1
|
Ramos-Moreno T, Cifra A, Litsa NL, Melin E, Ahl M, Christiansen SH, Gøtzsche CR, Cescon M, Bonaldo P, van Loo K, Borger V, Jasper JA, Becker A, van Vliet EA, Aronica E, Woldbye DP, Kokaia M. Collagen VI: Role in synaptic transmission and seizure-related excitability. Exp Neurol 2024; 380:114911. [PMID: 39094767 DOI: 10.1016/j.expneurol.2024.114911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/05/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Collagen VI (Col-VI) is an extracellular matrix protein primarily known for its bridging role in connective tissues that has been suggested to play a neuroprotective role. In the present study we report increased mRNA and protein expression of Col-VI in the hippocampus and cortex at a late stage of epileptogenesis in a post-status epilepticus (SE) model of epilepsy and in brain tissue from patients with epilepsy. We further present a novel finding that exposure of mouse hippocampal slices to Col-VI augments paired-pulse facilitation in Schaffer collateral-CA1 excitatory synapses indicating decreased release probability of glutamate. In line with this finding, lack of Col-VI expression in the knock-out mice show paired-pulse depression in these synapses, suggesting increased release probability of glutamate. In addition, we observed dynamic changes in Col-VI blood plasma levels in rats after Kainate-induced SE, and increased levels of Col-VI mRNA and protein in autopsy or postmortem brain of humans suffering from epilepsy. Thus, our data indicate that elevated levels of ColVI following seizures leads to attenuated glutamatergic transmission, ultimately resulting in less overall network excitability. Presumably, increased Col-VI may act as part of endogenous compensatory mechanism against enhanced excitability during epileptogenic processes in the hippocampus, and could be further investigated as a potential functional biomarker of epileptogenesis, and/or a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Tania Ramos-Moreno
- Epilepsy Centre, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Alexandra Cifra
- Epilepsy Centre, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Nikitidou Ledri Litsa
- Epilepsy Centre, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Esbjörn Melin
- Epilepsy Centre, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Matilda Ahl
- Epilepsy Centre, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Sören H Christiansen
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Casper R Gøtzsche
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, I-35131 Padova, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, I-35131 Padova, Italy
| | - Karen van Loo
- Institut für Neuropathologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Valeri Borger
- Institut für Neuropathologie, Universitätsklinikum Bonn, Bonn, Germany
| | - J Anink Jasper
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Albert Becker
- Institut für Neuropathologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Erwin A van Vliet
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Eleonora Aronica
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - David P Woldbye
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Merab Kokaia
- Epilepsy Centre, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
2
|
Gregory CA, Ma J, Lomeli S. The coordinated activities of collagen VI and XII in maintenance of tissue structure, function and repair: evidence for a physical interaction. Front Mol Biosci 2024; 11:1376091. [PMID: 38606288 PMCID: PMC11007232 DOI: 10.3389/fmolb.2024.1376091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024] Open
Abstract
Collagen VI and collagen XII are structurally complex collagens of the extracellular matrix (ECM). Like all collagens, type VI and XII both possess triple-helical components that facilitate participation in the ECM network, but collagen VI and XII are distinct from the more abundant fibrillar collagens in that they also possess arrays of structurally globular modules with the capacity to propagate signaling to attached cells. Cell attachment to collagen VI and XII is known to regulate protective, proliferative or developmental processes through a variety of mechanisms, but a growing body of genetic and biochemical evidence suggests that at least some of these phenomena may be potentiated through mechanisms that require coordinated interaction between the two collagens. For example, genetic studies in humans have identified forms of myopathic Ehlers-Danlos syndrome with overlapping phenotypes that result from mutations in either collagen VI or XII, and biochemical and cell-based studies have identified accessory molecules that could form bridging interactions between the two collagens. However, the demonstration of a direct or ternary structural interaction between collagen VI or XII has not yet been reported. This Hypothesis and Theory review article examines the evidence that supports the existence of a functional complex between type VI and XII collagen in the ECM and discusses potential biological implications.
Collapse
Affiliation(s)
- Carl A. Gregory
- Department of Medical Physiology, Texas A&M School of Medicine, Bryan, TX, United States
| | | | | |
Collapse
|
3
|
Su W, Liu Y, Lam A, Hao X, Baudry M, Bi X. Contextual fear memory impairment in Angelman syndrome model mice is associated with altered transcriptional responses. Sci Rep 2023; 13:18647. [PMID: 37903805 PMCID: PMC10616231 DOI: 10.1038/s41598-023-45769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/24/2023] [Indexed: 11/01/2023] Open
Abstract
Angelman syndrome (AS) is a rare neurogenetic disorder caused by UBE3A deficiency and characterized by severe developmental delay, cognitive impairment, and motor dysfunction. In the present study, we performed RNA-seq on hippocampal samples from both wildtype (WT) and AS male mice, with or without contextual fear memory recall. There were 281 recall-associated differentially expressed genes (DEGs) in WT mice and 268 DEGs in AS mice, with 129 shared by the two genotypes. Gene ontology analysis showed that extracellular matrix and stimulation-induced response genes were prominently enriched in recall-associated DEGs in WT mice, while nuclear acid metabolism and tissue development genes were highly enriched in those from AS mice. Further analyses showed that the 129 shared DEGs belonged to nuclear acid metabolism and tissue development genes. Unique recall DEGs in WT mice were enriched in biological processes critical for synaptic plasticity and learning and memory, including the extracellular matrix network clustered around fibronectin 1 and collagens. In contrast, AS-specific DEGs were not enriched in any known pathways. These results suggest that memory recall in AS mice, while altering the transcriptome, fails to recruit memory-associated transcriptional programs, which could be responsible for the memory impairment in AS mice.
Collapse
Affiliation(s)
- Wenyue Su
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Yan Liu
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Aileen Lam
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 701 E. 2nd St., Pomona, CA, 91766-1854, USA
| | - Xiaoning Hao
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 701 E. 2nd St., Pomona, CA, 91766-1854, USA
| | - Michel Baudry
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 701 E. 2nd St., Pomona, CA, 91766-1854, USA.
| |
Collapse
|
4
|
Gregorio I, Mereu M, Contarini G, Bello L, Semplicini C, Burgio F, Russo L, Sut S, Dall'Acqua S, Braghetta P, Semenza C, Pegoraro E, Papaleo F, Bonaldo P, Cescon M. Collagen VI deficiency causes behavioral abnormalities and cortical dopaminergic dysfunction. Dis Model Mech 2022; 15:276265. [PMID: 35946603 PMCID: PMC9548377 DOI: 10.1242/dmm.049481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022] Open
Abstract
Mutations of genes coding for Collagen VI (COL6) cause muscle diseases, including Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM). Although more recently COL6 genetic variants were linked to brain pathologies, the impact of COL6 deficiency in brain function is still largely unknown. Here, a thorough behavioral characterization of COL6 null (Col6a1-/-) mice unexpectedly revealed that COL6 deficiency leads to a significant impairment in sensorimotor gating and memory/attention functions. In keeping with these behavioral abnormalities, Col6a1-/- mice displayed alterations in dopaminergic signalling, primarily in the prefrontal cortex (PFC). In vitro co-culture of SH-SY5Y neural cells with primary meningeal fibroblasts from wild-type and Col6a1-/- mice confirmed a direct link between COL6 ablation and defective dopaminergic activity, through a mechanism involving the inability of meningeal cells to sustain dopaminergic differentiation. Finally, patients affected by COL6-related myopathies were evaluated with an ad hoc neuropsychological protocol, revealing distinctive defects in attentional control abilities. Altogether, these findings point at a novel role for COL6 in the proper maintenance of dopamine circuitry function and its related neurobehavioral features in both mice and humans.
Collapse
Affiliation(s)
- Ilaria Gregorio
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Maddalena Mereu
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131, Italy.,Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Gabriella Contarini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131, Italy.,Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Luca Bello
- ERN Neuromuscular Center, Department of Neurosciences, University of Padova, 35129 Padova, Italy
| | - Claudio Semplicini
- ERN Neuromuscular Center, Department of Neurosciences, University of Padova, 35129 Padova, Italy
| | | | - Loris Russo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Carlo Semenza
- ERN Neuromuscular Center, Department of Neurosciences, University of Padova, 35129 Padova, Italy.,IRCCS San Camillo Hospital, 30126 Venice, Italy
| | - Elena Pegoraro
- ERN Neuromuscular Center, Department of Neurosciences, University of Padova, 35129 Padova, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| |
Collapse
|
5
|
Erdmann J. What can we learn from common variants associated with unexpected phenotypes in rare genetic diseases? Orphanet J Rare Dis 2021; 16:41. [PMID: 33478553 PMCID: PMC7818908 DOI: 10.1186/s13023-021-01684-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/06/2021] [Indexed: 11/30/2022] Open
Abstract
The purpose of this article is to stimulate discussion about whether a phenome-wide association study is a suitable tool for uncovering late-onset risks in patients with monogenic disorders that are not yet fully recognized because the life expectancy of people with such conditions has only recently extended, and they now reach older ages when they may develop additional complications.
Collapse
Affiliation(s)
- Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, Building 67, 23562, Lübeck, Germany.
| |
Collapse
|
6
|
Buchsbaum IY, Kielkowski P, Giorgio G, O'Neill AC, Di Giaimo R, Kyrousi C, Khattak S, Sieber SA, Robertson SP, Cappello S. ECE2 regulates neurogenesis and neuronal migration during human cortical development. EMBO Rep 2020; 21:e48204. [PMID: 32207244 PMCID: PMC7202216 DOI: 10.15252/embr.201948204] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 11/24/2022] Open
Abstract
During embryonic development, excitatory projection neurons migrate in the cerebral cortex giving rise to organised layers. Periventricular heterotopia (PH) is a group of aetiologically heterogeneous disorders in which a subpopulation of newborn projection neurons fails to initiate their radial migration to the cortex, ultimately resulting in bands or nodules of grey matter lining the lateral ventricles. Although a number of genes have been implicated in its cause, currently they only satisfactorily explain the pathogenesis of the condition for 50% of patients. Novel gene discovery is complicated by the extreme genetic heterogeneity recently described to underlie its cause. Here, we study the neurodevelopmental role of endothelin‐converting enzyme‐2 (ECE2) for which two biallelic variants have been identified in two separate patients with PH. Our results show that manipulation of ECE2 levels in human cerebral organoids and in the developing mouse cortex leads to ectopic localisation of neural progenitors and neurons. We uncover the role of ECE2 in neurogenesis, and mechanistically, we identify its involvement in the generation and secretion of extracellular matrix proteins in addition to cytoskeleton and adhesion.
Collapse
Affiliation(s)
- Isabel Y Buchsbaum
- Max Planck Institute of Psychiatry, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg, Germany
| | - Pavel Kielkowski
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Garching bei München, Germany
| | - Grazia Giorgio
- Max Planck Institute of Psychiatry, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg, Germany
| | - Adam C O'Neill
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | - Rossella Di Giaimo
- Max Planck Institute of Psychiatry, Munich, Germany.,Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Shahryar Khattak
- DFG Center for Regenerative Therapies, Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Garching bei München, Germany
| | - Stephen P Robertson
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
7
|
Gregorio I, Braghetta P, Bonaldo P, Cescon M. Collagen VI in healthy and diseased nervous system. Dis Model Mech 2018; 11:dmm032946. [PMID: 29728408 PMCID: PMC6031366 DOI: 10.1242/dmm.032946] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Collagen VI is a major extracellular matrix protein exerting a number of functions in different tissues, spanning from biomechanical to regulatory signals in the cell survival processes, and playing key roles in maintaining the stemness or determining the differentiation of several types of cells. In the last couple of years, emerging findings on collagen VI have led to increased interest in its role in the nervous system. The role of this protein in the peripheral nervous system was intensely studied and characterized in detail. Collagen VI acts as a regulator of Schwann cell differentiation and is required for preserving peripheral nerve myelination, function and structure, as well as for orchestrating nerve regeneration after injury. Although the role and distribution of collagen VI in the peripheral nervous system is now well established, the role of this distinctive extracellular matrix component in the central nervous system, along with its links to human neurological and neurodegenerative disorders, remains an open field of investigation. In this Review, we summarize and discuss a number of recent findings related to collagen VI in the central and peripheral nervous systems. We further link these findings to different aspects of the protein that are relevant to human diseases in these compartments in order to provide a comprehensive overview of the roles of this key matrix component in the nervous system.
Collapse
Affiliation(s)
- Ilaria Gregorio
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| |
Collapse
|
8
|
Cescon M, Chen P, Castagnaro S, Gregorio I, Bonaldo P. Lack of collagen VI promotes neurodegeneration by impairing autophagy and inducing apoptosis during aging. Aging (Albany NY) 2017; 8:1083-101. [PMID: 27060109 PMCID: PMC4931855 DOI: 10.18632/aging.100924] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/15/2016] [Indexed: 12/19/2022]
Abstract
Collagen VI is an extracellular matrix (ECM) protein with a broad distribution in different tissues and mostly deposited at the close periphery of the cell surface. Previous studies revealed that collagen VI protects neurons from the toxicity of amyloid-βpeptides and from UV-induced damage. However, the physiological role of this protein in the central nervous system (CNS) remains unknown. Here, we established primary neural cultures from murine cortex and hippocampus, and carried out in vitro and in vivo studies in wild-type and collagen VI null (Col6a1−/−) mice. Col6a1−/− neural cultures displayed an increased incidence of spontaneous apoptosis and higher vulnerability to oxidative stress, accompanied by altered regulation of autophagy with increased p62 protein levels and decreased LC3 lipidation. Analysis of brain sections confirmed increased apoptosis and abnormal regulation of autophagy in the CNS of collagen VI-deficient animals. To investigate the in vivo physiological consequences of these CNS defects, we carried out functional studies and found that motor and memory task performances were impaired in aged Col6a1−/− mice. These findings indicate that lack of collagen VI leads to spontaneous apoptosis and defective autophagy in neural cells, and point at a protective role for this ECM protein in the CNS during physiological aging.
Collapse
Affiliation(s)
- Matilde Cescon
- Department of Molecular Medicine, University of Padova, I-35131 Padova, Italy
| | - Peiwen Chen
- Department of Molecular Medicine, University of Padova, I-35131 Padova, Italy
| | - Silvia Castagnaro
- Department of Molecular Medicine, University of Padova, I-35131 Padova, Italy
| | - Ilaria Gregorio
- Department of Molecular Medicine, University of Padova, I-35131 Padova, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, I-35131 Padova, Italy
| |
Collapse
|
9
|
Chen T, Giri M, Xia Z, Subedi YN, Li Y. Genetic and epigenetic mechanisms of epilepsy: a review. Neuropsychiatr Dis Treat 2017; 13:1841-1859. [PMID: 28761347 PMCID: PMC5516882 DOI: 10.2147/ndt.s142032] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Epilepsy is a common episodic neurological disorder or condition characterized by recurrent epileptic seizures, and genetics seems to play a key role in its etiology. Early linkage studies have localized multiple loci that may harbor susceptibility genes to epilepsy, and mutational analyses have detected a number of mutations involved in both ion channel and nonion channel genes in patients with idiopathic epilepsy. Genome-wide studies of epilepsy have found copy number variants at 2q24.2-q24.3, 7q11.22, 15q11.2-q13.3, and 16p13.11-p13.2, some of which disrupt multiple genes, such as NRXN1, AUTS2, NLGN1, CNTNAP2, GRIN2A, PRRT2, NIPA2, and BMP5, implicated for neurodevelopmental disorders, including intellectual disability and autism. Unfortunately, only a few common genetic variants have been associated with epilepsy. Recent exome-sequencing studies have found some genetic mutations, most of which are located in nonion channel genes such as the LGI1, PRRT2, EFHC1, PRICKLE, RBFOX1, and DEPDC5 and in probands with rare forms of familial epilepsy, and some of these genes are involved with the neurodevelopment. Since epigenetics plays a role in neuronal function from embryogenesis and early brain development to tissue-specific gene expression, epigenetic regulation may contribute to the genetic mechanism of neurodevelopment through which a gene and the environment interacting with each other affect the development of epilepsy. This review focused on the analytic tools used to identify epilepsy and then provided a summary of recent linkage and association findings, indicating the existence of novel genes on several chromosomes for further understanding of the biology of epilepsy.
Collapse
Affiliation(s)
- Tian Chen
- Department of Health Management Center, Chongqing Three Gorges Central Hospital, Chongqing, People's Republic of China
| | - Mohan Giri
- National Center for Rheumatic Diseases, Ratopul, Gaushala, Kathmandu, Nepal
| | - Zhenyi Xia
- Department of Thoracic Surgery, Chongqing Three Gorges Central Hospital, Chongqing, People's Republic of China
| | - Yadu Nanda Subedi
- National Center for Rheumatic Diseases, Ratopul, Gaushala, Kathmandu, Nepal
| | - Yan Li
- Department of Health Management Center, Chongqing Three Gorges Central Hospital, Chongqing, People's Republic of China
| |
Collapse
|
10
|
Recessive mutations in the α3 (VI) collagen gene COL6A3 cause early-onset isolated dystonia. Am J Hum Genet 2015; 96:883-93. [PMID: 26004199 DOI: 10.1016/j.ajhg.2015.04.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/16/2015] [Indexed: 12/13/2022] Open
Abstract
Isolated dystonia is a disorder characterized by involuntary twisting postures arising from sustained muscle contractions. Although autosomal-dominant mutations in TOR1A, THAP1, and GNAL have been found in some cases, the molecular mechanisms underlying isolated dystonia are largely unknown. In addition, although emphasis has been placed on dominant isolated dystonia, the disorder is also transmitted as a recessive trait, for which no mutations have been defined. Using whole-exome sequencing in a recessive isolated dystonia-affected kindred, we identified disease-segregating compound heterozygous mutations in COL6A3, a collagen VI gene associated previously with muscular dystrophy. Genetic screening of a further 367 isolated dystonia subjects revealed two additional recessive pedigrees harboring compound heterozygous mutations in COL6A3. Strikingly, all affected individuals had at least one pathogenic allele in exon 41, including an exon-skipping mutation that induced an in-frame deletion. We tested the hypothesis that disruption of this exon is pathognomonic for isolated dystonia by inducing a series of in-frame deletions in zebrafish embryos. Consistent with our human genetics data, suppression of the exon 41 ortholog caused deficits in axonal outgrowth, whereas suppression of other exons phenocopied collagen deposition mutants. All recessive mutation carriers demonstrated early-onset segmental isolated dystonia without muscular disease. Finally, we show that Col6a3 is expressed in neurons, with relevant mRNA levels detectable throughout the adult mouse brain. Taken together, our data indicate that loss-of-function mutations affecting a specific region of COL6A3 cause recessive isolated dystonia with underlying neurodevelopmental deficits and highlight the brain extracellular matrix as a contributor to dystonia pathogenesis.
Collapse
|
11
|
Jiang T, Tan MS, Tan L, Yu JT. Application of next-generation sequencing technologies in Neurology. ANNALS OF TRANSLATIONAL MEDICINE 2015; 2:125. [PMID: 25568878 DOI: 10.3978/j.issn.2305-5839.2014.11.11] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 03/01/2013] [Indexed: 12/11/2022]
Abstract
Genetic risk factors that underlie many rare and common neurological diseases remain poorly understood because of the multi-factorial and heterogeneous nature of these disorders. Although genome-wide association studies (GWAS) have successfully uncovered numerous susceptibility genes for these diseases, odds ratios associated with risk alleles are generally low and account for only a small proportion of estimated heritability. These results implicated that there are rare (present in <5% of the population) but not causative variants exist in the pathogenesis of these diseases, which usually have large effect size and cannot be captured by GWAS. With the decreasing cost of next-generation sequencing (NGS) technologies, whole-genome sequencing (WGS) and whole-exome sequencing (WES) have enabled the rapid identification of rare variants with large effect size, which made huge progress in understanding the basis of many Mendelian neurological conditions as well as complex neurological diseases. In this article, recent NGS-based studies that aimed to investigate genetic causes for neurological diseases, including Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, stroke, amyotrophic lateral sclerosis and spinocerebellar ataxias, have been reviewed. In addition, we also discuss the future directions of NGS applications in this article.
Collapse
Affiliation(s)
- Teng Jiang
- 1 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao 266071, China ; 2 College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266071, China ; 3 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China
| | - Meng-Shan Tan
- 1 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao 266071, China ; 2 College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266071, China ; 3 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China
| | - Lan Tan
- 1 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao 266071, China ; 2 College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266071, China ; 3 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China
| | - Jin-Tai Yu
- 1 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao 266071, China ; 2 College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266071, China ; 3 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China
| |
Collapse
|
12
|
Cescon M, Gattazzo F, Chen P, Bonaldo P. Collagen VI at a glance. J Cell Sci 2015; 128:3525-31. [DOI: 10.1242/jcs.169748] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/10/2015] [Indexed: 12/17/2022] Open
Abstract
Collagen VI represents a remarkable extracellular matrix molecule, and in the past few years, studies of this molecule have revealed its involvement in a wide range of tissues and pathological conditions. In addition to its complex multi-step pathway of biosynthesis and assembly that leads to the formation of a characteristic and distinctive network of beaded microfilaments in the extracellular matrix, collagen VI exerts several key roles in different tissues. These range from unique biomechanical roles to cytoprotective functions in different cells, including myofibers, chondrocytes, neurons, fibroblasts and cardiomyocytes. Indeed, collagen VI has been shown to exert a surprisingly broad range of cytoprotective effects, which include counteracting apoptosis and oxidative damage, favoring tumor growth and progression, regulating autophagy and cell differentiation, and even contributing to the maintenance of stemness. In this Cell Science at a Glance article and the accompanying poster, we present the current knowledge of collagen VI, and in particular, discuss its relevance in stemness and in preserving the mechanical properties of tissues, as well as its links with human disorders.
Collapse
Affiliation(s)
- Matilde Cescon
- Department of Molecular Medicine, University of Padova, Padova 35131, Italy
| | - Francesca Gattazzo
- Department of Molecular Medicine, University of Padova, Padova 35131, Italy
| | - Peiwen Chen
- Department of Molecular Medicine, University of Padova, Padova 35131, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Padova 35131, Italy
| |
Collapse
|
13
|
Kong XD, Liu N, Xu XJ, Zhao ZH, Jiang M. Screening of human chromosome 21 genes in the dorsolateral prefrontal cortex of individuals with Down syndrome. Mol Med Rep 2014; 11:1235-9. [PMID: 25370074 DOI: 10.3892/mmr.2014.2855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 10/03/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the current study was to identify the genes on human chromosome 21 (HC21) that may serve important functions in the pathogenesis of Down syndrome (DS). The microarray data GSE5390 were obtained from the Gene Expression Omnibus database, which contained 7 DS and 8 healthy normal samples. The data were then normalized and the differentially expressed genes (DEGs) were identified using the LIMMA package and Bonferroni correction. Furthermore, the DEGs underwent clustering and gene ontology analysis. Additionally, the locations of the DEGs on HC21 were confirmed using human genome 19 in the University of California, Santa Cruz Interaction Browser. A total of 25 upregulated and 275 downregulated genes were screened between DS and healthy samples with a false discovery rate of <0.05 and |logFC|>1. The expression levels of these genes in the two samples were different. In addition, the up‑ and downregulated genes were markedly enriched in organic substance biological processes (P=4.48x10‑10) and cell‑cell signaling (P=0.000227). Furthermore, 17 overexpressed genes were identified on the 21q21‑22 area, including COL6A2, TTC3 and ABCG1. Together, these observations suggest that 17 upregulated genes on HC21 may be involved in the development of DS and provide the basis for understanding this disability.
Collapse
Affiliation(s)
- Xiang-Dong Kong
- Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ning Liu
- Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xue-Ju Xu
- Department of Paediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhen-Hua Zhao
- Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Miao Jiang
- Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
14
|
Danielsson K, Mun LJ, Lordemann A, Mao J, Lin CHJ. Next-generation sequencing applied to rare diseases genomics. Expert Rev Mol Diagn 2014; 14:469-87. [PMID: 24702023 DOI: 10.1586/14737159.2014.904749] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genomics has revolutionized the study of rare diseases. In this review, we overview the latest technological development, rare disease discoveries, implementation obstacles and bioethical challenges. First, we discuss the technology of genome and exome sequencing, including the different next-generation platforms and exome enrichment technologies. Second, we survey the pioneering centers and discoveries for rare diseases, including few of the research institutions that have contributed to the field, as well as an overview survey of different types of rare diseases that have had new discoveries due to next-generation sequencing. Third, we discuss the obstacles and challenges that allow for clinical implementation, including returning of results, informed consent and privacy. Last, we discuss possible outlook as clinical genomics receives wider adoption, as third-generation sequencing is coming onto the horizon, and some needs in informatics and software to further advance the field.
Collapse
Affiliation(s)
- Krissi Danielsson
- Rare Genomics Institute, 4100 Forest Park Ave, Suite 204, St. Louis, MO 63108, USA
| | | | | | | | | |
Collapse
|
15
|
Ferraro TN. The relationship between genes affecting the development of epilepsy and approaches to epilepsy therapy. Expert Rev Neurother 2014; 14:329-52. [DOI: 10.1586/14737175.2014.888651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Chen P, Cescon M, Megighian A, Bonaldo P. Collagen VI regulates peripheral nerve myelination and function. FASEB J 2013; 28:1145-56. [PMID: 24277578 DOI: 10.1096/fj.13-239533] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Collagen VI is an extracellular matrix protein with broad distribution in several tissues. Although Col6a1 is expressed by Schwann cells, the role of collagen VI in the peripheral nervous system (PNS) is yet unknown. Here we show that Schwann cells, but not axons, contribute to collagen VI deposition in peripheral nerves. By using Col6a1-null mice, in which collagen VI deposition is compromised, we demonstrate that lack of collagen VI leads to increased myelin thickness (P<0.001) along with 60-130% up-regulation in myelin-associated proteins and disorganized C fibers in the PNS. The hypermyelination of PNS in Col6a1(-/-) mice is supported by alterations of signaling pathways involved in myelination, including increase of P-FAK, P-AKT, P-ERK1, P-ERK2, and P-p38 (4.15, 1.67, 2.47, 3.34, and 2.60-fold, respectively) and reduction of vimentin (0.49-fold), P-JNK (0.74-fold), and P-c-Jun (0.50-fold). Pathologically, Col6a1(-/-) mice display an impairment of nerve conduction velocity and motor coordination (P<0.05), as well as a delayed response to acute pain stimuli (P<0.001), indicating that lack of collagen VI causes functional defects of peripheral nerves. Altogether, these results indicate that collagen VI is a critical component of PNS contributing to the structural integrity and proper function of peripheral nerves.
Collapse
Affiliation(s)
- Peiwen Chen
- 2Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| | | | | | | |
Collapse
|
17
|
Martí-Massó JF, Bergareche A, Makarov V, Ruiz-Martinez J, Gorostidi A, López de Munain A, Poza JJ, Striano P, Buxbaum JD, Paisán-Ruiz C. The ACMSD gene, involved in tryptophan metabolism, is mutated in a family with cortical myoclonus, epilepsy, and parkinsonism. J Mol Med (Berl) 2013; 91:1399-406. [PMID: 23955123 DOI: 10.1007/s00109-013-1075-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/02/2013] [Accepted: 07/29/2013] [Indexed: 11/24/2022]
Abstract
UNLABELLED Familial cortical myoclonic tremor and epilepsy is a phenotypically and genetically heterogeneous autosomal dominant disorder characterized by the presence of cortical myoclonic tremor and epilepsy that is often accompanied by additional neurological features. Despite the numerous familial studies performed and the number of loci identified, there is no gene associated with this syndrome. It is expected that through the application of novel genomic technologies, such as whole exome sequencing and whole genome sequencing, a substantial number of novel genes will come to light in the coming years. In this study, we describe the identification of two disease-segregating mutations in a large family featuring cortical myoclonic tremor with epilepsy and parkinsonism. Due to the previous association of ACMSD deficiency with the development of epileptic seizures, we concluded that the identified nonsense mutation in the ACMSD gene, which encodes for a critical enzyme of the kynurenine pathway of the tryptophan metabolism, is the disease-segregating mutation most likely to be responsible for the phenotype described in our family. This finding not only reveals the identification of the first gene associated with familial cortical myoclonic tremor and epilepsy but also discloses the kynurenine pathway as a potential therapeutic target for the treatment of this devastating syndrome. KEY MESSAGE ACMSD is mutated in a family with cortical myoclonus, epilepsy, and parkinsonism. ACMSD mutation contributes to the development of FCMTE QA accumulation is likely to play an important role in the pathogenesis of FCMTE. The kynurenine pathway as a potential drug target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Jose Felix Martí-Massó
- Biodonostia Research Institute, Neurosciences area, University of the Basque Country, EHU-UPV, San Sebastian, Gipuzkoa, Spain,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Krebs CE, Karkheiran S, Powell JC, Cao M, Makarov V, Darvish H, Di Paolo G, Walker RH, Shahidi GA, Buxbaum JD, De Camilli P, Yue Z, Paisán-Ruiz C. The Sac1 domain of SYNJ1 identified mutated in a family with early-onset progressive Parkinsonism with generalized seizures. Hum Mutat 2013; 34:1200-7. [PMID: 23804563 DOI: 10.1002/humu.22372] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/18/2013] [Indexed: 02/06/2023]
Abstract
This study aimed to elucidate the genetic causes underlying early-onset Parkinsonism (EOP) in a consanguineous Iranian family. To attain this, homozygosity mapping and whole-exome sequencing were performed. As a result, a homozygous mutation (c.773G>A; p.Arg258Gln) lying within the NH2 -terminal Sac1-like inositol phosphatase domain of polyphosphoinositide phosphatase synaptojanin 1 (SYNJ1), which has been implicated in the regulation of endocytic traffic at synapses, was identified as the disease-segregating mutation. This mutation impaired the phosphatase activity of SYNJ1 against its Sac1 domain substrates in vitro. We concluded that the SYNJ1 mutation identified here is responsible for the EOP phenotype seen in our patients probably due to deficiencies in its phosphatase activity and consequent impairment of its synaptic functions. Our finding not only opens new avenues of investigation in the synaptic dysfunction mechanisms associated with Parkinsonism, but also suggests phosphoinositide metabolism as a novel therapeutic target for Parkinsonism.
Collapse
Affiliation(s)
- Catharine E Krebs
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|