1
|
Conjard-Duplany A, Osseni A, Lamboux A, Mouradian S, Picard F, Moncollin V, Angleraux C, Dorel-Dubois T, Puccio H, Leblanc P, Galy B, Balter V, Schaeffer L, Gangloff YG. Muscle mTOR controls iron homeostasis and ferritinophagy via NRF2, HIFs and AKT/PKB signaling pathways. Cell Mol Life Sci 2025; 82:178. [PMID: 40293459 PMCID: PMC12037468 DOI: 10.1007/s00018-025-05695-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
Balanced mTOR activity and iron levels are crucial for muscle integrity, with evidence suggesting mTOR regulates cellular iron homeostasis. In this study, we investigated iron metabolism in muscle-specific mTOR knockout mice (mTORmKO) and its relation to their myopathy. The mTORmKO mice exhibited distinct iron content patterns across muscle types and ages. Slow-twitch soleus muscles initially showed reduced iron levels in young mice, which increased with the dystrophy progression but remained within control ranges. In contrast, the less affected fast-twitch muscles maintained near-normal iron levels from a young age. Interestingly, both mTORmKO muscle types exhibited iron metabolism markers indicative of iron excess, including decreased transferrin receptor 1 (TFR1) and increased levels of ferritin (FTL) and ferroportin (FPN) proteins. Paradoxically, these changes were accompanied by downregulated Ftl and Fpn mRNA levels, indicating post-transcriptional regulation. This discordant regulation resulted from disruption of key iron metabolism pathways, including NRF2/NFE2L2, HIFs, and AKT/PKB signaling. Mechanistically, mTOR deficiency impaired transcriptional regulation of iron-related genes mediated by NRF2 and HIFs. Furthermore, it triggered ferritin accumulation through two NRF2 mechanisms: (1) derepression of ferritin translation via suppression of the FBXL5-IRP axis, and (2) autophagosomal sequestration driven by NCOA4-dependent ferritin targeting to autophagosomes, coupled with age-related impairments of autophagy linked to chronic AKT/PKB activation. Three-week spermidine supplementation in older mTORmKO mice was associated with normalized AKT/PKB-FOXO signaling, increased endolysosomal FTL and reduced total FTL levels in the dystrophic soleus muscle. These findings underscore mTOR's crucial role in skeletal muscle iron metabolism and suggest spermidine as a potential strategy to address impaired ferritinophagy due to autophagy blockade in dystrophic muscle.
Collapse
Affiliation(s)
- Agnès Conjard-Duplany
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, Lyon, 69008, France.
| | - Alexis Osseni
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, Lyon, 69008, France
| | - Aline Lamboux
- Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, UMR 5276, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, Lyon, Cedex 07, 69364, France
| | - Sandrine Mouradian
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, Lyon, 69008, France
| | - Flavien Picard
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, Lyon, 69008, France
| | - Vincent Moncollin
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, Lyon, 69008, France
| | - Céline Angleraux
- Université Claude Bernard Lyon 1, CNRS UAR3444, Inserm US8, ENS de Lyon, AniRA-PBES, SFR Biosciences, Lyon, 69007, France
| | - Tiphaine Dorel-Dubois
- Université Claude Bernard Lyon 1, CNRS UAR3444, Inserm US8, ENS de Lyon, AniRA-PBES, SFR Biosciences, Lyon, 69007, France
| | - Hélène Puccio
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, Lyon, 69008, France
| | - Pascal Leblanc
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, Lyon, 69008, France
| | - Bruno Galy
- German Cancer Research Center (DKFZ), Division of Virus-associated Carcinogenesis (F170), Heidelberg, Germany
- IB-Cancer Research Foundation, Science Park 2, 66123, Saarbrücken, Germany
| | - Vincent Balter
- Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, UMR 5276, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, Lyon, Cedex 07, 69364, France
| | - Laurent Schaeffer
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, Lyon, 69008, France
- Centre de Biotechnologie Cellulaire, Hospices Civils de Lyon, Lyon, France
| | - Yann-Gaël Gangloff
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, Lyon, 69008, France.
| |
Collapse
|
2
|
Lynch DR, Shen M, Wilson RB. Friedreich ataxia: what can we learn from non-GAA repeat mutations? Neurodegener Dis Manag 2025; 15:17-26. [PMID: 39810561 PMCID: PMC11938963 DOI: 10.1080/17582024.2025.2452147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Friedreich ataxia (FRDA) is a slowly progressive neurological disease resulting from decreased levels of the protein frataxin, a small mitochondrial protein that facilitates the synthesis of iron-sulfur clusters in the mitochondrion. It is caused by GAA (guanine-adenine-adenine) repeat expansions in the FXN gene in 96% of patients, with 4% of patients carrying other mutations (missense, nonsense, deletion) in the FXN gene. Compound heterozygote patients with one expanded GAA allele and a non-GAA repeat mutation can have subtle differences in phenotype from typical FRDA, including, in patients with selected missense mutations, both more severe features and less severe features in the same patient. In this review, we propose explanations for such phenotypes based on the potential for activities of frataxin other than enhancement of iron-sulfur cluster synthesis, as well as crucial future experiments for fully understanding the role of frataxin in cells.
Collapse
Affiliation(s)
- David R. Lynch
- Friedreich Ataxia Program, Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - M. Shen
- Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Robert B. Wilson
- Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
3
|
Maio N, Orbach R, Zaharieva IT, Töpf A, Donkervoort S, Munot P, Mueller J, Willis T, Verma S, Peric S, Krishnakumar D, Sudhakar S, Foley AR, Silverstein S, Douglas G, Pais L, DiTroia S, Grunseich C, Hu Y, Sewry C, Sarkozy A, Straub V, Muntoni F, Rouault TA, Bönnemann CG. CIAO1 loss of function causes a neuromuscular disorder with compromise of nucleocytoplasmic Fe-S enzymes. J Clin Invest 2024; 134:e179559. [PMID: 38950322 PMCID: PMC11178529 DOI: 10.1172/jci179559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/26/2024] [Indexed: 07/03/2024] Open
Abstract
Cytoplasmic and nuclear iron-sulfur (Fe-S) enzymes that are essential for genome maintenance and replication depend on the cytoplasmic Fe-S assembly (CIA) machinery for cluster acquisition. The core of the CIA machinery consists of a complex of CIAO1, MMS19 and FAM96B. The physiological consequences of loss of function in the components of the CIA pathway have thus far remained uncharacterized. Our study revealed that patients with biallelic loss of function in CIAO1 developed proximal and axial muscle weakness, fluctuating creatine kinase elevation, and respiratory insufficiency. In addition, they presented with CNS symptoms including learning difficulties and neurobehavioral comorbidities, along with iron deposition in deep brain nuclei, mild normocytic to macrocytic anemia, and gastrointestinal symptoms. Mutational analysis revealed reduced stability of the variants compared with WT CIAO1. Functional assays demonstrated failure of the variants identified in patients to recruit Fe-S recipient proteins, resulting in compromised activities of DNA helicases, polymerases, and repair enzymes that rely on the CIA complex to acquire their Fe-S cofactors. Lentivirus-mediated restoration of CIAO1 expression reversed all patient-derived cellular abnormalities. Our study identifies CIAO1 as a human disease gene and provides insights into the broader implications of the cytosolic Fe-S assembly pathway in human health and disease.
Collapse
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Rotem Orbach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, Maryland, USA
| | - Irina T. Zaharieva
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, Maryland, USA
| | - Pinki Munot
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Juliane Mueller
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Tracey Willis
- Wolfson Centre for Neuromuscular Disorders, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, United Kingdom
- Chester University Medical School, Chester, United Kingdom
| | - Sumit Verma
- Department of Pediatrics and Neurology, Emory University School of Medicine, Georgia, Atlanta, USA
| | - Stojan Peric
- Department for Neuromuscular Disorders, Neurology Clinic, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Deepa Krishnakumar
- Paediatric Neurology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Sniya Sudhakar
- Department of Neuroradiology, Great Ormond Street NHS Trust Hospital, London, United Kingdom
| | - A. Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, Maryland, USA
| | - Sarah Silverstein
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, Maryland, USA
| | | | - Lynn Pais
- Program in Medical and Population Genetics, Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Stephanie DiTroia
- Program in Medical and Population Genetics, Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Christopher Grunseich
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, Maryland, USA
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, Maryland, USA
| | - Caroline Sewry
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Wolfson Centre for Neuromuscular Disorders, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, United Kingdom
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Tracey A. Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Carsten G. Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Sewell KE, Gola GF, Pignataro MF, Herrera MG, Noguera ME, Olmos J, Ramírez JA, Capece L, Aran M, Santos J. Direct Cysteine Desulfurase Activity Determination by NMR and the Study of the Functional Role of Key Structural Elements of Human NFS1. ACS Chem Biol 2023; 18:1534-1547. [PMID: 37410592 DOI: 10.1021/acschembio.3c00147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The mitochondrial cysteine desulfurase NFS1 is an essential PLP-dependent enzyme involved in iron-sulfur cluster assembly. The enzyme catalyzes the desulfurization of the l-Cys substrate, producing a persulfide and l-Ala as products. In this study, we set the measurement of the product l-Ala by NMR in vitro by means of 1H NMR spectra acquisition. This methodology provided us with the possibility of monitoring the reaction in both fixed-time and real-time experiments, with high sensitivity and accuracy. By studying I452A, W454A, Q456A, and H457A NFS1 variants, we found that the C-terminal stretch (CTS) of the enzyme is critical for function. Specifically, mutation of the extremely conserved position W454 resulted in highly decreased activity. Additionally, we worked on two singular variants: "GGG" and C158A. In the former, the catalytic Cys-loop was altered by including two Gly residues to increase the flexibility of this loop. This variant had significantly impaired activity, indicating that the Cys-loop motions are fine-tuned in the wild-type enzyme. In turn, for C158A, we found an unanticipated increase in l-Cys desulfurase activity. Furthermore, we carried out molecular dynamics simulations of the supercomplex dedicated to iron-sulfur cluster biosynthesis, which includes NFS1, ACP, ISD11, ISCU2, and FXN subunits. We identified CTS as a key element that established interactions with ISCU2 and FXN concurrently; we found specific interactions that are established when FXN is present, reinforcing the idea that FXN not only forms part of the iron-sulfur cluster assembly site but also modulates the internal motions of ISCU2.
Collapse
Affiliation(s)
- Karl E Sewell
- Laboratorio de Genómica e Ingeniería de Sistemas Biológicos. Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3). Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
| | - Gabriel F Gola
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica (UMYMFOR), CONICET─Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - María Florencia Pignataro
- Laboratorio de Genómica e Ingeniería de Sistemas Biológicos. Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3). Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
| | - María Georgina Herrera
- Laboratorio de Genómica e Ingeniería de Sistemas Biológicos. Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3). Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
| | - Martín E Noguera
- Laboratorio de Genómica e Ingeniería de Sistemas Biológicos. Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3). Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
- Instituto de Química y Físico-Química Biológicas, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113AAD, Argentina
| | - Justo Olmos
- Laboratorio de Genómica e Ingeniería de Sistemas Biológicos. Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3). Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
| | - Javier A Ramírez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica (UMYMFOR), CONICET─Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Luciana Capece
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE CONICET), Universidad de Buenos Aires. Buenos Aires C1428EGA, Argentina
| | - Martín Aran
- Fundación Instituto Leloir, IIBBA-CONICET, and Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Javier Santos
- Laboratorio de Genómica e Ingeniería de Sistemas Biológicos. Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3). Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
5
|
Cabrera-Serrano M, Ravenscroft G. Recent advances in our understanding of genetic rhabdomyolysis. Curr Opin Neurol 2022; 35:651-657. [PMID: 35942668 DOI: 10.1097/wco.0000000000001096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE OF REVIEW This review summarizes recent advances in our understanding of the genetics of rhabdomyolysis. RECENT FINDINGS Rhabdomyolysis is the acute breakdown of myofibres resulting in systemic changes that can be life-threatening. Environmental triggers, including trauma, exercise, toxins and infections, and/or gene defects can precipitate rhabdomyolysis. A schema (aptly titled RHABDO) has been suggested for evaluating whether a patient with rhabdomyolysis is likely to harbour an underlying genetic defect. It is becoming increasingly recognized that defects in muscular dystrophy and myopathy genes can trigger rhabdomyolysis, even as the sole or presenting feature. Variants in genes not previously associated with human disease have been identified recently as causative of rhabdomyolysis, MLIP , MYH1 and OBSCN . Our understanding of the pathomechanisms contributing to rhabdomyolysis have also improved with an increased awareness of the role of mitochondrial dysfunction in LPIN1 , FDX2 , ISCU and TANGO2 -mediated disease. SUMMARY An accurate genetic diagnosis is important for optimal clinical management of the patient, avoiding associated triggers and genetic counselling and cascade screening. Despite recent advances in our understanding of the genetics contributing to rhabdomyolysis, many patients remain without an accurate genetic diagnosis, suggesting there are many more causative genes, variants and disease mechanisms to uncover.
Collapse
Affiliation(s)
- Macarena Cabrera-Serrano
- Harry Perkins Institute of Medical Research
- Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
- Unidad de Enfermedades Neuromusculares, Servicio de Neurologia y Neurofisiologia and Instituto de Biomedicina de Sevilla (IBiS)., Hospital Virgen del Rocio, Sevilla, Spain
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research
- Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
6
|
Yang JH, Friederich MW, Ellsworth KA, Frederick A, Foreman E, Malicki D, Dimmock D, Lenberg J, Prasad C, Yu AC, Rupar CA, Hegele RA, Manickam K, Koboldt DC, Crist E, Choi SS, Farhan SM, Harvey H, Sattar S, Karp N, Wong T, Haas R, Van Hove JL, Wigby K. Expanding the phenotypic and molecular spectrum of NFS1-related disorders that cause functional deficiencies in mitochondrial and cytosolic iron-sulfur cluster containing enzymes. Hum Mutat 2022; 43:305-315. [PMID: 35026043 PMCID: PMC8863643 DOI: 10.1002/humu.24330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/11/2021] [Accepted: 01/10/2022] [Indexed: 11/11/2022]
Abstract
Iron-sulfur cluster proteins are involved in critical functions for gene expression regulation and mitochondrial bioenergetics including the oxidative phosphorylation system. The c.215G>A p.(Arg72Gln) variant in NFS1 has been previously reported to cause infantile mitochondrial complex II and III deficiency. We describe three additional unrelated patients with the same missense variant. Two infants with the same homozygous variant presented with hypotonia, weakness and lactic acidosis, and one patient with compound heterozygous p.(Arg72Gln) and p.(Arg412His) variants presented as a young adult with gastrointestinal symptoms and fatigue. Skeletal muscle biopsy from patients 1 and 3 showed abnormal mitochondrial morphology, and functional analyses demonstrated decreased activity in respiratory chain complex II and variably in complexes I and III. We found decreased mitochondrial and cytosolic aconitase activities but only mildly affected lipoylation of pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase enzymes. Our studies expand the phenotypic spectrum and provide further evidence for the pathogenicity and functional sequelae of NFS1-related disorders with disturbances in both mitochondrial and cytosolic iron-sulfur cluster containing enzymes.
Collapse
Affiliation(s)
- Jennifer H. Yang
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093, USA,Division of Child Neurology, Rady Children’s Hospital, San Diego, CA 92123, USA,These authors contributed equally to this work
| | - Marisa W. Friederich
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA,Department of Pathology and Laboratory Medicine, Children’s Hospital Colorado, 13121 East 16th Avenue, Aurora, CO 80045, USA,These authors contributed equally to this work
| | | | - Aliya Frederick
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093, USA,Division of Child Neurology, Rady Children’s Hospital, San Diego, CA 92123, USA
| | - Emily Foreman
- Division of Pediatrics, University of California San Diego, San Diego, CA 92093, USA
| | - Denise Malicki
- Department of Pathology, University of California San Diego, San Diego, CA 92093, USA
| | - David Dimmock
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Jerica Lenberg
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Chitra Prasad
- Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada,Department of Pediatrics, Division of Medical Genetics, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5K8, Canada
| | - Andrea C. Yu
- Division of Metabolics and Newborn Screening, Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, ON, K1H 8L1, Canada
| | - C. Anthony Rupar
- Department of Pathology, London Health Science Centre, London, Ontario N6A 5A5, Canada,London Health Sciences Centre, Children’s Health Research Institute London, Ontario N6C 2V5, Canada
| | - Robert A. Hegele
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5K8, Canada,Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Kandamurugu Manickam
- Division of Genetics and Genomics, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Daniel C. Koboldt
- The Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Erin Crist
- The Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Samantha S. Choi
- The Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Sali M.K. Farhan
- Departments of Neurology and Neurosurgery, and Human Genetics, the Montreal Neurological Institute and Hospital, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada
| | - Helen Harvey
- Division of Pediatrics, University of California San Diego, San Diego, CA 92093, USA
| | - Shifteh Sattar
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093, USA,Division of Child Neurology, Rady Children’s Hospital, San Diego, CA 92123, USA
| | - Natalya Karp
- Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada,Department of Pediatrics, Division of Medical Genetics, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5K8, Canada
| | - Terence Wong
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Richard Haas
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093, USA,Division of Child Neurology, Rady Children’s Hospital, San Diego, CA 92123, USA,These authors contributed equally to this work
| | - Johan L.K. Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA,Department of Pathology and Laboratory Medicine, Children’s Hospital Colorado, 13121 East 16th Avenue, Aurora, CO 80045, USA,These authors contributed equally to this work
| | - Kristen Wigby
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA,Division of Pediatrics, University of California San Diego, San Diego, CA 92093, USA,These authors contributed equally to this work
| |
Collapse
|
7
|
Mitochondrial De Novo Assembly of Iron–Sulfur Clusters in Mammals: Complex Matters in a Complex That Matters. INORGANICS 2022. [DOI: 10.3390/inorganics10030031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Iron–sulfur clusters (Fe–S or ISC) are essential cofactors that function in a wide range of biological pathways. In mammalian cells, Fe–S biosynthesis primarily relies on mitochondria and involves a concerted group of evolutionary-conserved proteins forming the ISC pathway. In the early stage of the ISC pathway, the Fe–S core complex is required for de novo assembly of Fe–S. In humans, the Fe–S core complex comprises the cysteine desulfurase NFS1, the scaffold protein ISCU2, frataxin (FXN), the ferredoxin FDX2, and regulatory/accessory proteins ISD11 and Acyl Carrier Protein (ACP). In recent years, the field has made significant advances in unraveling the structure of the Fe–S core complex and the mechanism underlying its function. Herein, we review the key recent findings related to the Fe–S core complex and its components. We highlight some of the unanswered questions and provide a model of the Fe–S assembly within the complex. In addition, we briefly touch on the genetic diseases associated with mutations in the Fe–S core complex components.
Collapse
|
8
|
Montealegre S, Lebigot E, Debruge H, Romero N, Héron B, Gaignard P, Legendre A, Imbard A, Gobin S, Lacène E, Nusbaum P, Hubas A, Desguerre I, Servais A, Laforêt P, van Endert P, Authier FJ, Gitiaux C, de Lonlay P. FDX2 and ISCU Gene Variations Lead to Rhabdomyolysis With Distinct Severity and Iron Regulation. Neurol Genet 2022; 8:e648. [PMID: 35079622 PMCID: PMC8771665 DOI: 10.1212/nxg.0000000000000648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023]
Abstract
Background and Objectives To determine common clinical and biological traits in 2 individuals with
variants in ISCU and FDX2, displaying
severe and recurrent rhabdomyolyses and lactic acidosis. Methods We performed a clinical characterization of 2 distinct individuals with
biallelic ISCU or FDX2 variants from 2
separate families and a biological characterization with muscle and cells
from those patients. Results The individual with FDX2 variants was clinically more
affected than the individual with ISCU variants. Affected
FDX2 individual fibroblasts and myoblasts showed reduced oxygen consumption
rates and mitochondrial complex I and PDHc activities, associated with high
levels of blood FGF21. ISCU individual fibroblasts showed no oxidative
phosphorylation deficiency and moderate increase of blood FGF21 levels
relative to controls. The severity of the FDX2 individual was not due to
dysfunctional autophagy. Iron was excessively accumulated in ISCU-deficient
skeletal muscle, which was accompanied by a downregulation of
IRP1 and mitoferrin2 genes and an
upregulation of frataxin (FXN) gene expression. This
excessive iron accumulation was absent from FDX2 affected muscle and could
not be correlated with variable gene expression in muscle cells. Discussion We conclude that FDX2 and ISCU variants
result in a similar muscle phenotype, that differ in severity and skeletal
muscle iron accumulation. ISCU and FDX2 are not involved in mitochondrial
iron influx contrary to frataxin.
Collapse
Affiliation(s)
- Sebastian Montealegre
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Elise Lebigot
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Hugo Debruge
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Norma Romero
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Bénédicte Héron
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Pauline Gaignard
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Antoine Legendre
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Apolline Imbard
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Stéphanie Gobin
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Emmanuelle Lacène
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Patrick Nusbaum
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Arnaud Hubas
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Isabelle Desguerre
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Aude Servais
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Pascal Laforêt
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Peter van Endert
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - François Jérome Authier
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Cyril Gitiaux
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| | - Pascale de Lonlay
- Inserm U1151 (S.M., H.D., P.E., P.d.L.), Institut Necker Enfants-Malades, Paris; Reference Center of Inherited Metabolic Diseases (S.M., A.I., A.S., P.d.L.), Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Paris University, Filière G2M; Biochemistry Laboratory (E. Lebigot, P.G.), Filière G2M, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre; Sorbonne Universié (E. Lacène), UPMC, INSERM UMR974, Center for Research in Myology, Neuromuscular Morphology Unit, Myology Institute, AP-HP, East-Paris Reference Center of Neuromuscular Diseases, GHU Pitié-Salpêtrière; Neurology Unit (N.R., B.H.), Trousseau Hospital, APHP, Filière G2M; M3C-Necker (A.L.), Congenital and Pediatric Cardiology, Hôpital Universitaire Necker-Enfants Malades; Biochemistry Department (A.I.), Necker-Enfants-Malades University Hospital, APHP, Paris University; Genetics Department (S.G.), Necker-Enfants-Malades University Hospital, APHP; Genetics and Molecular Biology (P.N., A.H.), Laboratoire de Culture Cellulaire, Hôpital Cochin, Paris; Reference Center of Neuromuscular Diseases (I.D., C.G.), Necker-Enfants-Malades University Hospital, APHP, Filière Filnemus; Adult Nephrology & Transplantation (A.S.), Necker-Enfants-Malades University Hospital, APHP, Inserm U1163, Imagine Institute, Paris Descartes University; Department of Neurology (P.L.), Raymond-Poincaré Hospital, Garches, and Inserm U1179 Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux; and Reference Center for Neuromuscular Disorders (F.J.A., C.G.), Department de Pathologie, Henri Mondor Hospital, APHP, IMRB U955, Faculty of Medicine, Creteil, France
| |
Collapse
|
9
|
Jain A, Singh A, Maio N, Rouault TA. Assembly of the [4Fe-4S] cluster of NFU1 requires the coordinated donation of two [2Fe-2S] clusters from the scaffold proteins, ISCU2 and ISCA1. Hum Mol Genet 2021; 29:3165-3182. [PMID: 32776106 DOI: 10.1093/hmg/ddaa172] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/09/2020] [Accepted: 07/29/2020] [Indexed: 02/01/2023] Open
Abstract
NFU1, a late-acting iron-sulfur (Fe-S) cluster carrier protein, has a key role in the pathogenesis of the disease, multiple mitochondrial dysfunctions syndrome. In this work, using genetic and biochemical approaches, we identified the initial scaffold protein, mitochondrial ISCU (ISCU2) and the secondary carrier, ISCA1, as the direct donors of Fe-S clusters to mitochondrial NFU1, which appears to dimerize and reductively mediate the formation of a bridging [4Fe-4S] cluster, aided by ferredoxin 2. By monitoring the abundance of target proteins that acquire their Fe-S clusters from NFU1, we characterized the effects of several novel pathogenic NFU1 mutations. We observed that NFU1 directly interacts with each of the Fe-S cluster scaffold proteins known to ligate [2Fe-2S] clusters, ISCU2 and ISCA1, and we mapped the site of interaction to a conserved hydrophobic patch of residues situated at the end of the C-terminal alpha-helix of NFU1. Furthermore, we showed that NFU1 lost its ability to acquire its Fe-S cluster when mutagenized at the identified site of interaction with ISCU2 and ISCA1, which thereby adversely affected biochemical functions of proteins that are thought to acquire their Fe-S clusters directly from NFU1, such as lipoic acid synthase, which supports the Fe-S-dependent process of lipoylation of components of multiple key enzyme complexes, including pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase and the glycine cleavage complex.
Collapse
Affiliation(s)
- Anshika Jain
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anamika Singh
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nunziata Maio
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tracey A Rouault
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Sheng Y, Yang G, Casey K, Curry S, Oliver M, Han SM, Leeuwenburgh C, Xiao R. A novel role of the mitochondrial iron-sulfur cluster assembly protein ISCU-1/ISCU in longevity and stress response. GeroScience 2021; 43:691-707. [PMID: 33527323 PMCID: PMC8110660 DOI: 10.1007/s11357-021-00327-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/20/2021] [Indexed: 01/02/2023] Open
Abstract
As an ancient cellular co-factor ubiquitously present in all domains of life, nearly all iron-sulfur ([Fe-S]) clusters are assembled in the mitochondrion. Although multiple mitochondrion-derived signalings are known to be key players in longevity regulation, whether the mitochondrial [Fe-S] cluster assembly machinery modulates lifespan is previously unknown. Here, we find that ISCU-1, the C. elegans ortholog of the evolutionarily conserved iron-sulfur cluster (ISC) assembly machinery central protein ISCU, regulates longevity and stress response. Specifically, ISCU-1 accelerates aging in the intestine. Moreover, we identify the Nrf2 transcription factor SKN-1 and a nuclear hormone receptor NHR-49 as the downstream factors of ISCU-1. Lastly, a mitochondrial outer membrane protein phosphatase PGAM-5 appears to link ISCU-1 to SKN-1 and NHR-49 in lifespan regulation. Together, we have identified a novel function of mitochondrial ISC assembly machinery in longevity modulation and stress response.
Collapse
Affiliation(s)
- Yi Sheng
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Guang Yang
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Kaitlyn Casey
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Shayla Curry
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Mason Oliver
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Sung Min Han
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Rui Xiao
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA.
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA.
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
11
|
Barnett R, Westbury MV, Sandoval-Velasco M, Vieira FG, Jeon S, Zazula G, Martin MD, Ho SYW, Mather N, Gopalakrishnan S, Ramos-Madrigal J, de Manuel M, Zepeda-Mendoza ML, Antunes A, Baez AC, De Cahsan B, Larson G, O'Brien SJ, Eizirik E, Johnson WE, Koepfli KP, Wilting A, Fickel J, Dalén L, Lorenzen ED, Marques-Bonet T, Hansen AJ, Zhang G, Bhak J, Yamaguchi N, Gilbert MTP. Genomic Adaptations and Evolutionary History of the Extinct Scimitar-Toothed Cat, Homotherium latidens. Curr Biol 2020; 30:5018-5025.e5. [PMID: 33065008 PMCID: PMC7762822 DOI: 10.1016/j.cub.2020.09.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/10/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022]
Abstract
Homotherium was a genus of large-bodied scimitar-toothed cats, morphologically distinct from any extant felid species, that went extinct at the end of the Pleistocene [1-4]. They possessed large, saber-form serrated canine teeth, powerful forelimbs, a sloping back, and an enlarged optic bulb, all of which were key characteristics for predation on Pleistocene megafauna [5]. Previous mitochondrial DNA phylogenies suggested that it was a highly divergent sister lineage to all extant cat species [6-8]. However, mitochondrial phylogenies can be misled by hybridization [9], incomplete lineage sorting (ILS), or sex-biased dispersal patterns [10], which might be especially relevant for Homotherium since widespread mito-nuclear discrepancies have been uncovered in modern cats [10]. To examine the evolutionary history of Homotherium, we generated a ∼7x nuclear genome and a ∼38x exome from H. latidens using shotgun and target-capture sequencing approaches. Phylogenetic analyses reveal Homotherium as highly divergent (∼22.5 Ma) from living cat species, with no detectable signs of gene flow. Comparative genomic analyses found signatures of positive selection in several genes, including those involved in vision, cognitive function, and energy consumption, putatively consistent with diurnal activity, well-developed social behavior, and cursorial hunting [5]. Finally, we uncover relatively high levels of genetic diversity, suggesting that Homotherium may have been more abundant than the limited fossil record suggests [3, 4, 11-14]. Our findings complement and extend previous inferences from both the fossil record and initial molecular studies, enhancing our understanding of the evolution and ecology of this remarkable lineage.
Collapse
Affiliation(s)
- Ross Barnett
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark
| | - Michael V Westbury
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark.
| | - Marcela Sandoval-Velasco
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark
| | - Filipe Garrett Vieira
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark
| | - Sungwon Jeon
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Grant Zazula
- Yukon Palaeontology Program, Department of Tourism and Culture, Government of Yukon, PO Box 2703, Whitehorse, YT Y1A 2C6, Canada
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Niklas Mather
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Shyam Gopalakrishnan
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark; Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen 1352, Denmark
| | - Jazmín Ramos-Madrigal
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark; Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen 1352, Denmark
| | - Marc de Manuel
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, Barcelona 08003, Spain
| | - M Lisandra Zepeda-Mendoza
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark; School of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto 4450-208, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Aldo Carmona Baez
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark
| | - Binia De Cahsan
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK
| | - Stephen J O'Brien
- Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, 49 Kronverkskiy Pr., St. Petersburg 197101, Russia; Guy Harvey Oceanographic Center, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, 8000 North Ocean Drive. Ft Lauderdale, FL 33004, USA
| | - Eduardo Eizirik
- Laboratory of Genomics and Molecular Biology, Escola de Ciências da Saúde e da Vida, PUCRS, Porto Alegre, RS, Brazil; INCT Ecologia, Evolução e Conservação da Biodiversidade (INCT-EECBio), Goiânia, GO, Brazil; Instituto Pró-Carnívoros, Atibaia, SP, Brazil
| | - Warren E Johnson
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA 22630, USA; The Walter Reed Biosystematics Unit, Museum Support Center MRC-534, Smithsonian Institution, 4210 Silver Hill Rd., Suitland, MD 20746-2863, USA; Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Klaus-Peter Koepfli
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA 22630, USA
| | - Andreas Wilting
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, Berlin 10315, Germany
| | - Jörns Fickel
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, Berlin 10315, Germany; Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Potsdam 14476, Germany
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, Stockholm SE-10691, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, Stockholm 10405, Sweden
| | - Eline D Lorenzen
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark; Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen 1352, Denmark
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, Barcelona 08003, Spain; CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain; Institució Catalana de Recerca i Estudis Avançats, ICREA, Barcelona 08003, Spain; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Anders J Hansen
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen 1352, Denmark; Section for GeoGenetics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark
| | - Guojie Zhang
- BGI-Shenzhen, Shenzhen 518083, China; Section for Ecology and Evolution, Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jong Bhak
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Clinomics, Inc., Ulsan 44919, Republic of Korea; Personal Genomics Institute (PGI), Genome Research Foundation (GRF), Osong 28160, Republic of Korea
| | - Nobuyuki Yamaguchi
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - M Thomas P Gilbert
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark; Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway; Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen 1352, Denmark.
| |
Collapse
|
12
|
Zhang F, Zhang ZY, Cai MD, Li XX, Li YH, Lei Y, Yu XL. Effect of vitrification temperature and cryoprotectant concentrations on the mRNA transcriptome of bovine mature oocytes after vitrifying at immature stage. Theriogenology 2019; 148:225-235. [PMID: 31761539 DOI: 10.1016/j.theriogenology.2019.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 01/14/2023]
Abstract
The present study aimed to investigate the effect of vitrification temperature (VT) and cryoprotective agent concentrations (CPAs) on the mRNA transcriptome of bovine mature oocytes after vitrifying at immature stage. Cumulus oocyte complexes (COCs) were randomly divided into the following five groups: fresh oocytes (control), oocytes vitrified in liquid helium (LHe; -269 °C) with 5.6 M CPAs (LHe 5.6 M), oocytes vitrified in LHe with 6.6 M CPAs (LHe 6.6 M), oocytes vitrified in liquid nitrogen (LN; -196 °C) with 5.6 M CPAs (LN 5.6 M), and oocytes vitrified in LN with 6.6 M CPAs (LN 6.6 M). We performed two experiments in this study. In experiment 1, after vitrification and thawing, oocytes of vitrified and control groups were subjected to in vitro maturation (IVM), in vitro fertilization (IVF) and in vitro culture (IVC). The rates of normal morphology, maturation, cleavage, and blastocyst formation in LHe 5.6 M were higher than those in LN 5.6 M (P < 0.05). The rates of normal morphology and cleavage in LHe 6.6 M were higher than those in LN 6.6 M (P < 0.05). However, the maturation and blastocyst rates were similar (P > 0.05) between LHe 6.6 M and LN 6.6 M. The blastocyst rate of 13.31% in LHe 5.6 M was the highest among all vitrified groups (P < 0.05). In experiment 2, the mRNA transcriptome of each sample was analyzed by Smart-Seq4, and the differentially expressed genes (DEGs) were detected by edgeR (P ≤ 0.05; fold-change ≥ 2). A total of 505 DEGs (342 upregulated and 163 downregulated genes) were detected in LHe 5.6 M; 609 DEGs (493 upregulated and 116 downregulated genes) were detected in LHe 6.6 M; 218 DEGs (101 upregulated and 117 downregulated genes) were determined in LN 5.6 M; and 221 DEGs (104 upregulated and 117 downregulated genes) were detected in LN 6.6 M. LHe vitrification affected the mRNA transcriptome of bovine mature oocytes after vitrifying at immature stage mainly by upregulating gene expression. Decreased CPAs (5.6 M) reduced the effect of vitrification on mRNA transcriptome when LHe vitrification was used. Among the DEGs closely related to bovine oocytes, the genes possibly related to VT were ND2, MPV17L2, PIF1, LPIN1, IMP3, BRD1, DCTN3, DERA, ATP7B, NEK5, HVCN1, and MARK2. The gene that may be associated with CPAs is CC2D2A. Genes that may be affected by VT and CPAs included PGK1, SLC7A3, FITM2, NPM3, ISCU, CWC15, and PSAP.
Collapse
Affiliation(s)
- Fan Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zhi-Yang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Meng-Dan Cai
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiao-Xia Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ying-Hua Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ying Lei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xue-Li Yu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Henan Provincial Key Laboratory for Grass-Feeding Animal, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
13
|
Abstract
The general framework of pathways by which iron-sulfur (Fe-S) clusters are assembled in cells is well-known, but the cellular consequences of disruptions to that framework are not fully understood. Crooks et al. report a novel cellular system that creates an acute Fe-S cluster deficiency, using mutants of ISCU, the main scaffold protein for Fe-S cluster assembly. Surprisingly, the resultant metabolic reprogramming leads to the accumulation of lipid droplets, a situation encountered in many poorly understood pathological conditions, highlighting unanticipated links between Fe-S assembly machinery and human disease.
Collapse
Affiliation(s)
- Olivier Berteau
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| |
Collapse
|
14
|
Abstract
Mitochondria are an iconic distinguishing feature of eukaryotic cells. Mitochondria encompass an active organellar network that fuses, divides, and directs a myriad of vital biological functions, including energy metabolism, cell death regulation, and innate immune signaling in different tissues. Another crucial and often underappreciated function of these dynamic organelles is their central role in the metabolism of the most abundant and biologically versatile transition metals in mammalian cells, iron. In recent years, cellular and animal models of mitochondrial iron dysfunction have provided vital information in identifying new proteins that have elucidated the pathways involved in mitochondrial homeostasis and iron metabolism. Specific signatures of mitochondrial iron dysregulation that are associated with disease pathogenesis and/or progression are becoming increasingly important. Understanding the molecular mechanisms regulating mitochondrial iron pathways will help better define the role of this important metal in mitochondrial function and in human health and disease.
Collapse
Affiliation(s)
- Diane M Ward
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| |
Collapse
|
15
|
Rawcliffe DFR, Österman L, Nordin A, Holmberg M. PTBP1 acts as a dominant repressor of the aberrant tissue-specific splicing of ISCU in hereditary myopathy with lactic acidosis. Mol Genet Genomic Med 2018; 6:887-897. [PMID: 30209894 PMCID: PMC6305642 DOI: 10.1002/mgg3.413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/23/2018] [Accepted: 04/17/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Hereditary myopathy with lactic acidosis (HML) is an autosomal recessive disease caused by an intron mutation in the iron-sulfur cluster assembly (ISCU) gene. The mutation results in aberrant splicing, where part of the intron is retained in the final mRNA transcript, giving rise to a truncated nonfunctional ISCU protein. Using an ISCU mini-gene system, we have previously shown that PTBP1 can act as a repressor of the mis-splicing of ISCU, where overexpression of PTBP1 resulted in a decrease of the incorrect splicing. In this study, we wanted to, in more detail, analyze the role of PTBP1 in the regulation of endogenous ISCU mis-splicing. METHODS Overexpression and knockdown of PTBP1 was performed in myoblasts from two HML patients and a healthy control. Quantification of ISCU mis-splicing was done by qRTPCR. Biotinylated ISCU RNA, representing wildtype and mutant intron sequence, was used in a pull-down assay with nuclear extracts from myoblasts. Levels of PTBP1 in human cell lines and mice tissues were analyzed by qRTPCR and western blot. RESULTS PTBP1 overexpression in HML patient myoblasts resulted in a substantial decrease of ISCU mis-splicing while knockdown of PTBP1 resulted in a drastic increase. The effect could be observed in both patient and control myoblasts. We could also show that PTBP1 interacts with both the mutant and wild-type ISCU intron sequence, but with a higher affinity to the mutant sequence. Furthermore, low levels of PTBP1 among examined mouse tissues correlated with high levels of incorrect splicing of ISCU. CONCLUSION Our results show that PTBP1 acts as a dominant repressor of ISCU mis-splicing. We also show an inverse correlation between the levels of PTBP1 and ISCU mis-splicing, suggesting that the high level of mis-splicing in the skeletal muscle is primarily due to the low levels of PTBP1.
Collapse
Affiliation(s)
- Denise F. R. Rawcliffe
- Unit for Medical and Clinical GeneticsDepartment of Medical BiosciencesUmeå UniversityUmeåSweden
| | - Lennart Österman
- Unit for Medical and Clinical GeneticsDepartment of Medical BiosciencesUmeå UniversityUmeåSweden
| | - Angelica Nordin
- Unit for Medical and Clinical GeneticsDepartment of Medical BiosciencesUmeå UniversityUmeåSweden
| | - Monica Holmberg
- Unit for Medical and Clinical GeneticsDepartment of Medical BiosciencesUmeå UniversityUmeåSweden
| |
Collapse
|
16
|
Gurgel-Giannetti J, Lynch DS, de Paiva ARB, Lucato LT, Yamamoto G, Thomsen C, Basu S, Freua F, Giannetti AV, de Assis BDR, Ribeiro MDO, Barcelos I, Sayão Souza K, Monti F, Melo US, Amorim S, Silva LGL, Macedo-Souza LI, Vianna-Morgante AM, Hirano M, Van der Knaap MS, Lill R, Vainzof M, Oldfors A, Houlden H, Kok F. A novel complex neurological phenotype due to a homozygous mutation in FDX2. Brain 2018; 141:2289-2298. [PMID: 30010796 PMCID: PMC6061701 DOI: 10.1093/brain/awy172] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/30/2018] [Accepted: 04/26/2018] [Indexed: 11/14/2022] Open
Abstract
Defects in iron-sulphur [Fe-S] cluster biogenesis are increasingly recognized as causing neurological disease. Mutations in a number of genes that encode proteins involved in mitochondrial [Fe-S] protein assembly lead to complex neurological phenotypes. One class of proteins essential in the early cluster assembly are ferredoxins. FDX2 is ubiquitously expressed and is essential in the de novo formation of [2Fe-2S] clusters in humans. We describe and genetically define a novel complex neurological syndrome identified in two Brazilian families, with a novel homozygous mutation in FDX2. Patients were clinically evaluated, underwent MRI, nerve conduction studies, EMG and muscle biopsy. To define the genetic aetiology, a combination of homozygosity mapping and whole exome sequencing was performed. We identified six patients from two apparently unrelated families with autosomal recessive inheritance of a complex neurological phenotype involving optic atrophy and nystagmus developing by age 3, followed by myopathy and recurrent episodes of cramps, myalgia and muscle weakness in the first or second decade of life. Sensory-motor axonal neuropathy led to progressive distal weakness. MRI disclosed a reversible or partially reversible leukoencephalopathy. Muscle biopsy demonstrated an unusual pattern of regional succinate dehydrogenase and cytochrome c oxidase deficiency with iron accumulation. The phenotype was mapped in both families to the same homozygous missense mutation in FDX2 (c.431C > T, p.P144L). The deleterious effect of the mutation was validated by real-time reverse transcription polymerase chain reaction and western blot analysis, which demonstrated normal expression of FDX2 mRNA but severely reduced expression of FDX2 protein in muscle tissue. This study describes a novel complex neurological phenotype with unusual MRI and muscle biopsy features, conclusively mapped to a mutation in FDX2, which encodes a ubiquitously expressed mitochondrial ferredoxin essential for early [Fe-S] cluster biogenesis.
Collapse
Affiliation(s)
| | - David S Lynch
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Leonard Wolfson Experimental Neurology Centre, UCL Institute of Neurology, London, UK
| | | | - Leandro Tavares Lucato
- Neuroradiology Section, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil
| | - Guilherme Yamamoto
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Christer Thomsen
- Department of Pathology and Genetics, Sahlgrenska University Hospital, University of Gothenburg, Sweden
| | - Somsuvro Basu
- Institute for Cytobiology and Cytopathology, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany
| | - Fernando Freua
- Neurogenetics Unit, Neurology Department, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil
| | | | - Bruno Della Ripa de Assis
- Neurogenetics Unit, Neurology Department, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil
| | - Mara Dell Ospedale Ribeiro
- Neurogenetics Unit, Neurology Department, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil
| | - Isabella Barcelos
- Neurogenetics Unit, Neurology Department, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil
| | - Katiane Sayão Souza
- Neurogenetics Unit, Neurology Department, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Monti
- Neurogenetics Unit, Neurology Department, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil
| | - Uirá Souto Melo
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Simone Amorim
- Neurogenetics Unit, Neurology Department, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil
| | - Leonardo G L Silva
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Lúcia Inês Macedo-Souza
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Angela M Vianna-Morgante
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Michio Hirano
- Department of Neurology, Columbia University Medical Center, New York, USA
| | - Marjo S Van der Knaap
- Department of Child Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | - Roland Lill
- Institute for Cytobiology and Cytopathology, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany
- LOEWE Center for Synthetic Microbiology, SynMikro, Hans-Meerwein-Strasse, 35043 Marburg, Germany
| | - Mariz Vainzof
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Anders Oldfors
- Department of Pathology and Genetics, Sahlgrenska University Hospital, University of Gothenburg, Sweden
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Leonard Wolfson Experimental Neurology Centre, UCL Institute of Neurology, London, UK
| | - Fernando Kok
- Neurogenetics Unit, Neurology Department, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Clinical and genetic aspects of defects in the mitochondrial iron-sulfur cluster synthesis pathway. J Biol Inorg Chem 2018; 23:495-506. [PMID: 29623423 PMCID: PMC6006192 DOI: 10.1007/s00775-018-1550-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
Abstract
Iron-sulfur clusters are evolutionarily conserved biological structures which play an important role as cofactor for multiple enzymes in eukaryotic cells. The biosynthesis pathways of the iron-sulfur clusters are located in the mitochondria and in the cytosol. The mitochondrial iron-sulfur cluster biosynthesis pathway (ISC) can be divided into at least twenty enzymatic steps. Since the description of frataxin deficiency as the cause of Friedreich's ataxia, multiple other deficiencies in ISC biosynthesis pathway have been reported. In this paper, an overview is given of the clinical, biochemical and genetic aspects reported in humans affected by a defect in iron-sulfur cluster biosynthesis.
Collapse
|
18
|
Crooks DR, Maio N, Lane AN, Jarnik M, Higashi RM, Haller RG, Yang Y, Fan TWM, Linehan WM, Rouault TA. Acute loss of iron-sulfur clusters results in metabolic reprogramming and generation of lipid droplets in mammalian cells. J Biol Chem 2018. [PMID: 29523684 DOI: 10.1074/jbc.ra118.001885] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are ancient cofactors in cells and participate in diverse biochemical functions, including electron transfer and enzymatic catalysis. Although cell lines derived from individuals carrying mutations in the Fe-S cluster biogenesis pathway or siRNA-mediated knockdown of the Fe-S assembly components provide excellent models for investigating Fe-S cluster formation in mammalian cells, these experimental strategies focus on the consequences of prolonged impairment of Fe-S assembly. Here, we constructed and expressed dominant-negative variants of the primary Fe-S biogenesis scaffold protein iron-sulfur cluster assembly enzyme 2 (ISCU2) in human HEK293 cells. This approach enabled us to study the early metabolic reprogramming associated with loss of Fe-S-containing proteins in several major cellular compartments. Using multiple metabolomics platforms, we observed a ∼12-fold increase in intracellular citrate content in Fe-S-deficient cells, a surge that was due to loss of aconitase activity. The excess citrate was generated from glucose-derived acetyl-CoA, and global analysis of cellular lipids revealed that fatty acid biosynthesis increased markedly relative to cellular proliferation rates in Fe-S-deficient cells. We also observed intracellular lipid droplet accumulation in both acutely Fe-S-deficient cells and iron-starved cells. We conclude that deficient Fe-S biogenesis and acute iron deficiency rapidly increase cellular citrate concentrations, leading to fatty acid synthesis and cytosolic lipid droplet formation. Our findings uncover a potential cause of cellular steatosis in nonadipose tissues.
Collapse
Affiliation(s)
- Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Nunziata Maio
- Section on Human Iron Metabolism, National Institutes of Health, Bethesda, Maryland 20892
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536
| | - Michal Jarnik
- Section on Cell Biology and Metabolism, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536
| | - Ronald G Haller
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Veterans Affairs North Texas Medical Center, Dallas, Texas 75216; Neuromuscular Center, Institute for Exercise and Environmental Medicine, Dallas, Texas 75231
| | - Ye Yang
- Urologic Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Tracey A Rouault
- Section on Human Iron Metabolism, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
19
|
Legati A, Reyes A, Ceccatelli Berti C, Stehling O, Marchet S, Lamperti C, Ferrari A, Robinson AJ, Mühlenhoff U, Lill R, Zeviani M, Goffrini P, Ghezzi D. A novel de novo dominant mutation in ISCU associated with mitochondrial myopathy. J Med Genet 2017; 54:815-824. [PMID: 29079705 PMCID: PMC5740555 DOI: 10.1136/jmedgenet-2017-104822] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/16/2017] [Accepted: 08/22/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Hereditary myopathy with lactic acidosis and myopathy with deficiency of succinate dehydrogenase and aconitase are variants of a recessive disorder characterised by childhood-onset early fatigue, dyspnoea and palpitations on trivial exercise. The disease is non-progressive, but life-threatening episodes of widespread weakness, metabolic acidosis and rhabdomyolysis may occur. So far, this disease has been molecularly defined only in Swedish patients, all homozygous for a deep intronic splicing affecting mutation in ISCU encoding a scaffold protein for the assembly of iron-sulfur (Fe-S) clusters. A single Scandinavian family was identified with a different mutation, a missense change in compound heterozygosity with the common intronic mutation. The aim of the study was to identify the genetic defect in our proband. METHODS A next-generation sequencing (NGS) approach was carried out on an Italian male who presented in childhood with ptosis, severe muscle weakness and exercise intolerance. His disease was slowly progressive, with partial recovery between episodes. Patient's specimens and yeast models were investigated. RESULTS Histochemical and biochemical analyses on muscle biopsy showed multiple defects affecting mitochondrial respiratory chain complexes. We identified a single heterozygous mutation p.Gly96Val in ISCU, which was absent in DNA from his parents indicating a possible de novo dominant effect in the patient. Patient fibroblasts showed normal levels of ISCU protein and a few variably affected Fe-S cluster-dependent enzymes. Yeast studies confirmed both pathogenicity and dominance of the identified missense mutation. CONCLUSION We describe the first heterozygous dominant mutation in ISCU which results in a phenotype reminiscent of the recessive disease previously reported.
Collapse
Affiliation(s)
- Andrea Legati
- Molecular Neurogenetics Unit, Foundation IRCCS Neurological Institute Besta, Milan, Italy
| | - Aurelio Reyes
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Camilla Ceccatelli Berti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Oliver Stehling
- Department of Medicine, Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany
| | - Silvia Marchet
- Molecular Neurogenetics Unit, Foundation IRCCS Neurological Institute Besta, Milan, Italy
| | - Costanza Lamperti
- Molecular Neurogenetics Unit, Foundation IRCCS Neurological Institute Besta, Milan, Italy
| | - Alberto Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Alan J Robinson
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Ulrich Mühlenhoff
- Department of Medicine, Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany
| | - Roland Lill
- Department of Medicine, Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany,Unit of Metabolism, LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Marburg, Germany
| | - Massimo Zeviani
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Paola Goffrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Daniele Ghezzi
- Molecular Neurogenetics Unit, Foundation IRCCS Neurological Institute Besta, Milan, Italy
| |
Collapse
|
20
|
Dutkiewicz R, Nowak M. Molecular chaperones involved in mitochondrial iron-sulfur protein biogenesis. J Biol Inorg Chem 2017; 23:569-579. [PMID: 29124426 PMCID: PMC6006194 DOI: 10.1007/s00775-017-1504-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/28/2017] [Indexed: 12/16/2022]
Abstract
Iron-sulfur (FeS) clusters are prosthetic groups critical for the function of many proteins in all domains of life. FeS proteins function in processes ranging from oxidative phosphorylation and cofactor biosyntheses to DNA/RNA metabolism and regulation of gene expression. In eukaryotic cells, mitochondria play a central role in the process of FeS biogenesis and support maturation of FeS proteins localized within mitochondria and in other cellular compartments. In humans, defects in mitochondrial FeS cluster biogenesis lead to numerous pathologies, which are often fatal. The generation of FeS clusters in mitochondria is a complex process. The [2Fe-2S] cluster is first assembled on a dedicated scaffold protein (Isu1) by the action of protein factors that interact with Isu1 to form the "assembly complex". Next, the FeS cluster is transferred onto a recipient apo-protein. Genetic and biochemical evidence implicates participation of a specialized J-protein co-chaperone Jac1 and its mitochondrial (mt)Hsp70 chaperone partner, and the glutaredoxin Grx5 in the FeS cluster transfer process. Finally, various specialized ISC components assist in the generation of [4Fe-4S] clusters and cluster insertion into specific target apoproteins. Although a framework of protein components that are involved in the mitochondrial FeS cluster biogenesis has been established based on genetic and biochemical studies, detailed molecular mechanisms involved in this important and medically relevant process are not well understood. This review summarizes our molecular knowledge on chaperone proteins' functions during the FeS protein biogenesis.
Collapse
Affiliation(s)
- Rafal Dutkiewicz
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdańsk, Poland.
| | - Malgorzata Nowak
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdańsk, Poland
| |
Collapse
|
21
|
|
22
|
Holmes-Hampton GP, Crooks DR, Haller RG, Guo S, Freier SM, Monia BP, Rouault TA. Use of antisense oligonucleotides to correct the splicing error in ISCU myopathy patient cell lines. Hum Mol Genet 2017; 25:5178-5187. [PMID: 28007899 DOI: 10.1093/hmg/ddw338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/30/2016] [Indexed: 11/12/2022] Open
Abstract
ISCU myopathy is an inherited disease that primarily affects individuals of northern Swedish descent who share a single point mutation in the fourth intron of the ISCU gene. The current study shows correction of specific phenotypes associated with disease following treatment with an antisense oligonucleotide (ASO) targeted to the site of the mutation. We have shown that ASO treatment diminished aberrant splicing and increased ISCU protein levels in both patient fibroblasts and patient myotubes in a concentration dependent fashion. Upon ASO treatment, levels of SDHB in patient myotubular cell lines increased to levels observed in control myotubular cell lines. Additionally, we have shown that both patient fibroblast and myotubular cell lines displayed an increase in complex II activity with a concomitant decrease in succinate levels in patient myotubular cell lines after ASO treatment. Mitochondrial and cytosolic aconitase activities increased significantly following ASO treatment in patient myotubes. The current study suggests that ASO treatment may serve as a viable approach to correcting ISCU myopathy in patients.
Collapse
Affiliation(s)
- Gregory P Holmes-Hampton
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ronald G Haller
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA, Neuromuscular Center, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX 75231, USA
| | - Shuling Guo
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Susan M Freier
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Brett P Monia
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| |
Collapse
|
23
|
Tort F, Ferrer-Cortes X, Ribes A. Differential diagnosis of lipoic acid synthesis defects. J Inherit Metab Dis 2016; 39:781-793. [PMID: 27586888 DOI: 10.1007/s10545-016-9975-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 01/16/2023]
Abstract
Lipoic acid (LA) is an essential cofactor required for the activity of five multienzymatic complexes that play a central role in the mitochondrial energy metabolism: four 2-oxoacid dehydrogenase complexes [pyruvate dehydrogenase (PDH), branched-chain ketoacid dehydrogenase (BCKDH), 2-ketoglutarate dehydrogenase (2-KGDH), and 2-oxoadipate dehydrogenase (2-OADH)] and the glycine cleavage system (GCS). LA is synthesized in a complex multistep process that requires appropriate function of the mitochondrial fatty acid synthesis (mtFASII) and the biogenesis of iron-sulphur (Fe-S) clusters. Defects in the biosynthesis of LA have been reported to be associated with multiple and severe defects of the mitochondrial energy metabolism. In recent years, disease-causing mutations in genes encoding for proteins involved in LA metabolism have been reported: NFU1, BOLA3, IBA57, LIAS, GLRX5, LIPT1, ISCA2, and LIPT2. These studies represented important progress in understanding the pathophysiology and molecular bases underlying these disorders. Here we review current knowledge regarding involvement of LA synthesis defects in human diseases with special emphasis on the diagnostic strategies for these disorders. The clinical and biochemical characteristics of patients with LA synthesis defects are discussed and a workup for the differential diagnosis proposed.
Collapse
Affiliation(s)
- Frederic Tort
- Secció d'Errors Congènits del Metabolisme -IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Edifici Helios III, planta baixa, C/Mejía Lequerica s/n, 08028, Barcelona, Spain.
| | - Xènia Ferrer-Cortes
- Secció d'Errors Congènits del Metabolisme -IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Edifici Helios III, planta baixa, C/Mejía Lequerica s/n, 08028, Barcelona, Spain
| | - Antonia Ribes
- Secció d'Errors Congènits del Metabolisme -IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Edifici Helios III, planta baixa, C/Mejía Lequerica s/n, 08028, Barcelona, Spain
| |
Collapse
|
24
|
The High Level of Aberrant Splicing of ISCU in Slow-Twitch Muscle May Involve the Splicing Factor SRSF3. PLoS One 2016; 11:e0165453. [PMID: 27783661 PMCID: PMC5081167 DOI: 10.1371/journal.pone.0165453] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 10/12/2016] [Indexed: 01/08/2023] Open
Abstract
Hereditary myopathy with lactic acidosis (HML) is an autosomal recessive disease caused by an intronic one-base mutation in the iron-sulfur cluster assembly (ISCU) gene, resulting in aberrant splicing. The incorrectly spliced transcripts contain a 100 or 86 bp intron sequence encoding a non-functional ISCU protein, which leads to defects in several Fe-S containing proteins in the respiratory chain and the TCA cycle. The symptoms in HML are restricted to skeletal muscle, and it has been proposed that this effect is due to higher levels of incorrectly spliced ISCU in skeletal muscle compared with other energy-demanding tissues. In this study, we confirm that skeletal muscle contains the highest levels of incorrect ISCU splice variants compared with heart, brain, liver and kidney using a transgenic mouse model expressing human HML mutated ISCU. We also show that incorrect splicing occurs to a significantly higher extent in the slow-twitch soleus muscle compared with the gastrocnemius and quadriceps. The splicing factor serine/arginine-rich splicing factor 3 (SRSF3) was identified as a potential candidate for the slow fiber specific regulation of ISCU splicing since this factor was expressed at higher levels in the soleus compared to the gastrocnemius and quadriceps. We identified an interaction between SRSF3 and the ISCU transcript, and by overexpressing SRSF3 in human myoblasts we observed increased levels of incorrectly spliced ISCU, while knockdown of SRSF3 resulted in decreased levels. We therefore suggest that SRSF3 may participate in the regulation of the incorrect splicing of mutant ISCU and may, at least partially, explain the muscle-specific symptoms of HML.
Collapse
|
25
|
Ferrer-Cortès X, Narbona J, Bujan N, Matalonga L, Del Toro M, Arranz JA, Riudor E, Garcia-Cazorla A, Jou C, O'Callaghan M, Pineda M, Montero R, Arias A, García-Villoria J, Alston CL, Taylor RW, Briones P, Ribes A, Tort F. A leaky splicing mutation in NFU1 is associated with a particular biochemical phenotype. Consequences for the diagnosis. Mitochondrion 2015; 26:72-80. [PMID: 26688339 DOI: 10.1016/j.mito.2015.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/13/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022]
Abstract
Mutations in NFU1 were recently identified in patients with fatal encephalopathy. NFU1 is an iron-sulfur cluster protein necessary for the activity of the mitochondrial respiratory chain complexes I-II and the synthesis of lipoic acid. We report two NFU1 compound heterozygous individuals with normal complex I and lipoic acid-dependent enzymatic activities and low, but detectable, levels of lipoylated proteins. We demonstrated a leaky splicing regulation due to a splice site mutation (c.545+5G>A) that produces small amounts of wild type NFU1 mRNA that might result in enough protein to partially lipoylate and restore the activity of lipoic acid-dependent enzymes and the assembly and activity of complex I. These results allowed us to gain insights into the molecular basis underlying this disease and should be considered for the diagnosis of NFU1 patients.
Collapse
Affiliation(s)
| | - Juan Narbona
- Clinica Universitária de Navarra, Facultad Medicina, Pamplona, Spain
| | - Núria Bujan
- Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | | | | | | | | | | | - Cristina Jou
- Hospital Sant Joan de Deu, CIBERER, Barcelona, Spain
| | | | - Mercé Pineda
- Hospital Sant Joan de Deu, CIBERER, Barcelona, Spain
| | | | - Angela Arias
- Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | | | - Charlotte L Alston
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Paz Briones
- Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain; CSIC, Barcelona, Spain
| | - Antonia Ribes
- Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain.
| | - Frederic Tort
- Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain.
| |
Collapse
|
26
|
Tian L, Chen J, Chen M, Gui C, Zhong CQ, Hong L, Xie C, Wu X, Yang L, Ahmad V, Han J. The p38 pathway regulates oxidative stress tolerance by phosphorylation of mitochondrial protein IscU. J Biol Chem 2014; 289:31856-31865. [PMID: 25204651 DOI: 10.1074/jbc.m114.589093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The p38 pathway is an evolutionarily conserved signaling pathway that responds to a variety of stresses. However, the underlying mechanisms are largely unknown. In the present study, we demonstrate that p38b is a major p38 MAPK involved in the regulation of oxidative stress tolerance in addition to p38a and p38c in Drosophila. We further show the importance of MK2 as a p38-activated downstream kinase in resistance to oxidative stresses. Furthermore, we identified the iron-sulfur cluster scaffold protein IscU as a new substrate of MK2 both in Drosophila cells and in mammalian cells. These results imply a new mechanistic connection between the p38 pathway and mitochondria iron-sulfur clusters.
Collapse
Affiliation(s)
- Lili Tian
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Jianming Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen, Fujian 361005, China, and.
| | - Mingliang Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen, Fujian 361005, China, and
| | - Chloe Gui
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Chuan-Qi Zhong
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Lixin Hong
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiurong Wu
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Lirong Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen, Fujian 361005, China, and
| | - Vakil Ahmad
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
27
|
Stehling O, Wilbrecht C, Lill R. Mitochondrial iron-sulfur protein biogenesis and human disease. Biochimie 2014; 100:61-77. [PMID: 24462711 DOI: 10.1016/j.biochi.2014.01.010] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/13/2014] [Indexed: 12/29/2022]
Abstract
Work during the past 14 years has shown that mitochondria are the primary site for the biosynthesis of iron-sulfur (Fe/S) clusters. In fact, it is this process that renders mitochondria essential for viability of virtually all eukaryotes, because they participate in the synthesis of the Fe/S clusters of key nuclear and cytosolic proteins such as DNA polymerases, DNA helicases, and ABCE1 (Rli1), an ATPase involved in protein synthesis. As a consequence, mitochondrial function is crucial for nuclear DNA synthesis and repair, ribosomal protein synthesis, and numerous other extra-mitochondrial pathways including nucleotide metabolism and cellular iron regulation. Within mitochondria, the synthesis of Fe/S clusters and their insertion into apoproteins is assisted by 17 proteins forming the ISC (iron-sulfur cluster) assembly machinery. Biogenesis of mitochondrial Fe/S proteins can be dissected into three main steps: First, a Fe/S cluster is generated de novo on a scaffold protein. Second, the Fe/S cluster is dislocated from the scaffold and transiently bound to transfer proteins. Third, the latter components, together with specific ISC targeting factors insert the Fe/S cluster into client apoproteins. Disturbances of the first two steps impair the maturation of extra-mitochondrial Fe/S proteins and affect cellular and systemic iron homeostasis. In line with the essential function of mitochondria, genetic mutations in a number of ISC genes lead to severe neurological, hematological and metabolic diseases, often with a fatal outcome in early childhood. In this review we briefly summarize our current functional knowledge on the ISC assembly machinery, and we present a comprehensive overview of the various Fe/S protein assembly diseases.
Collapse
Affiliation(s)
- Oliver Stehling
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | - Claudia Wilbrecht
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany; Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany; LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Str., 35043 Marburg, Germany.
| |
Collapse
|
28
|
Beilschmidt LK, Puccio HM. Mammalian Fe-S cluster biogenesis and its implication in disease. Biochimie 2014; 100:48-60. [PMID: 24440636 DOI: 10.1016/j.biochi.2014.01.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Iron-sulfur (Fe-S) clusters are inorganic cofactors that are ubiquitous and essential. Due to their chemical versatility, Fe-S clusters are implicated in a wide range of protein functions including mitochondrial respiration and DNA repair. Composed of iron and sulfur, they are sensible to oxygen and their biogenesis requires a highly conserved protein machinery that facilitates assembly of the cluster as well as its insertion into apoproteins. Mitochondria are the central cellular compartment for Fe-S cluster biogenesis in eukaryotic cells and the importance of proper function of this biogenesis for life is highlighted by a constantly increasing number of human genetic diseases that are associated with dysfunction of this Fe-S cluster biogenesis pathway. Although these disorders are rare and appear dissimilar, common aspects are found among them. This review will give an overview on what is known on mammalian Fe-S cluster biogenesis today, by putting it into the context of what is known from studies from lower model organisms, and focuses on the associated diseases, by drawing attention to the respective mutations. Finally, it outlines the importance of adequate cellular and murine models to uncover not only each protein function, but to resolve their role and requirement throughout the mammalian organism.
Collapse
Affiliation(s)
- Lena K Beilschmidt
- Translational Medicine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Illkirch, France; Inserm, U596, Illkirch, France; CNRS, UMR7104, Illkirch, France; Université de Strasbourg, Strasbourg, France; Collège de France, Chaire de génétique humaine, Illkirch, France
| | - Hélène M Puccio
- Translational Medicine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Illkirch, France; Inserm, U596, Illkirch, France; CNRS, UMR7104, Illkirch, France; Université de Strasbourg, Strasbourg, France; Collège de France, Chaire de génétique humaine, Illkirch, France.
| |
Collapse
|
29
|
Spiegel R, Saada A, Halvardson J, Soiferman D, Shaag A, Edvardson S, Horovitz Y, Khayat M, Shalev SA, Feuk L, Elpeleg O. Deleterious mutation in FDX1L gene is associated with a novel mitochondrial muscle myopathy. Eur J Hum Genet 2013; 22:902-6. [PMID: 24281368 DOI: 10.1038/ejhg.2013.269] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 10/04/2013] [Accepted: 10/25/2013] [Indexed: 11/09/2022] Open
Abstract
Isolated metabolic myopathies encompass a heterogeneous group of disorders, with mitochondrial myopathies being a subgroup, with depleted skeletal muscle energy production manifesting either by recurrent episodes of myoglobinuria or progressive muscle weakness. In this study, we investigated the genetic cause of a patient from a consanguineous family who presented with adolescent onset autosomal recessive mitochondrial myopathy. Analysis of enzyme activities of the five respiratory chain complexes in our patients' skeletal muscle showed severely impaired activities of iron sulfur (Fe-S)-dependent complexes I, II and III and mitochondrial aconitase. We employed exome sequencing combined with homozygosity mapping to identify a homozygous mutation, c.1A>T, in the FDX1L gene, which encodes the mitochondrial ferredoxin 2 (Fdx2) protein. The mutation disrupts the ATG initiation translation site resulting in severe reduction of Fdx2 content in the patient muscle and fibroblasts mitochondria. Fdx2 is the second component of the Fe-S cluster biogenesis machinery, the first being IscU that is associated with isolated mitochondrial myopathy. We suggest adding genetic analysis of FDX1L in cases of mitochondrial myopathy especially when associated with reduced activity of the respiratory chain complexes I, II and III.
Collapse
Affiliation(s)
- Ronen Spiegel
- 1] Department of Pediatric A', Emek Medical Center, Afula, Rappaport School of Medicine, Technion, Haifa, Israel [2] Genetic Institute, Emek Medical Center, Afula, Rappaport School of Medicine, Technion, Haifa, Israel
| | - Ann Saada
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Jonatan Halvardson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Devorah Soiferman
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Avraham Shaag
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Simon Edvardson
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Yoseph Horovitz
- Department of Pediatric A', Emek Medical Center, Afula, Rappaport School of Medicine, Technion, Haifa, Israel
| | - Morad Khayat
- Genetic Institute, Emek Medical Center, Afula, Rappaport School of Medicine, Technion, Haifa, Israel
| | - Stavit A Shalev
- Genetic Institute, Emek Medical Center, Afula, Rappaport School of Medicine, Technion, Haifa, Israel
| | - Lars Feuk
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
30
|
Crooks DR, Natarajan TG, Jeong SY, Chen C, Park SY, Huang H, Ghosh MC, Tong WH, Haller RG, Wu C, Rouault TA. Elevated FGF21 secretion, PGC-1α and ketogenic enzyme expression are hallmarks of iron-sulfur cluster depletion in human skeletal muscle. Hum Mol Genet 2013; 23:24-39. [PMID: 23943793 DOI: 10.1093/hmg/ddt393] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are ancient enzyme cofactors found in virtually all life forms. We evaluated the physiological effects of chronic Fe-S cluster deficiency in human skeletal muscle, a tissue that relies heavily on Fe-S cluster-mediated aerobic energy metabolism. Despite greatly decreased oxidative capacity, muscle tissue from patients deficient in the Fe-S cluster scaffold protein ISCU showed a predominance of type I oxidative muscle fibers and higher capillary density, enhanced expression of transcriptional co-activator PGC-1α and increased mitochondrial fatty acid oxidation genes. These Fe-S cluster-deficient muscles showed a dramatic up-regulation of the ketogenic enzyme HMGCS2 and the secreted protein FGF21 (fibroblast growth factor 21). Enhanced muscle FGF21 expression was reflected by elevated circulating FGF21 levels in the patients, and robust FGF21 secretion could be recapitulated by respiratory chain inhibition in cultured myotubes. Our findings reveal that mitochondrial energy starvation elicits a coordinated response in Fe-S-deficient skeletal muscle that is reflected systemically by increased plasma FGF21 levels.
Collapse
Affiliation(s)
- Daniel R Crooks
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
La P, Yang G, Dennery PA. Mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation stabilizes ISCU protein: implications for iron metabolism. J Biol Chem 2013; 288:12901-9. [PMID: 23508953 DOI: 10.1074/jbc.m112.424499] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The scaffold protein ISCU facilitates the assembly of iron-sulfur clusters (ISCs), which are essential cofactors for many vital metabolic processes. The mTOR pathways are central to nutrient and energy-sensing networks. Here, we demonstrate that mTORC1 associates with ISCU and phosphorylates ISCU at serine 14. This phosphorylation stabilized ISCU protein. Insufficiency of ISCU triggered by mTORC1 inhibition prevented ISC assembly. Sustained ISCU protein levels enhanced by mTORC1 sensitized TSC2-null cells to iron deprivation due to constitutive ISC biogenesis-triggered iron demand, which outstrips supply. We conclude that the mTORC1 pathway serves to modulate iron metabolism and homeostasis, and we speculate that iron deprivation may be an adjunct in the treatment of cancers characterized by constitutive mTORC1 activation.
Collapse
Affiliation(s)
- Ping La
- Division of Neonatology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
32
|
Abstract
Transition metals are frequently used as cofactors for enzymes and oxygen-carrying proteins that take advantage of their propensity to gain and lose single electrons. Metals are particularly important in mitochondria, where they play essential roles in the production of ATP and detoxification of reactive oxygen species. At the same time, transition metals (particularly Fe and Cu) can promote the formation of harmful radicals, necessitating meticulous control of metal concentration and subcellular compartmentalization. We summarize our current understanding of Fe and Cu in mammalian mitochondrial biology and discuss human diseases associated with aberrations in mitochondrial metal homeostasis.
Collapse
|
33
|
Crooks DR, Jeong SY, Tong WH, Ghosh MC, Olivierre H, Haller RG, Rouault TA. Tissue specificity of a human mitochondrial disease: differentiation-enhanced mis-splicing of the Fe-S scaffold gene ISCU renders patient cells more sensitive to oxidative stress in ISCU myopathy. J Biol Chem 2012; 287:40119-30. [PMID: 23035118 DOI: 10.1074/jbc.m112.418889] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND ISCU myopathy is a disease caused by muscle-specific deficiency of the Fe-S cluster scaffold protein ISCU. RESULTS MyoD expression enhanced ISCU mRNA mis-splicing, and oxidative stress exacerbated ISCU depletion in patient cells. CONCLUSION ISCU protein deficiency in patients results from muscle-specific mis-splicing as well as oxidative stress. SIGNIFICANCE Oxidative stress negatively influences the mammalian Fe-S cluster assembly machinery by destabilization of ISCU. Iron-sulfur (Fe-S) cluster cofactors are formed on the scaffold protein ISCU. ISCU myopathy is a disease caused by an intronic mutation that leads to abnormally spliced ISCU mRNA. We found that two predominant mis-spliced ISCU mRNAs produce a truncated and short-lived ISCU protein product in multiple patient cell types. Expression of the muscle-specific transcription factor MyoD further diminished normal splicing of ISCU mRNA in patient myoblasts, demonstrating that the process of muscle differentiation enhances the loss of normal ISCU mRNA splicing. ISCU protein was nearly undetectable in patient skeletal muscle, but was higher in patient myoblasts, fibroblasts, and lymphoblasts. We next treated patient cells with pro-oxidants to mimic the oxidative stress associated with muscle activity. Brief hydrogen peroxide treatment or incubation in an enriched oxygen atmosphere led to a marked further reduction of ISCU protein levels, which could be prevented by pretreatment with the antioxidant ascorbate. Thus, we conclude that skeletal muscle differentiation of patient cells causes a higher degree of abnormal ISCU splicing and that oxidative stress resulting from skeletal muscle work destabilizes the small amounts of normal ISCU protein generated in patient skeletal muscles.
Collapse
Affiliation(s)
- Daniel R Crooks
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Lill R, Hoffmann B, Molik S, Pierik AJ, Rietzschel N, Stehling O, Uzarska MA, Webert H, Wilbrecht C, Mühlenhoff U. The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1491-508. [PMID: 22609301 DOI: 10.1016/j.bbamcr.2012.05.009] [Citation(s) in RCA: 372] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 12/21/2022]
Abstract
Mitochondria play a key role in iron metabolism in that they synthesize heme, assemble iron-sulfur (Fe/S) proteins, and participate in cellular iron regulation. Here, we review the latter two topics and their intimate connection. The mitochondrial Fe/S cluster (ISC) assembly machinery consists of 17 proteins that operate in three major steps of the maturation process. First, the cysteine desulfurase complex Nfs1-Isd11 as the sulfur donor cooperates with ferredoxin-ferredoxin reductase acting as an electron transfer chain, and frataxin to synthesize an [2Fe-2S] cluster on the scaffold protein Isu1. Second, the cluster is released from Isu1 and transferred toward apoproteins with the help of a dedicated Hsp70 chaperone system and the glutaredoxin Grx5. Finally, various specialized ISC components assist in the generation of [4Fe-4S] clusters and cluster insertion into specific target apoproteins. Functional defects of the core ISC assembly machinery are signaled to cytosolic or nuclear iron regulatory systems resulting in increased cellular iron acquisition and mitochondrial iron accumulation. In fungi, regulation is achieved by iron-responsive transcription factors controlling the expression of genes involved in iron uptake and intracellular distribution. They are assisted by cytosolic multidomain glutaredoxins which use a bound Fe/S cluster as iron sensor and additionally perform an essential role in intracellular iron delivery to target metalloproteins. In mammalian cells, the iron regulatory proteins IRP1, an Fe/S protein, and IRP2 act in a post-transcriptional fashion to adjust the cellular needs for iron. Thus, Fe/S protein biogenesis and cellular iron metabolism are tightly linked to coordinate iron supply and utilization. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Str. 6, 35033 Marburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kim JH, Tonelli M, Frederick RO, Chow DCF, Markley JL. Specialized Hsp70 chaperone (HscA) binds preferentially to the disordered form, whereas J-protein (HscB) binds preferentially to the structured form of the iron-sulfur cluster scaffold protein (IscU). J Biol Chem 2012; 287:31406-13. [PMID: 22782893 PMCID: PMC3438969 DOI: 10.1074/jbc.m112.352617] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The Escherichia coli protein IscU serves as the scaffold for Fe-S cluster assembly and the vehicle for Fe-S cluster transfer to acceptor proteins, such as apoferredoxin. IscU populates two conformational states in solution, a structured conformation (S) that resembles the conformation of the holoprotein IscU-[2Fe-2S] and a dynamically disordered conformation (D) that does not bind metal ions. NMR spectroscopic results presented here show that the specialized Hsp70 chaperone (HscA), alone or as the HscA-ADP complex, preferentially binds to and stabilizes the D-state of IscU. IscU is released when HscA binds ATP. By contrast, the J-protein HscB binds preferentially to the S-state of IscU. Consistent with these findings, we propose a mechanism in which cluster transfer is coupled to hydrolysis of ATP bound to HscA, conversion of IscU to the D-state, and release of HscB.
Collapse
Affiliation(s)
- Jin Hae Kim
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
36
|
Kim JH, Tonelli M, Kim T, Markley JL. Three-dimensional structure and determinants of stability of the iron-sulfur cluster scaffold protein IscU from Escherichia coli. Biochemistry 2012; 51:5557-63. [PMID: 22734684 DOI: 10.1021/bi300579p] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The highly conserved protein, IscU, serves as the scaffold for iron-sulfur cluster (ISC) assembly in the ISC system common to bacteria and eukaryotic mitochondria. The apo-form of IscU from Escherichia coli has been shown to populate two slowly interconverting conformational states: one structured (S) and one dynamically disordered (D). Furthermore, single-site amino acid substitutions have been shown to shift the equilibrium between the metamorphic states. Here, we report three-dimensional structural models derived from NMR spectroscopy for the S-state of wild-type (WT) apo-IscU, determined under conditions where the protein was 80% in the S-state and 20% in the D-state, and for the S-state of apo-IscU(D39A), determined under conditions where the protein was ~95% in the S-state. We have used these structures in interpreting the effects of single site amino acid substitutions that alter %S = (100 × [S])/([S] + [D]). These include different residues at the same site, %S: D39V > D39L > D39A > D39G ≈ WT, and alanine substitutions at different sites, %S: N90A > S107A ≈ E111A > WT. Hydrophobic residues at residue 39 appear to stabilize the S-state by decreasing the flexibility of the loops that contain the conserved cysteine residues. The alanine substitutions at positions 90, 107, and 111, on the other hand, stabilize the protein without affecting the loop dynamics. In general, the stability of the S-state correlates with the compactness and thermal stability of the variant.
Collapse
Affiliation(s)
- Jin Hae Kim
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
37
|
Nordin A, Larsson E, Holmberg M. The defective splicing caused by the ISCU intron mutation in patients with myopathy with lactic acidosis is repressed by PTBP1 but can be derepressed by IGF2BP1. Hum Mutat 2011; 33:467-70. [PMID: 22125086 DOI: 10.1002/humu.22002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/17/2011] [Indexed: 11/08/2022]
Abstract
Hereditary myopathy with lactic acidosis (HML) is caused by an intron mutation in the iron-sulfur cluster assembly gene ISCU, which leads to the activation of cryptic splice sites and the retention of part of intron 4. This incorrect splicing is more pronounced in muscle than in other tissues, resulting in a muscle-specific phenotype. In this study, we identified five nuclear factors that interact with the sequence harboring the mutation and analyzed their effect on the splicing of the ISCU gene. The identification revealed three splicing factors, SFRS14, RBM39, and PTBP1, and two additional RNA binding factors, matrin 3 (MATR3) and IGF2BP1. IGF2BP1 showed a preference for the mutant sequence, whereas the other factors showed similar affinity for both sequences. PTBP1 was found to repress the defective splicing of ISCU, resulting in a drastic loss of mutant transcripts. In contrast, IGF2BP1 and RBM39 shifted the splicing ratio toward the incorrect splice form.
Collapse
Affiliation(s)
- Angelica Nordin
- Medical Genetics Unit, Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
38
|
Sanaker PS, Toompuu M, McClorey G, Bindoff LA. Antisense oligonucleotide corrects splice abnormality in hereditary myopathy with lactic acidosis. Gene 2011; 494:231-6. [PMID: 22155317 DOI: 10.1016/j.gene.2011.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 11/11/2011] [Accepted: 11/14/2011] [Indexed: 02/01/2023]
Abstract
Hereditary myopathy with lactic acidosis (HML) (OMIM #255125) presents in childhood with exercise intolerance and muscle pain on trivial exercise, lactic acidosis, dyspnoea, palpitations, and rhabdomyolysis which can be fatal. The disease is recessively inherited and caused by a deep intronic, single base transition in the iron-sulfur cluster scaffold, ISCU gene that causes retention of a pseudoexon and introduction of a premature termination codon. IscU protein deficiency causes secondary defects in several iron-sulfur dependant proteins, including enzymes involved in aerobic energy metabolism. We have shown in a previous study that the splice abnormality affects skeletal muscle more than other tissues, leading to the purely muscular phenotype. Antisense oligonucleotides (AOs) have been able to redirect mRNA splicing in a number of disease models, and show promise in clinical studies. We designed 2'O-methyl phosphorothioate AOs targeting either splice site of the detrimental HML pseudoexon. The acceptor site AO effectively redirected splicing towards the normal state in cultured muscle fibroblasts, whilst the donor site AO promoted pseudoexon inclusion in both patient and control cells. Our results show that AO therapy seems feasible in HML, but care must be taken to avoid adverse splicing effects.
Collapse
|