MEDICINE 2022. [DOI: 10.4103/jnsm.jnsm_126_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
The Relationship between Telomere Length and Gestational Weight Gain: Findings from the Mamma & Bambino Cohort. Biomedicines 2021; 10:biomedicines10010067. [PMID: 35052747 PMCID: PMC8773008 DOI: 10.3390/biomedicines10010067] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022] Open
Abstract
Inadequate gestational weight gain (GWG) affects a growing number of pregnancies, influencing intrauterine environment and long-term health. Uncovering molecular mechanisms associated with GWG could be helpful to develop public health strategies for tackling this issue. Here, our study aimed to understand the relationship of DNA telomere length with weigh gain during pregnancy, using data and samples from the ongoing prospective “Mamma & Bambino” study (Catania, Italy). GWG was calculated according to the Institute of Medicine (IOM) guidelines. Relative telomere length was assessed by real-time quantitative polymerase chain reaction in 252 samples of maternal leucocyte DNA (mlDNA) and 150 samples of cell-free DNA (cfDNA) from amniotic fluid. We observed that relative telomere length of mlDNA seemed to weakly increase with GWG. In contrast, telomere length of cfDNA exhibited a U-shaped relationship with GWG. Women with adequate GWG showed longer telomere length than those who gained weight inadequately. Accordingly, the logistic regression model confirmed the association between telomere length of cfDNA and adequate GWG, after adjusting for potential confounders. Our findings suggest an early effect of GWG on telomere length of cfDNA, which could represent a molecular mechanism underpinning the effects of maternal behaviours on foetal well-being.
Collapse
|
9
|
The amniotic fluid cell-free transcriptome in spontaneous preterm labor. Sci Rep 2021; 11:13481. [PMID: 34188072 PMCID: PMC8242007 DOI: 10.1038/s41598-021-92439-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/03/2021] [Indexed: 02/03/2023] Open
Abstract
The amniotic fluid (AF) cell-free RNA was shown to reflect physiological and pathological processes in pregnancy, but its value in the prediction of spontaneous preterm delivery is unknown. Herein we profiled cell-free RNA in AF samples collected from women who underwent transabdominal amniocentesis after an episode of spontaneous preterm labor and subsequently delivered within 24 h (n = 10) or later (n = 28) in gestation. Expression of known placental single-cell RNA-Seq signatures was quantified in AF cell-free RNA and compared between the groups. Random forest models were applied to predict time-to-delivery after amniocentesis. There were 2385 genes differentially expressed in AF samples of women who delivered within 24 h of amniocentesis compared to gestational age-matched samples from women who delivered after 24 h of amniocentesis. Genes with cell-free RNA changes were associated with immune and inflammatory processes related to the onset of labor, and the expression of placental single-cell RNA-Seq signatures of immune cells was increased with imminent delivery. AF transcriptomic prediction models captured these effects and predicted delivery within 24 h of amniocentesis (AUROC = 0.81). These results may inform the development of biomarkers for spontaneous preterm birth.
Collapse
|
10
|
The Amniotic Fluid Cell-Free Transcriptome Provides Novel Information about Fetal Development and Placental Cellular Dynamics. Int J Mol Sci 2021; 22:ijms22052612. [PMID: 33807645 PMCID: PMC7961801 DOI: 10.3390/ijms22052612] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
The amniotic fluid (AF) is a complex biofluid that reflects fetal well-being during development. AF con be divided into two fractions, the supernatant and amniocytes. The supernatant contains cell-free components, including placenta-derived microparticles, protein, cell-free fetal DNA, and cell-free fetal RNA from the fetus. Cell-free mRNA (cfRNA) analysis holds a special position among high-throughput analyses, such as transcriptomics, proteomics, and metabolomics, owing to its ease of profiling. The AF cell-free transcriptome differs from the amniocyte transcriptome and alters with the progression of pregnancy and is often associated with the development of various organ systems including the fetal lung, skin, brain, pancreas, adrenal gland, gastrointestinal system, etc. The AF cell-free transcriptome is affected not only by normal physiologies, such as fetal sex, gestational age, and fetal maturity, but also by pathologic mechanisms such as maternal obesity, and genetic syndromes (Down, Edward, Turner, etc.), as well as pregnancy complications (preeclampsia, intrauterine growth restriction, preterm birth, etc.). cfRNA in the amniotic fluid originates from the placenta and fetal organs directly contacting the amniotic fluid as well as from the fetal plasma across the placenta. The AF transcriptome may reflect the fetal and placental development and therefore aid in the monitoring of normal and abnormal development.
Collapse
|
11
|
Albizua I, Chopra P, Sherman SL, Gambello MJ, Warren ST. Analysis of the genomic expression profile in trisomy 18: insight into possible genes involved in the associated phenotypes. Hum Mol Genet 2020; 29:238-247. [PMID: 31813999 DOI: 10.1093/hmg/ddz279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 01/12/2023] Open
Abstract
Trisomy 18, sometimes called Edwards syndrome, occurs in about 1 in 6000 live births and causes multiple birth defects in affected infants. The extra copy of chromosome 18 causes the altered expression of many genes and leads to severe skeletal, cardiovascular and neurological systems malformations as well as other medical problems. Due to the low rate of survival and the massive genetic imbalance, little research has been aimed at understanding the molecular consequences of trisomy 18 or considering potential therapeutic approaches. Our research is the first study to characterize whole-genome expression in fibroblast cells obtained from two patients with trisomy 18 and two matched controls, with follow-up expression confirmation studies on six independent controls. We show a detailed analysis of the most highly dysregulated genes on chromosome 18 and those genome-wide. The identified effector genes and the dysregulated downstream pathways provide hints of possible genotype-phenotype relationships to some of the most common symptoms observed in trisomy 18. We also provide a possible explanation for the sex-specific differences in survival, a unique characteristic of trisomy 18. Our analysis of genome-wide expression data moves us closer to understanding the molecular consequences of the second most common human autosomal trisomy of infants who survive to term. These insights might also translate to the understanding of the etiology of associated birth defects and medical conditions among those with trisomy 18.
Collapse
Affiliation(s)
- Igor Albizua
- Department of Human Genetics, Emory University School of Medicine, Atlanta, 30322, USA
| | - Pankaj Chopra
- Department of Human Genetics, Emory University School of Medicine, Atlanta, 30322, USA
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, 30322, USA
| | - Michael J Gambello
- Department of Human Genetics, Emory University School of Medicine, Atlanta, 30322, USA
| | - Stephen T Warren
- Department of Human Genetics, Emory University School of Medicine, Atlanta, 30322, USA
| |
Collapse
|
12
|
Jung YW, Shim JI, Shim SH, Shin YJ, Shim SH, Chang SW, Cha DH. Global gene expression analysis of cell-free RNA in amniotic fluid from women destined to develop preeclampsia. Medicine (Baltimore) 2019; 98:e13971. [PMID: 30653101 PMCID: PMC6370049 DOI: 10.1097/md.0000000000013971] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Preeclampsia (PE) is a disorder specific to pregnancy characterized by new-onset hypertension and proteinuria after 20 weeks of gestation. There is no definite treatment for PE except delivery of the placenta. The purpose of this study was to elucidate the biological pathways involved in the development of PE and to discover a novel biomarker for PE by performing global gene expression analysis of amniotic fluid cell-free RNA.The participants were recruited from the Department of Obstetrics and Gynecology of CHA Gangnam Medical Center (Seoul, Korea) between March 2014 and February 2015. Eight samples were collected from 8 subjects at second trimester who were later diagnosed with PE. From the amniotic fluid samples, cell-free RNA extraction was performed and gene expression was analyzed using the GeneChip PrimeView Array. Transcriptome data previously analyzed by our group from 9 euploid mid-trimester amniotic fluid samples were used as the control for comparative analysis. Functional analysis of the probe sets was performed using the online Database for Annotation, Visualization, and Integrated Discovery (DAVID) toolkit 6.7.We identified 1841 differentially expressed genes (DEGs) between the PE group and the control. Of these, 1557 genes were upregulated in the PE group, while 284 genes were upregulated in the control. The functional annotation of DEGs identified specific enriched functions such as "transport," "signal transduction," and "stress response." Functional annotation clustering with enriched genes in the PE group revealed that translation-related genes, cell-cell adhesion genes, and immune-related genes were enriched. KEGG pathway analysis showed that several biological pathways, including the ribosome pathway and various immune pathways, were dysregulated. Several genes, including RPS29, IGF-2, and UBC, were significantly upregulated in PE, up to tenfold.This study provides the first genome-wide expression analysis of amniotic fluid cell-free RNA in PE. The results showed that gene expression involving the ribosome pathway and immunologic pathways are dysregulated in PE. Our results will aid in understanding the underlying pathogenesis of PE.
Collapse
Affiliation(s)
- Yong Wook Jung
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center
| | - Jung In Shim
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center
| | - So Hyun Shim
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center
| | - Yun-jeong Shin
- Genetics Laboratory, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul
| | - Sung Han Shim
- Genetics Laboratory, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul
| | - Sung Woon Chang
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam-si, Republic of Korea
| | - Dong Hyun Cha
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center
- Genetics Laboratory, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul
| |
Collapse
|
13
|
Volk M, Maver A, Hodžić A, Lovrečić L, Peterlin B. Transcriptome Profiling Uncovers Potential Common Mechanisms in Fetal Trisomies 18 and 21. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:565-570. [PMID: 29049012 PMCID: PMC5655413 DOI: 10.1089/omi.2017.0123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human trisomies have recently been investigated using transcriptomics approaches to identify the gene expression (GE) signatures characteristic of each of these specific aneuploidy conditions. We hypothesized that the viability of cells with gross genomic imbalances might be associated with the activation of resilience mechanisms that are common to different trisomies and that are reflected by specific shared GE patterns. We report in this article our microarray GE analyses of amniocytes from fetuses with viable trisomy conditions, trisomy 21 or trisomy 18, to detect such common expression signatures. Comparative analysis of significantly differentially expressed genes in trisomies 18 and 21 revealed six dysregulated genes common to both: OTUD5, ADAMTSL1, TADA2A, PPID, PIAS2, and MAPRE2. These genes are involved in ubiquitination, protein folding, cell proliferation, and apoptosis. Pathway-based enrichment analyses demonstrated that both trisomies showed dysregulation of the PI3K/AKT pathway, cell cycle G2/M DNA damage checkpoint regulation, and cell death and survival, as well as inhibition of the upstream regulator TP53. Our data collectively suggest that trisomies 18 and 21 share common functional GE signatures, implying that common mechanisms of resilience might be activated in aneuploid cells to resist large genomic imbalances. To the best of our knowledge, this is the first study to use global GE profiling data to identify potential common mechanisms in fetal trisomies. Studies of other trisomies using transcriptomics and multiomics approaches might further clarify mechanisms activated in trisomy syndromes.
Collapse
Affiliation(s)
- Marija Volk
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana , Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana , Ljubljana, Slovenia
| | - Alenka Hodžić
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana , Ljubljana, Slovenia
| | - Luca Lovrečić
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana , Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana , Ljubljana, Slovenia
| |
Collapse
|
14
|
Vicente-Steijn R, Kelder TP, Tertoolen LG, Wisse LJ, Pijnappels DA, Poelmann RE, Schalij MJ, deRuiter MC, Gittenberger-de Groot AC, Jongbloed MRM. RHOA-ROCK signalling is necessary for lateralization and differentiation of the developing sinoatrial node. Cardiovasc Res 2018; 113:1186-1197. [PMID: 28899000 DOI: 10.1093/cvr/cvx104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 07/03/2017] [Indexed: 01/16/2023] Open
Abstract
Aims RHOA-ROCK signalling regulates cell migration, proliferation, differentiation, and transcription. RHOA is expressed in the developing cardiac conduction system in chicken and mice. In early development, the entire sinus venosus myocardium, including both the transient left-sided and the definitive sinoatrial node (SAN), has pacemaker potential. Later, pacemaker potential is restricted to the right-sided SAN. Disruption of RHOA expression in adult mice causes arrhythmias including bradycardia and atrial fibrillation, the mechanism of which is unknown but presumed to affect the SAN. The aim of this study is to assess the role of RHOA-ROCK signalling in SAN development in the chicken heart. Methods and results ROCK signalling was inhibited chemically in embryonic chicken hearts using Y-27632. This prolonged the immature state of the sinus venosus myocardium, evidenced by up-regulation of the transcription factor ISL1, wide distribution of pacemaker potential, and significantly reduced heart rate. Furthermore ROCK inhibition caused aberrant expression of typical SAN genes: ROCK1, ROCK2, SHOX2, TBX3, TBX5, ISL1, HCN4, CX40, CAV3.1, and NKX2.5 and left-right asymmetry genes: PITX2C and NODAL. Anatomical abnormalities in pulmonary vein development were also observed. Patch clamp electrophysiology confirmed the immature phenotype of the SAN cells and a residual left-sided sinus venosus myocardium pacemaker-like potential. Conclusions RHOA-ROCK signalling is involved in establishing the right-sided SAN as the definitive pacemaker of the heart and restricts typical pacemaker gene expression to the right side of the sinus venosus myocardium.
Collapse
Affiliation(s)
- Rebecca Vicente-Steijn
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.,ICIN Netherlands Heart Institute, Utrecht, The Netherlands
| | - Tim P Kelder
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Leon G Tertoolen
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lambertus J Wisse
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniël A Pijnappels
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert E Poelmann
- Sylvius Laboratory, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Martin J Schalij
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco C deRuiter
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Adriana C Gittenberger-de Groot
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique R M Jongbloed
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
15
|
Tarui T, Kim A, Flake A, McClain L, Stratigis JD, Fried I, Newman R, Slonim DK, Bianchi DW. Amniotic fluid transcriptomics reflects novel disease mechanisms in fetuses with myelomeningocele. Am J Obstet Gynecol 2017; 217:587.e1-587.e10. [PMID: 28735706 DOI: 10.1016/j.ajog.2017.07.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Cell-free RNA in amniotic fluid supernatant reflects developmental changes in gene expression in the living fetus, which includes genes that are specific to the central nervous system. Although it has been previously shown that central nervous system-specific transcripts are present in amniotic fluid supernatant, it is not known whether changes in the amniotic fluid supernatant transcriptome reflect the specific pathophysiologic condition of fetal central nervous system disorders. In myelomeningocele, there is open communication between the central nervous system and amniotic fluid. OBJECTIVES The purpose of this study was to identify molecular pathophysiologic changes and novel disease mechanisms that are specific to myelomeningocele by the analysis of amniotic fluid supernatant cell-free RNA in fetuses with open myelomeningocele. STUDY DESIGN Amniotic fluid supernatant was collected from 10 pregnant women at the time of the open myelomeningocele repair in the second trimester (24.5±1.0 weeks); 10 archived amniotic fluid supernatant from sex and gestational age-matched euploid fetuses without myelomeningocele were used as controls (20.9±0.9 weeks). Differentially regulated gene expression patterns were analyzed with the use of human genome expression arrays. RESULTS Fetuses with myelomeningocele had 284 differentially regulated genes (176 up- and 108 down-regulated) in amniotic fluid supernatant. Known genes that were associated with myelomeningocele (PRICKLE2, GLI3, RAB23, HES1, FOLR1) and novel dysregulated genes were identified in association with neurodevelopment and neuronal regeneration (up-regulated, GAP43 and ZEB1) or axonal growth and guidance (down-regulated, ACAP1). Pathway analysis demonstrated a significant contribution of inflammation to disease and a broad influence of Wnt signaling pathways (Wnt1, Wnt5A, ITPR1). CONCLUSION Transcriptomic analyses of living fetuses with myelomeningocele with the use of amniotic fluid supernatant cell-free RNA demonstrated differential regulation of specific genes and molecular pathways relevant to this central nervous system disorder, which resulted in a new understanding of pathophysiologic changes. The data also suggested the importance of pathways that involve secondary disease, such as inflammation, in myelomeningocele. These newly identified pathways may lead to hypotheses that can test novel therapeutic targets as adjuncts to fetal surgical repair.
Collapse
|
16
|
Zwemer LM, Nolin SL, Okamoto PM, Eisenberg M, Wick HC, Bianchi DW. Global transcriptome dysregulation in second trimester fetuses with FMR1 expansions. Prenat Diagn 2016; 37:43-52. [PMID: 27646161 DOI: 10.1002/pd.4928] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/30/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023]
Abstract
OBJECTIVE We tested the hypothesis that FMR1 expansions would result in global gene dysregulation as early as the second trimester of human fetal development. METHOD Using cell-free fetal RNA obtained from amniotic fluid supernatant and expression microarrays, we compared RNA levels in samples from fetuses with premutation or full mutation allele expansions with control samples. RESULTS We found clear signals of differential gene expression relating to a variety of cellular functions, including ubiquitination, mitochondrial function, and neuronal/synaptic architecture. Additionally, among the genes showing differential gene expression, we saw links to related diseases of intellectual disability and motor function. Finally, within the unique molecular phenotypes established for each mutation set, we saw clear signatures of mitochondrial dysfunction and disrupted neurological function. Patterns of differential gene expression were very different in male and female fetuses with premutation alleles. CONCLUSION These results support a model for which genetic misregulation during fetal development may set the stage for late clinical manifestations of FMR1-related disorders. © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lillian M Zwemer
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Sarah L Nolin
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Patricia M Okamoto
- Integrated Genetics/Laboratory Corporation of America® Holdings, Westborough, MA, USA
| | - Marcia Eisenberg
- Laboratory Corporation of America® Holdings, Research Triangle Park, NC, USA
| | - Heather C Wick
- Department of Computer Science, Tufts University, Medford, MA, USA
| | - Diana W Bianchi
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
17
|
Genetics of the human placenta: implications for toxicokinetics. Arch Toxicol 2016; 90:2563-2581. [DOI: 10.1007/s00204-016-1816-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
|
18
|
Dias AT, Zanardo ÉA, Dutra RL, Piazzon FB, Novo-Filho GM, Montenegro MM, Nascimento AM, Rocha M, Madia FAR, Costa TVMM, Milani C, Schultz R, Gonçalves FT, Fridman C, Yamamoto GL, Bertola DR, Kim CA, Kulikowski LD. Post-mortem cytogenomic investigations in patients with congenital malformations. Exp Mol Pathol 2016; 101:116-23. [PMID: 27450648 DOI: 10.1016/j.yexmp.2016.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 06/16/2016] [Accepted: 07/19/2016] [Indexed: 11/16/2022]
Abstract
Congenital anomalies are the second highest cause of infant deaths, and, in most cases, diagnosis is a challenge. In this study, we characterize patterns of DNA copy number aberrations in different samples of post-mortem tissues from patients with congenital malformations. Twenty-eight patients undergoing autopsy were cytogenomically evaluated using several methods, specifically, Multiplex Ligation-dependent Probe Amplification (MLPA), microsatellite marker analysis with a MiniFiler kit, FISH, a cytogenomic array technique and bidirectional Sanger sequencing, which were performed on samples of different tissues (brain, heart, liver, skin and diaphragm) preserved in RNAlater, in formaldehyde or by paraffin-embedding. The results identified 13 patients with pathogenic copy number variations (CNVs). Of these, eight presented aneuploidies involving chromosomes 13, 18, 21, X and Y (two presented inter- and intra-tissue mosaicism). In addition, other abnormalities were found, including duplication of the TYMS gene (18p11.32); deletion of the CHL1 gene (3p26.3); deletion of the HIC1 gene (17p13.3); and deletion of the TOM1L2 gene (17p11.2). One patient had a pathogenic missense mutation of g.8535C>G (c.746C>G) in exon 7 of the FGFR3 gene consistent with Thanatophoric Dysplasia type I. Cytogenomic techniques were reliable for the analysis of autopsy material and allowed the identification of inter- and intra-tissue mosaicism and a better understanding of the pathogenesis of congenital malformations.
Collapse
Affiliation(s)
- Alexandre Torchio Dias
- Department of Pathology, Cytogenomic Laboratory - LIM 03 - HC-FMUSP, Universidade de São Paulo, SP, Brazil.
| | - Évelin Aline Zanardo
- Department of Pathology, Cytogenomic Laboratory - LIM 03 - HC-FMUSP, Universidade de São Paulo, SP, Brazil
| | - Roberta Lelis Dutra
- Department of Pathology, Cytogenomic Laboratory - LIM 03 - HC-FMUSP, Universidade de São Paulo, SP, Brazil
| | - Flavia Balbo Piazzon
- Department of Pathology, Cytogenomic Laboratory - LIM 03 - HC-FMUSP, Universidade de São Paulo, SP, Brazil
| | - Gil Monteiro Novo-Filho
- Department of Pathology, Cytogenomic Laboratory - LIM 03 - HC-FMUSP, Universidade de São Paulo, SP, Brazil
| | - Marilia Moreira Montenegro
- Department of Pathology, Cytogenomic Laboratory - LIM 03 - HC-FMUSP, Universidade de São Paulo, SP, Brazil
| | - Amom Mendes Nascimento
- Department of Pathology, Cytogenomic Laboratory - LIM 03 - HC-FMUSP, Universidade de São Paulo, SP, Brazil
| | - Mariana Rocha
- Department of Pathology, Cytogenomic Laboratory - LIM 03 - HC-FMUSP, Universidade de São Paulo, SP, Brazil; Human Reproduction and Genetic Center, Department of Coletive Health - Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | | | | | - Cintia Milani
- Department of Pathology, Cytogenomic Laboratory - LIM 03 - HC-FMUSP, Universidade de São Paulo, SP, Brazil
| | - Regina Schultz
- Division of Pathology - Clinical Hospital - HC -FMUSP, Universidade de São Paulo, SP, Brazil
| | | | - Cintia Fridman
- Department of Legal Medicine - HC-FMUSP, Universidade de São Paulo, SP, Brazil
| | | | - Débora Romeo Bertola
- Genetics Unit, Instituto da Criança HC-FMUSP - Universidade de São Paulo, SP, Brazil
| | - Chong Ae Kim
- Genetics Unit, Instituto da Criança HC-FMUSP - Universidade de São Paulo, SP, Brazil
| | - Leslie Domenici Kulikowski
- Department of Pathology, Cytogenomic Laboratory - LIM 03 - HC-FMUSP, Universidade de São Paulo, SP, Brazil; Human Reproduction and Genetic Center, Department of Coletive Health - Faculdade de Medicina do ABC, Santo André, SP, Brazil
| |
Collapse
|
19
|
Hervé B, Coussement A, Gilbert T, Dumont F, Jacques S, Cuisset L, Chicard M, Hizem S, Bourdoncle P, Letourneur F, Dupont C, Vialard F, Choiset A, Dupont JM. Aneuploidy: the impact of chromosome imbalance on nuclear organization and overall genome expression. Clin Genet 2016; 90:35-48. [PMID: 27283765 DOI: 10.1111/cge.12731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 12/19/2022]
Abstract
The organization and dynamics of chromatin within the interphase nucleus as chromosome territories (CTs) and the relationship with transcriptional regulation are not fully understood. We studied a natural example of chromosomal disorganization: aneuploidy due to trisomies 13, 18 and 21. We hypothesized that the presence of an extra copy of one chromosome alters the CT distribution, which perturbs transcriptional activity. We used 3D-FISH to study the position of the chromosomes of interest (18 and 21) in cultured amniocytes and chorionic villus cells from pregnancies with a normal or aneuploid karyotype. We studied the volumes of nuclei and CTs in both conditions and performed a compared transcriptome analysis. We did not observe any differences between euploid and aneuploid cells in terms of the radial and relative CT positions, suggesting that the same rules govern nuclear organization in cases of trisomy. We observed lower volumes for CTs 18 and 21. Overall genome expression profiles highlighted changes in the expression of a subset of genes in trisomic chromosomes, while the majority of transcriptional changes concerned genes located on euploid chromosomes. Our results suggest that a dosage imbalance of the genes on trisomic chromosomes is associated with a disturbance of overall genomic expression.
Collapse
Affiliation(s)
- B Hervé
- UFR des Sciences de la Santé Simone Veil, GIG, EA7404, Montigny le Bretonneux, France.,Génomique, Epigénétique et Physiopathologie de la Reproduction, U1016 INSERM-UMR 8104 CNRS, Institut Cochin, Université Paris Descartes, Paris, France.,Service de Cytogénétique, APHP - Hôpital Cochin, Paris, France.,Service de Cytogénétique, Centre Hospitalier Intercommunal de Poissy Saint-Germain-en-Laye, Poissy, France
| | - A Coussement
- Service de Cytogénétique, APHP - Hôpital Cochin, Paris, France
| | - T Gilbert
- Plate-Forme Cochin Imagerie, Université Paris Descartes, Institut Cochin, Paris, France
| | - F Dumont
- Genom'ic, Université Paris Descartes, Institut Cochin, Paris, France
| | - S Jacques
- Genom'ic, Université Paris Descartes, Institut Cochin, Paris, France
| | - L Cuisset
- Génomique, Epigénétique et Physiopathologie de la Reproduction, U1016 INSERM-UMR 8104 CNRS, Institut Cochin, Université Paris Descartes, Paris, France.,Service de Biochimie et Génétique Moléculaire, APHP - Hôpital Cochin, Paris, France
| | - M Chicard
- Genom'ic, Université Paris Descartes, Institut Cochin, Paris, France
| | - S Hizem
- Service de Cytogénétique, APHP - Hôpital Cochin, Paris, France
| | - P Bourdoncle
- Plate-Forme Cochin Imagerie, Université Paris Descartes, Institut Cochin, Paris, France
| | - F Letourneur
- Genom'ic, Université Paris Descartes, Institut Cochin, Paris, France
| | - C Dupont
- Unité fonctionnelle de Cytogénétique-Département de Génétique- APHP, Hôpital Robert Debré, Paris, France
| | - F Vialard
- UFR des Sciences de la Santé Simone Veil, GIG, EA7404, Montigny le Bretonneux, France.,Service de Cytogénétique, Centre Hospitalier Intercommunal de Poissy Saint-Germain-en-Laye, Poissy, France
| | - A Choiset
- Génomique, Epigénétique et Physiopathologie de la Reproduction, U1016 INSERM-UMR 8104 CNRS, Institut Cochin, Université Paris Descartes, Paris, France.,Service de Cytogénétique, APHP - Hôpital Cochin, Paris, France
| | - J-M Dupont
- Génomique, Epigénétique et Physiopathologie de la Reproduction, U1016 INSERM-UMR 8104 CNRS, Institut Cochin, Université Paris Descartes, Paris, France.,Service de Cytogénétique, APHP - Hôpital Cochin, Paris, France
| |
Collapse
|
20
|
Hasi-Zogaj M, Sebold C, Heard P, Carter E, Soileau B, Hill A, Rupert D, Perry B, Atkinson S, O'Donnell L, Gelfond J, Lancaster J, Fox PT, Hale DE, Cody JD. A review of 18p deletions. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2015; 169:251-64. [PMID: 26250845 DOI: 10.1002/ajmg.c.31445] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since 18p- was first described in 1963, much progress has been made in our understanding of this classic deletion condition. We have been able to establish a fairly complete picture of the phenotype when the deletion breakpoint occurs at the centromere, and we are working to establish the phenotypic effects when each gene on 18p is hemizygous. Our aim is to provide genotype-specific anticipatory guidance and recommendations to families with an 18p- diagnosis. In addition, establishing the molecular underpinnings of the condition will potentially suggest targets for molecular treatments. Thus, the next step is to establish the precise effects of specific gene deletions. As we look forward to deepening our understanding of 18p-, our focus will continue to be on the establishment of robust genotype-phenotype correlations and the penetrance of these phenotypes. We will continue to follow our 18p- cohort closely as they age to determine the presence or absence of some of these diagnoses, including spinocerebellar ataxia (SCA), facioscapulohumeral muscular dystrophy (FSHD), and dystonia. We will also continue to refine the critical regions for other phenotypes as we enroll additional (hopefully informative) participants into the research study and as the mechanisms of the genes in these regions are elucidated. Mouse models will also be developed to further our understanding of the effects of hemizygosity as well as to serve as models for treatment development.
Collapse
|
21
|
Kang JH, Park HJ, Jung YW, Shim SH, Sung SR, Park JE, Cha DH, Ahn EH. Comparative Transcriptome Analysis of Cell-Free Fetal RNA from Amniotic Fluid and RNA from Amniocytes in Uncomplicated Pregnancies. PLoS One 2015; 10:e0132955. [PMID: 26181329 PMCID: PMC4504687 DOI: 10.1371/journal.pone.0132955] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/21/2015] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES We aimed to compare tissue-specific expression profiles and biological pathways of RNA from amniocytes and amniotic fluid supernatant (AFS) from second-trimester pregnancies by using transcriptome analysis. Additionally, we wanted to explore whether cell-free RNA from AFS exhibits a unique gene expression signature that more adequately reflects the fetal developmental process than amniocyte RNA. METHODS Amniotic fluid samples were prospectively collected in the second trimester of pregnancy from euploid fetuses. Total RNA was extracted from amniocytes and AFS and hybridized to Affymetrix GeneChip Human Arrays. Significantly differentially expressed transcripts between amniocytes and AFS were obtained by using Welch's t-test. Unsupervised hierarchical clustering was used to visualize overall expression characteristics and differences in transcripts between AFS and amniocytes. The biological functions of selected genes were analyzed using various online Gene Ontology databases. RESULTS A total of 3,072 and 15,633 transcripts were detected in the second-trimester AFS and amniocytes, respectively. Hierarchical clustering revealed differential transcript expression between AFS and amniocytes. We found 353 genes that were specifically enriched in the AFS only, and tissue expression analysis showed enrichment of brain-specific genes in the AFS. Biological pathway analysis revealed that AFS-specific transcripts were mainly involved in embryonic development, cardiovascular development, and cellular morphology pathways. CONCLUSION This study demonstrated differential tissue-specific gene expression profiles and biological pathways between AFS and amniocytes. The results suggested that AFS is the preferred RNA source to investigate potential biomarkers of fetal neurodevelopment.
Collapse
Affiliation(s)
- J. H. Kang
- Department of Obstetrics and Gynecology, CHA Graduate School of Medicine, CHA University, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Zion Women’s hospital, Suwon, Republic of Korea
| | - H. J. Park
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University, Seoul, Republic of Korea
| | - Y. W. Jung
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University, Seoul, Republic of Korea
| | - S. H. Shim
- Genetic Laboratory, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Republic of Korea
| | - S. R. Sung
- Genetic Laboratory, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Republic of Korea
| | - J. E. Park
- Genetic Laboratory, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Republic of Korea
| | - D. H. Cha
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University, Seoul, Republic of Korea
- * E-mail: (DHC); (EHA)
| | - E. H Ahn
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
- * E-mail: (DHC); (EHA)
| |
Collapse
|
22
|
Edlow AG, Slonim DK, Wick HC, Hui L, Bianchi DW. The pathway not taken: understanding 'omics data in the perinatal context. Am J Obstet Gynecol 2015; 213:59.e1-59.e172. [PMID: 25772209 DOI: 10.1016/j.ajog.2015.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/20/2015] [Accepted: 03/10/2015] [Indexed: 01/19/2023]
Abstract
OBJECTIVE 'Omics analysis of large datasets has an increasingly important role in perinatal research, but understanding gene expression analyses in the fetal context remains a challenge. We compared the interpretation provided by a widely used systems biology resource (ingenuity pathway analysis [IPA]) with that from gene set enrichment analysis (GSEA) with functional annotation curated specifically for the fetus (Developmental FunctionaL Annotation at Tufts [DFLAT]). STUDY DESIGN Using amniotic fluid supernatant transcriptome datasets previously produced by our group, we analyzed 3 different developmental perturbations: aneuploidy (Trisomy 21 [T21]), hemodynamic (twin-twin transfusion syndrome [TTTS]), and metabolic (maternal obesity) vs sex- and gestational age-matched control subjects. Differentially expressed probe sets were identified with the use of paired t-tests with the Benjamini-Hochberg correction for multiple testing (P < .05). Functional analyses were performed with IPA and GSEA/DFLAT. Outputs were compared for biologic relevance to the fetus. RESULTS Compared with control subjects, there were 414 significantly dysregulated probe sets in T21 fetuses, 2226 in TTTS recipient twins, and 470 in fetuses of obese women. Each analytic output was unique but complementary. For T21, both IPA and GSEA/DFLAT identified dysregulation of brain, cardiovascular, and integumentary system development. For TTTS, both analytic tools identified dysregulation of cell growth/proliferation, immune and inflammatory signaling, brain, and cardiovascular development. For maternal obesity, both tools identified dysregulation of immune and inflammatory signaling, brain and musculoskeletal development, and cell death. GSEA/DFLAT identified substantially more dysregulated biologic functions in fetuses of obese women (1203 vs 151). For all 3 datasets, GSEA/DFLAT provided more comprehensive information about brain development. IPA consistently provided more detailed annotation about cell death. IPA produced many dysregulated terms that pertained to cancer (14 in T21, 109 in TTTS, 26 in maternal obesity); GSEA/DFLAT did not. CONCLUSION Interpretation of the fetal amniotic fluid supernatant transcriptome depends on the analytic program, which suggests that >1 resource should be used. Within IPA, physiologic cellular proliferation in the fetus produced many "false positive" annotations that pertained to cancer, which reflects its bias toward adult diseases. This study supports the use of gene annotation resources with a developmental focus, such as DFLAT, for 'omics studies in perinatal medicine.
Collapse
|
23
|
Noto K, Majidi S, Edlow AG, Wick HC, Bianchi DW, Slonim DK. CSAX: Characterizing Systematic Anomalies in eXpression Data. J Comput Biol 2015; 22:402-13. [PMID: 25651392 PMCID: PMC4424968 DOI: 10.1089/cmb.2014.0155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Methods for translating gene expression signatures into clinically relevant information have typically relied upon having many samples from patients with similar molecular phenotypes. Here, we address the question of what can be done when it is relatively easy to obtain healthy patient samples, but when abnormalities corresponding to disease states may be rare and one-of-a-kind. The associated computational challenge, anomaly detection, is a well-studied machine-learning problem. However, due to the dimensionality and variability of expression data, existing methods based on feature space analysis or individual anomalously expressed genes are insufficient. We present a novel approach, CSAX, that identifies pathways in an individual sample in which the normal expression relationships are disrupted. To evaluate our approach, we have compiled and released a compendium of public expression data sets, reformulated to create a test bed for anomaly detection. We demonstrate the accuracy of CSAX on the data sets in our compendium, compare it to other leading methods, and show that CSAX aids in both identifying anomalies and explaining their underlying biology. We describe an approach to characterizing the difficulty of specific expression anomaly detection tasks. We then illustrate CSAX's value in two developmental case studies. Confirming prior hypotheses, CSAX highlights disruption of platelet activation pathways in a neonate with retinopathy of prematurity and identifies, for the first time, dysregulated oxidative stress response in second trimester amniotic fluid of fetuses with obese mothers. Our approach provides an important step toward identification of individual disease patterns in the era of precision medicine.
Collapse
Affiliation(s)
- Keith Noto
- 1 AncestryDNA , San Francisco, California
| | | | | | | | | | | |
Collapse
|
24
|
Zwemer LM, Bianchi DW. The amniotic fluid transcriptome as a guide to understanding fetal disease. Cold Spring Harb Perspect Med 2015; 5:cshperspect.a023101. [PMID: 25680981 DOI: 10.1101/cshperspect.a023101] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Numerous recent studies have shown the power of cell-free fetal RNA, obtained from amniotic fluid supernatant, to report on the development of the living fetus in real time. Examination of these transcripts on a genome-wide basis has led to new insights into the prenatal pathophysiology of multiple genetic, developmental, and environmental diseases. Each studied condition presents a unique, characteristic fetal transcriptome, which points to specific disrupted molecular pathways. These studies have also improved our knowledge of the normal development of the human fetus, revealing gestational age-related dynamic gene expression from a variety of organs. Analysis of the fetal transcriptome in normal and abnormal development has led to novel approaches for in utero prenatal treatment.
Collapse
Affiliation(s)
- Lillian M Zwemer
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| | - Diana W Bianchi
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| |
Collapse
|
25
|
Li Y, Wang K, Zou QY, Zhou C, Magness RR, Zheng J. A possible role of aryl hydrocarbon receptor in spontaneous preterm birth. Med Hypotheses 2015; 84:494-7. [PMID: 25697115 DOI: 10.1016/j.mehy.2015.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/04/2015] [Indexed: 01/03/2023]
Abstract
Preterm birth (PTB) is defined as birth before 37 weeks of gestation and is a leading cause of neonatal mortality and morbidity. To date, the etiology of spontaneous PTB (sPTB) remains unclear; however, intrauterine bacterial infection-induced inflammation is considered to be one of the major triggers. Aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor. Upon activation, AhR signaling mediates many biological processes. AhR is abundantly expressed in human placentas, primarily in trophoblasts, and several fetal organs and tissues. The activation of AhR signaling can modulate inflammatory responses via promoting production of pro-inflammatory cytokines by the placenta and fetal membranes. These cytokines could enhance expression and/or activity of cyclooxygenase-2 (COX2) in human trophoblasts and amniotic epithelia, which in turn stimulate synthesis and release of prostaglandins (PGs; e.g., PGE2 and PGF2α). Given the discovery of a number of natural and endogenous AhR ligands in human, we hypothesize that in a subset of patients with high AhR expression in placentas and fetal membranes, repeated exposure to these AhR ligands hyperactivates AhR, inducing hyperactivation of the cytokines/COX2/PGs pathway, resulting in myometrial contractions, ultimately leading to sPTB. We further hypothesize that hyperactivation of this AhR pathway can induce sPTB either directly or in synergy with the bacterial infection. Proof of this hypothesis may provide a novel mechanism underlying sPTB.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, Madison, WI 53715, United States
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, PR China
| | - Qing-Yun Zou
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, Madison, WI 53715, United States
| | - Chi Zhou
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, Madison, WI 53715, United States
| | - Ronald R Magness
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, Madison, WI 53715, United States; Department of Pediatrics, University of Wisconsin, Madison, WI 53715, United States; Department of Animal Sciences, University of Wisconsin, Madison, WI 53715, United States
| | - Jing Zheng
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, Madison, WI 53715, United States; Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong, PR China.
| |
Collapse
|
26
|
Altieri V, Capozzi O, Marzano MC, Catapano O, Di Biase I, Rocchi M, De Tollis G. Molecular characterization of an analphoid supernumerary marker chromosome derived from 18q22.1➔qter in prenatal diagnosis: a case report. Mol Cytogenet 2014; 7:69. [PMID: 25360155 PMCID: PMC4213471 DOI: 10.1186/s13039-014-0069-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/06/2014] [Indexed: 11/30/2022] Open
Abstract
Background Small supernumerary marker chromosomes (sSMC) occur in 0.072% of unselected cases of prenatal diagnoses, and their molecular cytogenetic characterization is required to establish a reliable karyotype-phenotype correlation. A small group of sSMC are C-band-negative and devoid of alpha-satellite DNA. We report the molecular cytogenetic characterization of a de novo analphoid sSMC derived from 18q22.1→qter in cultured amniocytes. Results We identified an analphoid sSMC in cultured amniocytes during a prenatal diagnosis performed because of advanced maternal age. GTG-banding revealed an sSMC in all metaphases. FISH experiments with a probe specific for the chromosome 18 centromere, and C-banding revealed neither alphoid sequences nor C-banding-positive satellite DNA thereby suggesting the presence of a neocentromere. To characterize the marker in greater detail, we carried out additional FISH experiments with a set of appropriate BAC clones. The pattern of the FISH signals indicated a symmetrical organization of the marker, the breakpoint likely representing the centromere of an inverted duplicated chromosome that results in tetrasomy of 18q22.1→qter. The karyotype after molecular cytogenetic investigations was interpreted as follows: 47,XY,+inv dup(18)(qter→q22.1::q22.1→neo→qter) Conclusion Our case is the first report, in the prenatal diagnosis setting, of a de novo analphoid marker chromosome originating from the long arm of chromosome 18, and the second report of a neocentromere formation at 18q22.1.
Collapse
|
27
|
Massingham LJ, Johnson KL, Scholl TM, Slonim DK, Wick HC, Bianchi DW. Amniotic fluid RNA gene expression profiling provides insights into the phenotype of Turner syndrome. Hum Genet 2014; 133:1075-82. [PMID: 24850140 PMCID: PMC4384642 DOI: 10.1007/s00439-014-1448-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 05/13/2014] [Indexed: 12/24/2022]
Abstract
Turner syndrome is a sex chromosome aneuploidy with characteristic malformations. Amniotic fluid, a complex biological material, could contribute to the understanding of Turner syndrome pathogenesis. In this pilot study, global gene expression analysis of cell-free RNA in amniotic fluid supernatant was utilized to identify specific genes/organ systems that may play a role in Turner syndrome pathophysiology. Cell-free RNA from amniotic fluid of five mid-trimester Turner syndrome fetuses and five euploid female fetuses matched for gestational age was extracted, amplified, and hybridized onto Affymetrix(®) U133 Plus 2.0 arrays. Significantly differentially regulated genes were identified using paired t tests. Biological interpretation was performed using Ingenuity Pathway Analysis and BioGPS gene expression atlas. There were 470 statistically significantly differentially expressed genes identified. They were widely distributed across the genome. XIST was significantly down-regulated (p < 0.0001); SHOX was not differentially expressed. One of the most highly represented organ systems was the hematologic/immune system, distinguishing the Turner syndrome transcriptome from other aneuploidies we previously studied. Manual curation of the differentially expressed gene list identified genes of possible pathologic significance, including NFATC3, IGFBP5, and LDLR. Transcriptomic differences in the amniotic fluid of Turner syndrome fetuses are due to genome-wide dysregulation. The hematologic/immune system differences may play a role in early-onset autoimmune dysfunction. Other genes identified with possible pathologic significance are associated with cardiac and skeletal systems, which are known to be affected in females with Turner syndrome. The discovery-driven approach described here may be useful in elucidating novel mechanisms of disease in Turner syndrome.
Collapse
Affiliation(s)
- Lauren J. Massingham
- Mother Infant Research Institute and Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, Massachusetts
| | | | - Thomas M. Scholl
- Integrated Genetics, Esoterix Genetic Laboratories, LLC, a subsidiary of Laboratory Corporation of America® Holdings, Westborough, MA
| | - Donna K. Slonim
- Tufts University School of Medicine, Boston, MA
- Dept. of Computer Science, Tufts University, Medford MA
| | | | - Diana W. Bianchi
- Mother Infant Research Institute and Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
28
|
Zwemer LM, Hui L, Wick HC, Bianchi DW. RNA-Seq and expression microarray highlight different aspects of the fetal amniotic fluid transcriptome. Prenat Diagn 2014; 34:1006-14. [PMID: 24852236 DOI: 10.1002/pd.4417] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/09/2014] [Accepted: 05/19/2014] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The aim of this study was to compare the complexity of the amniotic fluid supernatant cell-free fetal transcriptome as described by RNA Sequencing (RNA-Seq) and gene expression microarrays. METHODS Cell-free fetal RNA from the amniotic fluid supernatant of five euploid mid-trimester samples was divided and prepared in tandem for analysis by either the Affymetrix HG-U133 Plus 2.0 Gene Chip microarray or Illumina HiSeq. Transcriptomes were assembled and compared on the basis of the presence of signal, rank-order gene expression, and pathway enrichment using Ingenuity Pathway Analysis (IPA). RNA-Seq data were also examined for evidence of alternative splicing. RESULTS Within individual samples, gene expression was strongly correlated (R = 0.43-0.57). Fewer expressed genes were observed using RNA-Seq than gene expression microarrays (4158 vs 8842). Most of the top pathways in the 'Physiological Systems Development and Function' IPA category were shared between platforms, although RNA-Seq yielded more significant p-values. Using RNA-Seq, examples of known alternative splicing were detected in several genes including H19 and IGF2. CONCLUSIONS In this pilot study, we found that expression microarrays gave a broader view of overall gene expression, while RNA-Seq demonstrated alternative splicing and specific pathways relevant to the developing fetus. The degraded nature of cell-free fetal RNA presented technical challenges for the RNA-Seq approach.
Collapse
Affiliation(s)
- Lillian M Zwemer
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | | | | | | |
Collapse
|
29
|
Madjunkova S, Tong Li C, Vlasschaert M, Adams M, Chitayat D, Maire G, Kolomietz E. QF-PCR rapid aneuploidy screen and aCGH analysis of cell free fetal (cff) DNA in supernatant of compromised amniotic fluids (AF). Prenat Diagn 2014; 34:970-6. [PMID: 24801814 DOI: 10.1002/pd.4405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/02/2014] [Accepted: 05/03/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study was to determine whether cell free fetal (cff) DNA in residual amniotic fluid (AF) supernatant obtained from bloody, low-volume and late gestation samples can be used for prenatal diagnosis by quantitative fluorescence polymerase chain reaction (QF-PCR) and array comparative genomic hybridization (aCGH). METHOD A total of 49 compromised AFs were analyzed in this case-control, double-blinded study. The samples were processed through: a conventional cytogenetic approach utilizing Fluorescence in situ Hybridization and/or karyotype (Approach I); QF-PCR analysis to establish the presence of maternal cell contamination (MCC) (Approach II) and a newly proposed approach using AF supernatant cff DNA (Approach III). Data on clinical impact and turn-around-time was collected. RESULTS Evidence of MCC was not detected in any of the cff DNA samples, and informative results were provided for all cases, including nine aneuploidies. In contrast, the conventional approach (I) failed to provide results either due to MCC or culture failure in a significant proportion of cases. An adequate amount of quality cff DNA was obtained for successful aCGH testing. CONCLUSION We have shown that it is feasible to isolate pure cff DNA from routinely discarded AF supernatant to perform QF-PCR and microarray analyses, providing timely and informative results even for problematic grossly bloody and otherwise compromised AF samples or culture failures.
Collapse
Affiliation(s)
- Svetlana Madjunkova
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Maternal obesity affects fetal neurodevelopmental and metabolic gene expression: a pilot study. PLoS One 2014; 9:e88661. [PMID: 24558408 PMCID: PMC3928248 DOI: 10.1371/journal.pone.0088661] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/11/2014] [Indexed: 11/19/2022] Open
Abstract
Objective One in three pregnant women in the United States is obese. Their offspring are at increased risk for neurodevelopmental and metabolic morbidity. Underlying molecular mechanisms are poorly understood. We performed a global gene expression analysis of mid-trimester amniotic fluid cell-free fetal RNA in obese versus lean pregnant women. Methods This prospective pilot study included eight obese (BMI≥30) and eight lean (BMI<25) women undergoing clinically indicated mid-trimester genetic amniocentesis. Subjects were matched for gestational age and fetal sex. Fetuses with abnormal karyotype or structural anomalies were excluded. Cell-free fetal RNA was extracted from amniotic fluid and hybridized to whole genome expression arrays. Genes significantly differentially regulated in 8/8 obese-lean pairs were identified using paired t-tests with the Benjamini-Hochberg correction (false discovery rate of <0.05). Biological interpretation was performed with Ingenuity Pathway Analysis and the BioGPS gene expression atlas. Results In fetuses of obese pregnant women, 205 genes were significantly differentially regulated. Apolipoprotein D, a gene highly expressed in the central nervous system and integral to lipid regulation, was the most up-regulated gene (9-fold). Apoptotic cell death was significantly down-regulated, particularly within nervous system pathways involving the cerebral cortex. Activation of the transcriptional regulators estrogen receptor, FOS, and STAT3 was predicted in fetuses of obese women, suggesting a pro-estrogenic, pro-inflammatory milieu. Conclusion Maternal obesity affects fetal neurodevelopmental and metabolic gene expression as early as the second trimester. These findings may have implications for postnatal neurodevelopmental and metabolic abnormalities described in the offspring of obese women.
Collapse
|
31
|
Wick HC, Drabkin H, Ngu H, Sackman M, Fournier C, Haggett J, Blake JA, Bianchi DW, Slonim DK. DFLAT: functional annotation for human development. BMC Bioinformatics 2014; 15:45. [PMID: 24507166 PMCID: PMC3928322 DOI: 10.1186/1471-2105-15-45] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 01/28/2014] [Indexed: 11/25/2022] Open
Abstract
Background Recent increases in genomic studies of the developing human fetus and neonate have led to a need for widespread characterization of the functional roles of genes at different developmental stages. The Gene Ontology (GO), a valuable and widely-used resource for characterizing gene function, offers perhaps the most suitable functional annotation system for this purpose. However, due in part to the difficulty of studying molecular genetic effects in humans, even the current collection of comprehensive GO annotations for human genes and gene products often lacks adequate developmental context for scientists wishing to study gene function in the human fetus. Description The Developmental FunctionaL Annotation at Tufts (DFLAT) project aims to improve the quality of analyses of fetal gene expression and regulation by curating human fetal gene functions using both manual and semi-automated GO procedures. Eligible annotations are then contributed to the GO database and included in GO releases of human data. DFLAT has produced a considerable body of functional annotation that we demonstrate provides valuable information about developmental genomics. A collection of gene sets (genes implicated in the same function or biological process), made by combining existing GO annotations with the 13,344 new DFLAT annotations, is available for use in novel analyses. Gene set analyses of expression in several data sets, including amniotic fluid RNA from fetuses with trisomies 21 and 18, umbilical cord blood, and blood from newborns with bronchopulmonary dysplasia, were conducted both with and without the DFLAT annotation. Conclusions Functional analysis of expression data using the DFLAT annotation increases the number of implicated gene sets, reflecting the DFLAT’s improved representation of current knowledge. Blinded literature review supports the validity of newly significant findings obtained with the DFLAT annotations. Newly implicated significant gene sets also suggest specific hypotheses for future research. Overall, the DFLAT project contributes new functional annotation and gene sets likely to enhance our ability to interpret genomic studies of human fetal and neonatal development.
Collapse
Affiliation(s)
- Heather C Wick
- Department of Computer Science, Tufts University, 155 College Ave, Medford, MA 02155, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Niknejadi M, Ahmadi F, Akhbari F, Afsharian P. Sonographic findings in partial type of trisomy 18. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2014; 7:349-52. [PMID: 24520506 PMCID: PMC3901184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 05/12/2013] [Indexed: 10/31/2022]
Abstract
Trisomy 18 (Edwards syndrome) is the second most common trisomy among live born fetuses, with poor prognosis. Estimate of its incidence is between 1 in 4000- 16000 live births. Most of the chromosomal abnormalities in fetuses are detected by prenatal ultrasound findings in the first and second trimesters. In this case re- port, we present a partial type of trisomy 18 occurring through de novo unbalanced translocation of chromosomes 18 and 21. The ultrasound features enabling the early detection of trisomy 18 include a delayed ossification of calvarium combined with early onset of fetal growth restriction (FGR) and the absence of nasal bone through performing triple test followed by amniocentesis. Finally, the parents decided to terminate the pregnancy.
Collapse
Affiliation(s)
- Maryam Niknejadi
- Department of Reproductive Imaging at Reproductive Biomedicine Research Center, Royan Institute for Reproductive
Biomedicine, ACECR, Tehran, Iran
| | - Firoozeh Ahmadi
- Department of Reproductive Imaging at Reproductive Biomedicine Research Center, Royan Institute for Reproductive
Biomedicine, ACECR, Tehran, Iran,
* Corresponding Address:
P.O.Box: 16635-148Department of Re-productive Imaging at Reproductive Biomedicine Research CenterRoyan Institute for Reproductive BiomedicineACECRTehranIran
| | - Farnaz Akhbari
- Department of Reproductive Imaging at Reproductive Biomedicine Research Center, Royan Institute for Reproductive
Biomedicine, ACECR, Tehran, Iran
| | - Parvaneh Afsharian
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine,
ACECR, Tehran, Iran
| |
Collapse
|
33
|
Abstract
OBJECTIVE To identify the tissue expression patterns and biological pathways enriched in term amniotic fluid cell-free fetal RNA by comparing functional genomic analyses of term and second-trimester amniotic fluid supernatants. METHODS This was a prospective whole genome microarray study comparing eight amniotic fluid samples collected from women at term who underwent prelabor cesarean delivery and eight second-trimester amniotic fluid samples from routine amniocenteses. A functional annotation tool was used to compare tissue expression patterns in term and second-trimester samples. Pathways analysis software identified physiologic systems, molecular and cellular functions, and upstream regulators that were significantly overrepresented in term amniotic fluid. RESULTS There were 2,871 significantly differentially regulated genes. In term amniotic fluid, tissue expression analysis showed enrichment of salivary gland, tracheal, and renal transcripts as compared with brain and embryonic neural cells in the second trimester. Functional analysis of genes upregulated at term revealed pathways that were highly specific for postnatal adaptation such as immune function, digestion, respiration, carbohydrate metabolism, and adipogenesis. Inflammation and prostaglandin synthesis, two key processes involved in normal labor, were also activated in term amniotic fluid. CONCLUSIONS Transcriptomic analysis of amniotic fluid cell-free fetal RNA detects fetal maturation processes activated in term pregnancy. These findings further develop the concept of amniotic fluid supernatant as a real-time gene expression "summary fluid" and support its potential for future studies of fetal development.
Collapse
|
34
|
Brants J, Semenchenko K, Wasylyk C, Robert A, Carles A, Zambrano A, Pradeau-Aubreton K, Birck C, Schalken JA, Poch O, de Mey J, Wasylyk B. Tubulin tyrosine ligase like 12, a TTLL family member with SET- and TTL-like domains and roles in histone and tubulin modifications and mitosis. PLoS One 2012; 7:e51258. [PMID: 23251473 PMCID: PMC3520985 DOI: 10.1371/journal.pone.0051258] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/30/2012] [Indexed: 01/15/2023] Open
Abstract
hTTLL12 is a member of the tubulin tyrosine ligase (TTL) family that is highly conserved in phylogeny. It has both SET-like and TTL-like domains, suggesting that it could have histone methylation and tubulin tyrosine ligase activities. Altered expression of hTTLL12 in human cells leads to specific changes in H4K20 trimethylation, and tubulin detyrosination, hTTLL12 does not catalyse histone methylation or tubulin tyrosination in vitro, as might be expected from the lack of critical amino acids in its SET-like and TTLL-like domains. hTTLL12 misexpression increases mitotic duration and chromosome numbers. These results suggest that hTTLL12 has non-catalytic functions related to tubulin and histone modification, which could be linked to its effects on mitosis and chromosome number stability.
Collapse
Affiliation(s)
- Jan Brants
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS UDS - U 964 INSERM , Illkirch, France
| | - Kostyantyn Semenchenko
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS UDS - U 964 INSERM , Illkirch, France
| | - Christine Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS UDS - U 964 INSERM , Illkirch, France
| | - Aude Robert
- Université de Strasbourg, Ecole Supérieure de Biotechnologie de Strasbourg C.N.R.S. - U.M.R.7100, Equipe “Microtubules et Morphogenèse”, Parc d'Innovation, Illkirch, France
| | - Annaick Carles
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS UDS - U 964 INSERM , Illkirch, France
| | - Alberto Zambrano
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS UDS - U 964 INSERM , Illkirch, France
| | - Karine Pradeau-Aubreton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS UDS - U 964 INSERM , Illkirch, France
| | - Catherine Birck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS UDS - U 964 INSERM , Illkirch, France
| | - Jack A. Schalken
- Department of Urology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Olivier Poch
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS UDS - U 964 INSERM , Illkirch, France
| | - Jan de Mey
- Université de Strasbourg, Ecole Supérieure de Biotechnologie de Strasbourg C.N.R.S. - U.M.R.7100, Equipe “Microtubules et Morphogenèse”, Parc d'Innovation, Illkirch, France
| | - Bohdan Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS UDS - U 964 INSERM , Illkirch, France
- * E-mail:
| |
Collapse
|
35
|
Abstract
Aneuploidy, or an aberrant karyotype, results in developmental disabilities and has been implicated in tumorigenesis. However, the causes of aneuploidy-induced phenotypes and the consequences of aneuploidy on cell physiology remain poorly understood. We have performed a metaanalysis on gene expression data from aneuploid cells in diverse organisms, including yeast, plants, mice, and humans. We found highly related gene expression patterns that are conserved between species: genes that were involved in the response to stress were consistently upregulated, and genes associated with the cell cycle and cell proliferation were downregulated in aneuploid cells. Within species, different aneuploidies induced similar changes in gene expression, independent of the specific chromosomal aberrations. Taken together, our results demonstrate that aneuploidies of different chromosomes and in different organisms impact similar cellular pathways and cause a stereotypical antiproliferative response that must be overcome before transformation.
Collapse
|
36
|
Bianchi DW. From prenatal genomic diagnosis to fetal personalized medicine: progress and challenges. Nat Med 2012; 18:1041-51. [PMID: 22772565 DOI: 10.1038/nm.2829] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Thus far, the focus of personalized medicine has been the prevention and treatment of conditions that affect adults. Although advances in genetic technology have been applied more frequently to prenatal diagnosis than to fetal treatment, genetic and genomic information is beginning to influence pregnancy management. Recent developments in sequencing the fetal genome combined with progress in understanding fetal physiology using gene expression arrays indicate that we could have the technical capabilities to apply an individualized medicine approach to the fetus. Here I review recent advances in prenatal genetic diagnostics, the challenges associated with these new technologies and how the information derived from them can be used to advance fetal care. Historically, the goal of prenatal diagnosis has been to provide an informed choice to prospective parents. We are now at a point where that goal can and should be expanded to incorporate genetic, genomic and transcriptomic data to develop new approaches to fetal treatment.
Collapse
Affiliation(s)
- Diana W Bianchi
- The Mother Infant Research Institute at Tufts Medical Center and the Division of Genetics, Department of Pediatrics, Floating Hospital for Children, Boston, Massachusetts, USA.
| |
Collapse
|
37
|
Hui L, Slonim DK, Wick HC, Johnson KL, Koide K, Bianchi DW. Novel neurodevelopmental information revealed in amniotic fluid supernatant transcripts from fetuses with trisomies 18 and 21. Hum Genet 2012; 131:1751-9. [PMID: 22752091 DOI: 10.1007/s00439-012-1195-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/19/2012] [Indexed: 01/15/2023]
Abstract
Trisomies 18 and 21 are the two most common live born autosomal aneuploidies in humans. While the anatomic abnormalities in affected fetuses are well documented, the dysregulated biological pathways associated with the development of the aneuploid phenotype are less clear. Amniotic fluid (AF) cell-free RNA is a valuable source of biological information obtainable from live fetuses. In this study, we mined gene expression data previously produced by our group from mid-trimester AF supernatant samples. We identified the euploid, trisomy 18 and trisomy 21 AF transcriptomes, and analyzed them with a particular focus on the nervous system. We used multiple bioinformatics resources, including DAVID, Ingenuity Pathway Analysis, and the BioGPS Gene Expression Atlas. Our analyses confirmed that AF supernatant from aneuploid fetuses is enriched for nervous system gene expression and neurological disease pathways. Tissue analysis showed that fetal brain cortex and Cajal-Retzius cells were significantly enriched for genes contained in the AF transcriptomes. We also examined AF transcripts known to be dysregulated in aneuploid fetuses compared with euploid controls and identified several brain-specific transcripts among them. Many of these genes play critical roles in nervous system development. NEUROD2, which was downregulated in trisomy 18, induces neurogenic differentiation. SOX11, downregulated in trisomy 21, is a transcription factor that is essential for pan-neuronal protein expression and axonal growth of sensory neurons. Our results show that whole transcriptome analysis of cell-free RNA in AF from live pregnancies permits discovery of biomarkers of abnormal human neurodevelopment and advances our understanding of the pathophysiology of aneuploidy.
Collapse
Affiliation(s)
- Lisa Hui
- Mother Infant Research Institute and the Division of Genetics, Department of Pediatrics, The Floating Hospital for Children at Tufts Medical Center, 800 Washington St, Boston, MA 02111, USA.
| | | | | | | | | | | |
Collapse
|
38
|
The amniotic fluid transcriptome: a source of novel information about human fetal development. Obstet Gynecol 2012; 119:111-8. [PMID: 22183218 DOI: 10.1097/aog.0b013e31823d4150] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Amniotic fluid is a complex biological material that provides a unique window into the developing human. Residual amniotic fluid supernatant contains cell-free fetal RNA. The objective of this study was to develop an understanding of the amniotic fluid core transcriptome by analyzing the transcripts ubiquitously present in the amniotic fluid supernatant of euploid midtrimester fetuses. METHODS This was an in silico (computational) investigation using publicly available gene expression data previously produced by our group from 12 euploid midtrimester amniotic fluid samples. Functional analyses were performed using a web-based software analysis tool. Organ specificity was examined for each transcript using a gene expression atlas. For fetal organs not represented in the atlas, manual literature searching and the web-based software analysis tool were used to generate fetal organ-associated gene lists. RESULTS There were 476 well-annotated genes present in 12 of 12 amniotic fluid samples. Functional analysis identified six physiologic systems represented in the amniotic fluid core transcriptome, including musculoskeletal and nervous system development and function and embryonic and organismal development. Mammalian target of rapamycin signaling was identified as a key canonical pathway. Twenty-three highly organ-specific transcripts were identified; six of these are known to be highly expressed in the fetal brain. CONCLUSION Amniotic fluid cell-free fetal RNA can provide biological information on multiple fetal organ systems. The presence of fetal-brain specific transcripts in amniotic fluid suggests novel approaches to the study of developmental disorders that involve the central nervous system. The finding that the mammalian target of rapamycin signaling is enriched in midtrimester fetuses may have future applications in the study of fetal growth disorders.
Collapse
|
39
|
Edlow AG, Bianchi DW. Tracking fetal development through molecular analysis of maternal biofluids. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1970-80. [PMID: 22542507 DOI: 10.1016/j.bbadis.2012.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/23/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
Abstract
Current monitoring of fetal development includes fetal ultrasonography, chorionic villus sampling or amniocentesis for chromosome analysis, and maternal serum biochemical screening for analytes associated with aneuploidy and open neural tube defects. Over the last 15 years, significant advances in noninvasive prenatal diagnosis (NIPD) via cell-free fetal (cff) nucleic acids in maternal plasma have resulted in the ability to determine fetal sex, RhD genotype, and aneuploidy. Cff nucleic acids in the maternal circulation originate primarily from the placenta. This contrasts with cff nucleic acids in amniotic fluid, which derive from the fetus, and are present in significantly higher concentrations than in maternal blood. The fetal origin of cff nucleic acids in the amniotic fluid permits the acquisition of real-time information about fetal development and gene expression. This review seeks to provide a comprehensive summary of the molecular analysis of cff nucleic acids in maternal biofluids to elucidate mechanisms of fetal development, physiology, and pathology. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure.
Collapse
Affiliation(s)
- Andrea G Edlow
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA 02111, USA.
| | | |
Collapse
|
40
|
Gielchinsky Y, Zvanca M, Akolekar R, Calvo JR, Nicolaides KH. Adrenal gland length in euploid and trisomy 18 fetuses at 11-13 weeks. Prenat Diagn 2011; 31:773-7. [DOI: 10.1002/pd.2765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/01/2011] [Accepted: 03/25/2011] [Indexed: 11/09/2022]
|
41
|
Affiliation(s)
- Diana W Bianchi
- Mother Infant Research Institute at Tufts Medical Center and Division of Genetics, Department of Pediatrics, Floating Hospital for Children, Boston, MA, USA.
| |
Collapse
|