1
|
Liang M, Zhang L, Lai L, Li Z. Unraveling the role of Xist in X chromosome inactivation: insights from rabbit model and deletion analysis of exons and repeat A. Cell Mol Life Sci 2024; 81:156. [PMID: 38551746 PMCID: PMC10980640 DOI: 10.1007/s00018-024-05151-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 04/01/2024]
Abstract
X chromosome inactivation (XCI) is a process that equalizes the expression of X-linked genes between males and females. It relies on Xist, continuously expressed in somatic cells during XCI maintenance. However, how Xist impacts XCI maintenance and its functional motifs remain unclear. In this study, we conducted a comprehensive analysis of Xist, using rabbits as an ideal non-primate model. Homozygous knockout of exon 1, exon 6, and repeat A in female rabbits resulted in embryonic lethality. However, X∆ReAX females, with intact X chromosome expressing Xist, showed no abnormalities. Interestingly, there were no significant differences between females with homozygous knockout of exons 2-5 and wild-type rabbits, suggesting that exons 2, 3, 4, and 5 are less important for XCI. These findings provide evolutionary insights into Xist function.
Collapse
Affiliation(s)
- Mingming Liang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Lichao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Liangxue Lai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, 100039, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences, Guangzhou, 510530, China.
| | - Zhanjun Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
2
|
Jalali S, Gandhi S, Scaria V. Distinct and Modular Organization of Protein Interacting Sites in Long Non-coding RNAs. Front Mol Biosci 2018; 5:27. [PMID: 29670884 PMCID: PMC5893854 DOI: 10.3389/fmolb.2018.00027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Long non-coding RNAs (lncRNAs), are being reported to be extensively involved in diverse regulatory roles and have exhibited numerous disease associations. LncRNAs modulate their function through interaction with other biomolecules in the cell including DNA, RNA, and proteins. The availability of genome-scale experimental datasets of RNA binding proteins (RBP) motivated us to understand the role of lncRNAs in terms of its interactions with these proteins. In the current report, we demonstrate a comprehensive study of interactions between RBP and lncRNAs at a transcriptome scale through extensive analysis of the crosslinking and immunoprecipitation (CLIP) experimental datasets available for 70 RNA binding proteins. Results: Our analysis suggests that density of interaction sites for these proteins was significantly higher for specific sub-classes of lncRNAs when compared to protein-coding transcripts. We also observe a positional preference of these RBPs across lncRNA and protein coding transcripts in addition to a significant co-occurrence of RBPs having similar functions, suggesting a modular organization of these elements across lncRNAs. Conclusion: The significant enrichment of RBP sites across some lncRNA classes is suggestive that these interactions might be important in understanding the functional role of lncRNA. We observed a significant enrichment of RBPs which are involved in functional roles such as silencing, splicing, mRNA processing, and transport, indicating the potential participation of lncRNAs in such processes.
Collapse
Affiliation(s)
- Saakshi Jalali
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi, India.,CSIR Institute of Genomics and Integrative Biology, Academy of Scientific and Innovative Research, New Delhi, India
| | - Shrey Gandhi
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Vinod Scaria
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi, India.,CSIR Institute of Genomics and Integrative Biology, Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
3
|
Urkasemsin G, Nielsen DM, Singleton A, Arepalli S, Hernandez D, Agler C, Olby NJ. Genetics of Hereditary Ataxia in Scottish Terriers. J Vet Intern Med 2017; 31:1132-1139. [PMID: 28556454 PMCID: PMC5508367 DOI: 10.1111/jvim.14738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/05/2017] [Accepted: 04/19/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Scottish Terriers have a high incidence of juvenile onset hereditary ataxia primarily affecting the Purkinje neuron of the cerebellar cortex and causing slowly progressive cerebellar dysfunction. OBJECTIVE To identify chromosomal regions associated with hereditary ataxia in Scottish Terriers. ANIMALS One hundred and fifty-three Scottish Terriers were recruited through the Scottish Terrier Club of America. MATERIALS AND METHODS Prospective study. Dogs were classified as affected if they had slowly progressive cerebellar signs. When possible, magnetic resonance imaging and histopathological evaluation of the brain were completed as diagnostic aids. To identify genomic regions connected with the disease, genome-wide mapping was performed using both linkage- and association-based approaches. Pedigree evaluation and homozygosity mapping were also performed to examine mode of inheritance and to investigate the region of interest, respectively. RESULTS Linkage and genome-wide association studies in a cohort of Scottish Terriers both identified a region on CFA X strongly associated with the disease trait. Homozygosity mapping revealed a 4 Mb region of interest. Pedigree evaluation failed to identify the possible mode of inheritance due to the lack of complete litter information. CONCLUSION AND CLINICAL IMPORTANCE This finding suggests that further genetic investigation of the potential region of interest on CFA X should be considered in order to identify the causal mutation as well as develop a genetic test to eliminate the disease from this breed.
Collapse
Affiliation(s)
- G Urkasemsin
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - D M Nielsen
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC
| | - A Singleton
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD
| | - S Arepalli
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD
| | - D Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD
| | - C Agler
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - N J Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| |
Collapse
|
4
|
Chen X, Wang X, Dong G, Fu J, Wu W, Jiang Y. Clinical features of girls with short stature among inv (9), Turner (45, X) and control individuals. J Pediatr Endocrinol Metab 2017; 30:431-436. [PMID: 28306537 DOI: 10.1515/jpem-2016-0341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/09/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND The clinical significance of pericentric inversion of chromosome 9 [inv (9)] remains unclear. METHODS This case control study assessed girls with short stature. According to karyotypes, the subjects were divided into inv (9) [46,XX,inv (9)(p12q13) and 46,XX,inv (9)(p11q13)], Turner syndrome (45, X) and control (normal 46, XX) groups, respectively. Detailed clinical features were compared. RESULTS Height standard deviation score (SDS) values at diagnosis were -2.51±0.58, -3.71±2.12 and -2.5±1.24 for inv (9), (45, X) and control groups, respectively (p=0.022). The inv (9) group showed lower body mass index (BMI) values compared with the (45, X) and control groups (F=5.097, p=0.008). Similar growth hormone deficiency (GHD) incidences were found in all groups. Interestingly, height SDS was positively correlated with mother height and patient BMI SDS (r=0.51, p=0.036; r=0.576, p=0.023, respectively) in the inv (9) group. In the (45, X) group, height SDS was positively correlated with birth weight (r=0.392, p=0.039). CONCLUSIONS Short stature in inv (9) girls was correlated with low birth weight (LBW) and mother height.
Collapse
Affiliation(s)
- Xuefeng Chen
- Department of Endocrinology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, P.R
| | - Xiumin Wang
- Department of Endocrinology, The Children's Hospital of Zhejiang University School of Medicine, 3333 binsheng road, Hangzhou 310051, P.R
| | - Guanping Dong
- Department of Endocrinology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, P.R
| | - Junfen Fu
- Department of Endocrinology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, P.R
| | - Wei Wu
- Department of Endocrinology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, P.R
| | - Youjun Jiang
- Department of Endocrinology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, P.R
| |
Collapse
|
5
|
Sun T, Plutynski A, Ward S, Rubin JB. An integrative view on sex differences in brain tumors. Cell Mol Life Sci 2015; 72:3323-42. [PMID: 25985759 PMCID: PMC4531141 DOI: 10.1007/s00018-015-1930-2] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/27/2015] [Accepted: 05/11/2015] [Indexed: 02/07/2023]
Abstract
Sex differences in human health and disease can range from undetectable to profound. Differences in brain tumor rates and outcome are evident in males and females throughout the world and regardless of age. These observations indicate that fundamental aspects of sex determination can impact the biology of brain tumors. It is likely that optimal personalized approaches to the treatment of male and female brain tumor patients will require recognizing and understanding the ways in which the biology of their tumors can differ. It is our view that sex-specific approaches to brain tumor screening and care will be enhanced by rigorously documenting differences in brain tumor rates and outcomes in males and females, and understanding the developmental and evolutionary origins of sex differences. Here we offer such an integrative perspective on brain tumors. It is our intent to encourage the consideration of sex differences in clinical and basic scientific investigations.
Collapse
Affiliation(s)
- Tao Sun
- />Department of Pediatrics, Washington University School of Medicine, St Louis, USA
| | - Anya Plutynski
- />Department of Philosophy, Washington University in St Louis, St Louis, USA
| | - Stacey Ward
- />Department of Pediatrics, Washington University School of Medicine, St Louis, USA
| | - Joshua B. Rubin
- />Department of Pediatrics, Washington University School of Medicine, St Louis, USA
- />Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Ave, St Louis, MO 63110 USA
- />Campus Box 8208, 660 South Euclid Ave, St Louis, MO 63110 USA
| |
Collapse
|
6
|
Rajpathak SN, Vellarikkal SK, Patowary A, Scaria V, Sivasubbu S, Deobagkar DD. Human 45,X fibroblast transcriptome reveals distinct differentially expressed genes including long noncoding RNAs potentially associated with the pathophysiology of Turner syndrome. PLoS One 2014; 9:e100076. [PMID: 24932682 PMCID: PMC4059722 DOI: 10.1371/journal.pone.0100076] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/21/2014] [Indexed: 01/09/2023] Open
Abstract
Turner syndrome is a chromosomal abnormality characterized by the absence of whole or part of the X chromosome in females. This X aneuploidy condition is associated with a diverse set of clinical phenotypes such as gonadal dysfunction, short stature, osteoporosis and Type II diabetes mellitus, among others. These phenotypes differ in their severity and penetrance among the affected individuals. Haploinsufficiency for a few X linked genes has been associated with some of these disease phenotypes. RNA sequencing can provide valuable insights to understand molecular mechanism of disease process. In the current study, we have analysed the transcriptome profiles of human untransformed 45,X and 46,XX fibroblast cells and identified differential expression of genes in these two karyotypes. Functional analysis revealed that these differentially expressing genes are associated with bone differentiation, glucose metabolism and gonadal development pathways. We also report differential expression of lincRNAs in X monosomic cells. Our observations provide a basis for evaluation of cellular and molecular mechanism(s) in the establishment of Turner syndrome phenotypes.
Collapse
Affiliation(s)
- Shriram N Rajpathak
- Centre of Advanced Studies, Department of Zoology, University of Pune, Pune, India
| | - Shamsudheen Karuthedath Vellarikkal
- Genomics and Molecular medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, India
| | - Ashok Patowary
- GN Ramachandran Knowledge Centre for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Vinod Scaria
- GN Ramachandran Knowledge Centre for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, India
| | - Sridhar Sivasubbu
- Genomics and Molecular medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, India
| | - Deepti D Deobagkar
- Centre of Advanced Studies, Department of Zoology, University of Pune, Pune, India
| |
Collapse
|
7
|
Smeets D, Markaki Y, Schmid VJ, Kraus F, Tattermusch A, Cerase A, Sterr M, Fiedler S, Demmerle J, Popken J, Leonhardt H, Brockdorff N, Cremer T, Schermelleh L, Cremer M. Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenetics Chromatin 2014; 7:8. [PMID: 25057298 PMCID: PMC4108088 DOI: 10.1186/1756-8935-7-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/11/2014] [Indexed: 12/31/2022] Open
Abstract
Background A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super-resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs). Results We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an ‘autosomal Barr body’ with less compacted chromatin and incomplete RNAP II exclusion. Conclusions 3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi.
Collapse
Affiliation(s)
- Daniel Smeets
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany ; Department of Biochemistry, University of Oxford, Oxford, UK
| | - Yolanda Markaki
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Volker J Schmid
- Institute of Statistics, Ludwig Maximilians University (LMU), Munich, Germany
| | - Felix Kraus
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany ; Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Andrea Cerase
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Michael Sterr
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Susanne Fiedler
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Justin Demmerle
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jens Popken
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Heinrich Leonhardt
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Thomas Cremer
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Lothar Schermelleh
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany ; Department of Biochemistry, University of Oxford, Oxford, UK
| | - Marion Cremer
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| |
Collapse
|
8
|
Sato S, Maekawa R, Yamagata Y, Asada H, Tamura I, Lee L, Okada M, Tamura H, Sugino N. Potential mechanisms of aberrant DNA hypomethylation on the x chromosome in uterine leiomyomas. J Reprod Dev 2013; 60:47-54. [PMID: 24291816 PMCID: PMC3963299 DOI: 10.1262/jrd.2013-095] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
We recently found that aberrant DNA hypomethylation is more common on the X chromosome
than on other chromosomes in uterine leiomyomas by genome-wide DNA methylation profiling.
To investigate the mechanism of aberrant hypomethylation on the X chromosome in uterine
leiomyomas, we analyzed methylome and transcriptome data from three cases of leiomyomas
and the adjacent myometrium. We found that eleven of the aberrantly hypomethylated genes
on the X chromosome were common to the three cases. None of these 11 genes were
transcriptionally upregulated in the leiomyoma. However, one of them,
TSPYL2, was hypomethylated in 68% of multiple leiomyoma specimens. The
incidence of aberrant hypomethylation of TSPYL2 was comparable to that of
the MED12 mutation (68%), which is known to be detected at a high
frequency in uterine leiomyomas. We also analyzed the aberration of the X chromosome
inactivation (XCI) mechanism in uterine leiomyomas. Hypomethylation was not enriched in
the imprinted genes, suggesting that dysfunction of polycomb repressive complexes is not
involved in the aberrant hypomethylation on the X chromosome. The expression analysis of
XCI-related genes revealed that the XIST and SATB1
expression was downregulated in 36% and 46% of 11 leiomyoma specimens, respectively, while
the HNRNPU and SMCHD1 expression was not altered. In
conclusion, the aberration of XCI-related genes such as SATB1 or
XIST may be involved in aberrant hypomethylation on the X chromosome in
a certain population of the patients with uterine leiomyomas. TSPYL2 of
the aberrantly hypomethylated genes on the X chromosome can be used as a biomarker of
uterine leiomyomas.
Collapse
Affiliation(s)
- Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Shapshak P. Molecule of the month: miRNA and Down's syndrome. Bioinformation 2013; 9:752-4. [PMID: 24023415 PMCID: PMC3766305 DOI: 10.6026/97320630009752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 08/09/2013] [Indexed: 01/09/2023] Open
Affiliation(s)
- Paul Shapshak
- Divsion of Infectious Disease and International Health, Department of Medicine and Department of Psychiatry and Behavioral
Medicine, USF Morsani School of Medicine, Tampa General Hospital, 1 Tampa General Circle, Room G318, Tampa FL 33606
- Deputy Chief Editor, Bioinformation
| |
Collapse
|
10
|
Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, Sirokman K, Surka C, Kadri S, Xing J, Goren A, Lander ES, Plath K, Guttman M. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 2013; 341:1237973. [PMID: 23828888 DOI: 10.1126/science.1237973] [Citation(s) in RCA: 751] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many large noncoding RNAs (lncRNAs) regulate chromatin, but the mechanisms by which they localize to genomic targets remain unexplored. We investigated the localization mechanisms of the Xist lncRNA during X-chromosome inactivation (XCI), a paradigm of lncRNA-mediated chromatin regulation. During the maintenance of XCI, Xist binds broadly across the X chromosome. During initiation of XCI, Xist initially transfers to distal regions across the X chromosome that are not defined by specific sequences. Instead, Xist identifies these regions by exploiting the three-dimensional conformation of the X chromosome. Xist requires its silencing domain to spread across actively transcribed regions and thereby access the entire chromosome. These findings suggest a model in which Xist coats the X chromosome by searching in three dimensions, modifying chromosome structure, and spreading to newly accessible locations.
Collapse
|
11
|
Van Wynsberghe PM, Maine EM. Epigenetic control of germline development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:373-403. [PMID: 22872484 DOI: 10.1007/978-1-4614-4015-4_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dynamic regulation of histone modifications and small noncoding RNAs is observed throughout the development of the C. elegans germ line. Histone modifications are differentially regulated in the mitotic vs meiotic germ line, on X chromosomes vs autosomes and on paired chromosomes vs unpaired chromosomes. Small RNAs function in transposon silencing and developmental gene regulation. Histone modifications and small RNAs produced in the germ line can be inherited and impact embryonic development. Disruption of histone-modifying enzymes or small RNA machinery in the germ line can result in sterility due to degeneration of the germ line and/or an inability to produce functional gametes.
Collapse
|
12
|
Agostini F, Cirillo D, Bolognesi B, Tartaglia GG. X-inactivation: quantitative predictions of protein interactions in the Xist network. Nucleic Acids Res 2012; 41:e31. [PMID: 23093590 PMCID: PMC3592426 DOI: 10.1093/nar/gks968] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The transcriptional silencing of one of the female X-chromosomes is a finely regulated process that requires accumulation in cis of the long non-coding RNA X-inactive-specific transcript (Xist) followed by a series of epigenetic modifications. Little is known about the molecular machinery regulating initiation and maintenance of chromosomal silencing. Here, we introduce a new version of our algorithm catRAPID to investigate Xist associations with a number of proteins involved in epigenetic regulation, nuclear scaffolding, transcription and splicing processes. Our method correctly identifies binding regions and affinities of protein interactions, providing a powerful theoretical framework for the study of X-chromosome inactivation and other events mediated by ribonucleoprotein associations.
Collapse
Affiliation(s)
- Federico Agostini
- Centre for Genomic Regulation, Dr Aiguader 88, 08003 Barcelona, Spain
| | | | | | | |
Collapse
|
13
|
Genomic aberrations in an African American colorectal cancer cohort reveals a MSI-specific profile and chromosome X amplification in male patients. PLoS One 2012; 7:e40392. [PMID: 22879877 PMCID: PMC3412863 DOI: 10.1371/journal.pone.0040392] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/06/2012] [Indexed: 02/06/2023] Open
Abstract
Objective DNA aberrations that cause colorectal cancer (CRC) occur in multiple steps that involve microsatellite instability (MSI) and chromosomal instability (CIN). Herein, we studied CRCs from AA patients for their CIN and MSI status. Experimental Design Array CGH was performed on 30 AA colon tumors. The MSI status was established. The CGH data from AA were compared to published lists of 41 TSG and oncogenes in Caucasians and 68 cancer genes, proposed via systematic sequencing for somatic mutations in colon and breast tumors. The patient-by-patient CGH profiles were organized into a maximum parsimony cladogram to give insights into the tumors' aberrations lineage. Results The CGH analysis revealed that CIN was independent of age, gender, stage or location. However, both the number and nature of aberrations seem to depend on the MSI status. MSI-H tumors clustered together in the cladogram. The chromosomes with the highest rates of CGH aberrations were 3, 5, 7, 8, 20 and X. Chromosome X was primarily amplified in male patients. A comparison with Caucasians revealed an overall similar aberration profile with few exceptions for the following genes; THRB, RAF1, LPL, DCC, XIST, PCNT, STS and genes on the 20q12-q13 cytoband. Among the 68 CAN genes, all showed some level of alteration in our cohort. Conclusion Chromosome X amplification in male patients with CRC merits follow-up. The observed CIN may play a distinctive role in CRC in AAs. The clustering of MSI-H tumors in global CGH data analysis suggests that chromosomal aberrations are not random.
Collapse
|
14
|
Markaki Y, Smeets D, Fiedler S, Schmid VJ, Schermelleh L, Cremer T, Cremer M. The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture. Bioessays 2012; 34:412-26. [PMID: 22508100 DOI: 10.1002/bies.201100176] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Three-dimensional structured illumination microscopy (3D-SIM) has opened up new possibilities to study nuclear architecture at the ultrastructural level down to the ~100 nm range. We present first results and assess the potential using 3D-SIM in combination with 3D fluorescence in situ hybridization (3D-FISH) for the topographical analysis of defined nuclear targets. Our study also deals with the concern that artifacts produced by FISH may counteract the gain in resolution. We address the topography of DAPI-stained DNA in nuclei before and after 3D-FISH, nuclear pores and the lamina, chromosome territories, chromatin domains, and individual gene loci. We also look at the replication patterns of chromocenters and the topographical relationship of Xist-RNA within the inactive X-territory. These examples demonstrate that an appropriately adapted 3D-FISH/3D-SIM approach preserves key characteristics of the nuclear ultrastructure and that the gain in information obtained by 3D-SIM yields new insights into the functional nuclear organization.
Collapse
Affiliation(s)
- Yolanda Markaki
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Rose D, Stadler PF. Molecular evolution of the non-coding eosinophil granule ontogeny transcript. Front Genet 2011; 2:69. [PMID: 22303364 PMCID: PMC3268622 DOI: 10.3389/fgene.2011.00069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 09/16/2011] [Indexed: 01/22/2023] Open
Abstract
Eukaryotic genomes are pervasively transcribed. A large fraction of the transcriptional output consists of long, mRNA-like, non-protein-coding transcripts (mlncRNAs). The evolutionary history of mlncRNAs is still largely uncharted territory. In this contribution, we explore in detail the evolutionary traces of the eosinophil granule ontogeny transcript (EGOT), an experimentally confirmed representative of an abundant class of totally intronic non-coding transcripts (TINs). EGOT is located antisense to an intron of the ITPR1 gene. We computationally identify putative EGOT orthologs in the genomes of 32 different amniotes, including orthologs from primates, rodents, ungulates, carnivores, afrotherians, and xenarthrans, as well as putative candidates from basal amniotes, such as opossum or platypus. We investigate the EGOT gene phylogeny, analyze patterns of sequence conservation, and the evolutionary conservation of the EGOT gene structure. We show that EGO-B, the spliced isoform, may be present throughout the placental mammals, but most likely dates back even further. We demonstrate here for the first time that the whole EGOT locus is highly structured, containing several evolutionary conserved, and thermodynamic stable secondary structures. Our analyses allow us to postulate novel functional roles of a hitherto poorly understood region at the intron of EGO-B which is highly conserved at the sequence level. The region contains a novel ITPR1 exon and also conserved RNA secondary structures together with a conserved TATA-like element, which putatively acts as a promoter of an independent regulatory element.
Collapse
Affiliation(s)
- Dominic Rose
- Bioinformatics Group, Department of Computer Science, University of Freiburg Freiburg, Germany
| | | |
Collapse
|
16
|
Abstract
The 50th anniversary of Mary Lyon's 1961 Nature paper, proposing random inactivation in early embryonic life of one of the two X chromosomes in the cells of mammalian females, provides an opportunity to remember and celebrate the work of those involved. While the hypothesis was initially put forward by Lyon based on findings in the mouse, it was founded on earlier studies, notably the work of Susumu Ohno; it was also suggested independently by Beutler and colleagues using experimental evidence from a human X-linked disorder, glucose-6-phosphate dehydrogenase deficiency, and has proved to be of as great importance for human and medical genetics as it has for general mammalian genetics. Alongside the hypothesis itself, previous cytological studies of mouse and human chromosomes, and the observations on X-linked mutants in both species deserve recognition for their essential role in underpinning the hypothesis of random X-inactivation, while subsequent research on the X-inactivation centre and the molecular mechanisms underlying the inactivation process represent some of the most outstanding contributions to human and wider mammalian genetics over the past 50 years.
Collapse
Affiliation(s)
- Peter S Harper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
17
|
Abstract
In humans, sexual dimorphism is associated with the presence of two X chromosomes in the female, whereas males possess only one X and a small and largely degenerate Y chromosome. How do men cope with having only a single X chromosome given that virtually all other chromosomal monosomies are lethal? Ironically, or even typically many might say, women and more generally female mammals contribute most to the job by shutting down one of their two X chromosomes at random. This phenomenon, called X-inactivation, was originally described some 50 years ago by Mary Lyon and has captivated an increasing number of scientists ever since. The fascination arose in part from the realisation that the inactive X corresponded to a dense heterochromatin mass called the “Barr body” whose number varied with the number of Xs within the nucleus and from the many intellectual questions that this raised: How does the cell count the X chromosomes in the nucleus and inactivate all Xs except one? What kind of molecular mechanisms are able to trigger such a profound, chromosome-wide metamorphosis? When is X-inactivation initiated? How is it transmitted to daughter cells and how is it reset during gametogenesis? This review retraces some of the crucial findings, which have led to our current understanding of a biological process that was initially considered as an exception completely distinct from conventional regulatory systems but is now viewed as a paradigm “par excellence” for epigenetic regulation.
Collapse
Affiliation(s)
- Céline Morey
- Institut Pasteur, Unité de Génétique Moléculaire Murine, CNRS, URA2578, Paris, France
- * E-mail:
| | - Philip Avner
- Institut Pasteur, Unité de Génétique Moléculaire Murine, CNRS, URA2578, Paris, France
| |
Collapse
|